MITSUBISHI PM50B6LA060 FLAT-BASE TYPE INSULATED PACKAGE PM50B6LA060 FEATURE a) Adopting new 5th generation IGBT (CSTBT TM ) chip, which performance is improved by 1m fine rule process. For example, typical Vce(sat)=1.55V @Tj=125C b) Over-temperature protection by detecting Tj of the CSTBT TM chips and error output is possible from all each conservation upper and lower arm of IPM. c) New small package Reduce the package size by 10%, thickness by 22% from S-DASH series. * 2 50A, 600V Current-sense IGBT type inverter * 50A, 600V Current-sense Chopper IGBT * Monolithic gate drive & protection logic * Detection, protection & status indication circuits for, shortcircuit, over-temperature & under-voltage (P-Fo available from upper arm devices) * UL Recognized Yellow Card No.E80276(N) File No.E80271 APPLICATION Photo voltaic power conditioner PACKAGE OUTLINES Dimensions in mm L A B E L 11 120 106 7 19.75 3.25 16 16 16 3-2 3-2 3-2 16 15.25 2-5.5 MOUNTING HOLES 6-2 3 2-2.5 55 N 17.5 12 (19.75) 5 9 13 19 U V W 13.5 B 6-M5 NUTS 22 +- 10.5 12 32.75 23 23 23 Terminal code 19-0.5 31 13 7 (SCREWING DEPTH) 10.75 12 11.75 14.5 32 P 17.5 1 1. 2. 3. 4. 5. 6. 7. VUPC UFO UP VUP1 VVPC VFO VP 8. 9. 10. 11. 12. 13. 14. VVP1 NC NC NC NC VNC VN1 15. 16. 17. 18. 19. Br UN VN WN Fo Oct. 2005 MITSUBISHI PM50B6LA060 FLAT-BASE TYPE INSULATED PACKAGE INTERNAL FUNCTIONS BLOCK DIAGRAM VNC WN Br FO VN1 VN UN NC NC NC NC VP VVP1 VVPC VFO UP VUPC VUP1 UFO 1.5k 1.5k GND IN Fo Vcc GND IN Fo GND SC OT OUT Vcc GND SC OT OUT B GND IN Fo Vcc GND SC OT OUT GND IN Fo Vcc GND IN Fo GND SC OT OUT N 1.5k Vcc GND IN Fo GND SC OT OUT W V Vcc GND SC OT OUT U P MAXIMUM RATINGS (Tj = 25C, unless otherwise noted) INVERTER PART Symbol VCES IC ICP PC Tj Parameter Collector-Emitter Voltage Collector Current Collector Current (Peak) Collector Dissipation Junction Temperature Condition Ratings 600 50 100 131 -20 ~ +150 Unit V A A W C Condition Ratings 600 50 100 131 50 600 -20 ~ +150 Unit V A A W A V C Ratings Unit 20 V 20 V 20 20 V mA VD = 15V, VCIN = 15V TC = 25C TC = 25C TC = 25C CONVERTER PART Symbol VCES IC ICP PC IF VR(DC) Tj Parameter Collector-Emitter Voltage Collector Current Collector Current (Peak) Collector Dissipation FWDi Forward Current FWDi Rated DC Reverse Voltage Junction Temperature VD = 15V, VCIN = 15V TC = 25C TC = 25C TC = 25C TC = 25C TC = 25C (Note-1) CONTROL PART Symbol Parameter VD Supply Voltage VCIN Input Voltage VFO IFO Fault Output Supply Voltage Fault Output Current Condition Applied between : VUP1-VUPC VVP1-VVPC, VN1-VNC Applied between : UP-VUPC, VP-VVPC UN * VN * WN * Br-VNC Applied between : UFO-VUPC, VFO-VVPC, FO-VNC Sink current at UFO, VFO, FO terminals Oct. 2005 MITSUBISHI PM50B6LA060 FLAT-BASE TYPE INSULATED PACKAGE TOTAL SYSTEM Parameter Supply Voltage Protected by VCC(PROT) SC VCC(surge) Supply Voltage (Surge) Storage Temperature Tstg Isolation Voltage Viso Symbol Ratings Condition VD = 13.5 ~ 16.5V, Inverter Part, Tj = +125C Start Applied between : P-N, Surge value 60Hz, Sinusoidal, Charged part to Base, AC 1 min. Unit 450 V 500 -40 ~ +125 2500 V C Vrms THERMAL RESISTANCES Symbol Condition Parameter Rth(j-c)Q Rth(j-c)F Rth(j-c)Q Rth(j-c)F Rth(j-c)F Junction to case Thermal Resistances Rth(c-f) Contact Thermal Resistance Inverter IGBT part (per 1/4 module) Inverter FWDi part (per 1/4 module) Converter IGBT part Converter FWDi upper part Converter FWDi lower part Case to fin, (per 1 module) Thermal grease applied (Note-1) (Note-1) (Note-1) (Note-1) (Note-1) (Note-1) Min. -- -- -- -- -- Limits Typ. -- -- -- -- -- Max. 0.95 1.61 0.95 0.95 1.61 -- -- 0.038 Unit C/W (Note-1) Tc (under the chip) measurement point is below. (unit : mm) arm axis X Y UP IGBT FWDi 32.2 32.7 -10.0 -0.2 VP IGBT FWDi 63.3 62.8 -2.0 -8.8 WP FWDi 82.9 -8.4 BP FWDi 21.8 6.8 UN IGBT FWDi 39.3 38.8 0.8 8.0 VN IGBT FWDi 52.5 53.0 -2.8 3.8 WN IGBT FWDi 75.1 75.6 -2.8 3.8 BN IGBT FWDi 25.9 18.1 -10.0 -8.4 Bottom view ELECTRICAL CHARACTERISTICS (Tj = 25C, unless otherwise noted) INVERTER PART Symbol VCE(sat) VEC ton trr tc(on) toff tc(off) ICES Parameter Condition Collector-Emitter Saturation Voltage FWDi Forward Voltage VD = 15V, IC = 50A VCIN = 0V (Fig. 1) -IC = 50A, VD = 15V, VCIN = 15V Switching Time VD = 15V, VCIN = 0V15V VCC = 300V, IC = 50A Tj = 125C Inductive Load Collector-Emitter Cutoff Current VCE = VCES, VCIN = 15V Tj = 25C Tj = 125C (Fig. 2) (Fig. 3,4) (Fig. 5) Tj = 25C Tj = 125C Min. -- -- -- 0.3 -- -- -- -- -- -- Limits Typ. 1.7 1.55 2.2 0.7 0.1 0.2 0.9 0.2 -- -- Max. 2.3 2.0 3.3 1.4 0.2 0.4 1.8 0.4 1 10 Unit V V s mA Oct. 2005 MITSUBISHI PM50B6LA060 FLAT-BASE TYPE INSULATED PACKAGE CONVERTER PART Symbol VCE(sat) VEC VFM ton trr tc(on) toff tc(off) ICES Condition Parameter Collector-Emitter Saturation Voltage FWDi Forward Voltage Forward Voltage VD = 15V, IC = 50A VCIN = 0V, Pulsed (Fig. 1) -IC = 50A, VCIN = 15V, VD = 15V IF = 50A Switching Time VD = 15V, VCIN = 0V15V VCC = 300V, IC = 50A Tj = 125C Inductive Load Collector-Emitter Cutoff Current VCE = VCES, VD = 15V Tj = 25C Tj = 125C (Fig. 2) (Fig. 3,4) (Fig. 5) Tj = 25C Tj = 125C Min. -- -- -- -- 0.3 -- -- -- -- -- -- Limits Typ. 1.7 1.55 2.2 1.9 0.7 0.1 0.2 0.9 0.2 -- -- Max. 2.3 2.0 3.3 3.0 1.4 0.2 0.4 1.8 0.4 1 10 Min. -- -- 1.2 1.7 100 100 Limits Typ. 20 5 1.5 2.0 -- -- Max. 30 10 1.8 2.3 -- -- Unit V V V s mA CONTROL PART Symbol Parameter Condition VN1-VNC V*P1-V*PC ID Circuit Current VD = 15V, VCIN = 15V Vth(ON) Vth(OFF) Input ON Threshold Voltage Input OFF Threshold Voltage Applied between : UP-VUPC, VP-VVPC UN * VN * WN * Br-VNC SC Short Circuit Trip Level -20 Tj 125C, VD = 15V (Fig. 3,6) toff(SC) Short Circuit Current Delay Time VD = 15V Over Temperature Protection VD = 15V Detect Tj of IGBT chip Supply Circuit Under-Voltage Protection -20 Tj 125C Fault Output Current VD = 15V, VFO = 15V (Note-2) Minimum Fault Output Pulse Width VD = 15V (Note-2) OT OTr UV UVr IFO(H) IFO(L) tFO Inverter part Converter part (Fig. 3,6) Trip level Reset level Trip level Reset level -- 0.2 -- 135 -- 11.5 -- -- -- 145 125 12.0 12.5 -- 10 -- -- 12.5 -- 0.01 15 1.0 1.8 -- Unit mA V A s C V mA ms (Note-2) Fault output is given only when the internal SC, OT & UV protections schemes of either upper or lower arm device operate to protect it. MECHANICAL RATINGS AND CHARACTERISTICS Symbol -- -- -- Condition Parameter Mounting torque Mounting torque Weight Main terminal Mounting part screw : M5 screw : M5 -- Min. 2.5 2.5 -- Limits Typ. 3.0 3.0 380 Max. 3.5 3.5 -- Unit N*m N*m g RECOMMENDED CONDITIONS FOR USE Symbol VCC Parameter Supply Voltage VD Control Supply Voltage VCIN(ON) VCIN(OFF) Input ON Voltage Input OFF Voltage Condition Applied across P-N terminals Applied between : VUP1-VUPC, VVP1-VVPC VN1-VNC Applied between : UP-VUPC, VP-VVPC UN * VN * WN * Br-VNC fPWM PWM Input Frequency Using Application Circuit of Fig. 8 tdead Arm Shoot-through Blocking Time For IPM's each input signals Recommended value 450 Unit V 15 1.5 V 0.8 9.0 V 20 kHz 2.0 s (Note-3) (Fig. 7) (Note-3) With ripple satisfying the following conditions : dv/dt swing 5V/s, Variation 2V peak to peak Oct. 2005 MITSUBISHI PM50B6LA060 FLAT-BASE TYPE INSULATED PACKAGE PRECAUTIONS FOR TESTING 1. Before appling any control supply voltage (VD), the input terminals should be pulled up by resistores, etc. to their corresponding supply voltage and each input signal should be kept off state. After this, the specified ON and OFF level setting for each input signal should be done. 2. When performing "SC" tests, the turn-off surge voltage spike at the corresponding protection operation should not be allowed to rise above VCES rating of the device. (These test should not be done by using a curve tracer or its equivalent.) P, (U,V,W,B) IN Fo VCIN P, (U,V,W,B) Ic V IN Fo VCIN -Ic V (15V) (0V) U,V, (N) VD (all) VD (all) Fig. 1 VCE(sat) Test U,V,W,B, (N) Fig. 2 VEC, (VFM) Test a) Lower Arm Switching P VCIN (15V) Fo Signal input (Upper Arm) trr CS Ic Vcc Fo Signal input (Lower Arm) VCIN VCE Irr U,V,W,B 90% 90% N VD (all) b) Upper Arm Switching Ic 10% 10% 10% 10% P tc(on) Fo Signal input (Upper Arm) VCIN VCIN U,V CS VCIN (15V) tc(off) Vcc td(on) tr td(off) tf Fo Signal input (Lower Arm) (ton= td(on) + tr) (toff= td(off) + tf) N Ic VD (all) Fig. 3 Switching Time and SC Test Circuit Fig. 4 Switching Time Test Waveform VCIN Short Circuit Current P, (U,V,W,B) A VCIN (15V) Constant Current IN Fo SC Trip Pulse VCE Ic VD (all) U,V,W,B, (N) Fo toff(SC) Fig. 5 ICES Test Fig. 6 SC Test Waveform IPM' input signal VCIN (Upper Arm) 1.5V 0V IPM' input signal VCIN (Lower Arm) 0V 2V tdead 2V 1.5V 1.5V 2V tdead t t tdead 1.5V: Input on threshold voltage Vth(on) typical value, 2V: Input off threshold voltage Vth(off) typical value Fig. 7 Dead Time Measurement Point Example Oct. 2005 MITSUBISHI PM50B6LA060 FLAT-BASE TYPE INSULATED PACKAGE 20k VUP1 IF UFO 1.5k UP 0.1 10 20k VUPC VVP1 IF VFO 1.5k VP 0.1 10 VVPC P Vcc Fo IN OUT OT SC GND GND Vcc Fo IN U OUT ~ OT AC Output SC GND GND V NC NC NC W NC 20k Vcc IF Fo UN 0.1 10 IN OUT OT SC GND GND 20k Vcc IF Fo VN 0.1 10 IN N OUT OT SC GND GND 20k VN1 IF Vcc Fo WN 0.1 10 VNC IN OUT OT SC GND GND B 20k Vcc IF FO 1.5k Br 0.1 10 Fo IN OUT OT SC GND GND Fig. 8 Application Example Circuit NOTES FOR STABLE AND SAFE OPERATION ; Design the PCB pattern to minimize wiring length between opto-coupler and IPM's input terminal, and also to minimize the stray capacity between the input and output wirings of opto-coupler. Connect low impedance capacitor between the Vcc and GND terminal of each fast switching opto-coupler. Fast switching opto-couplers: tPLH, tPHL 0.8s, Use High CMR type. Slow switching opto-coupler: CTR > 100% Use 3 isolated control power supplies (VD). Also, care should be taken to minimize the instantaneous voltage charge of the power supply. Make inductance of DC bus line as small as possible, and minimize surge voltage using snubber capacitor between P and N terminal. * * * * * * Oct. 2005 MITSUBISHI PM50B6LA060 FLAT-BASE TYPE INSULATED PACKAGE PERFORMANCE CURVES (INVERTER PART) COLLECTOR-EMITTER SATURATION VOLTAGE (VS. Ic) CHARACTERISTICS (TYPICAL) OUTPUT CHARACTERISTICS (TYPICAL) COLLECTOR CURRENT IC (A) Tj = 25C 13V 15V 50 COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V) 60 VD = 17V 40 30 20 10 0 0.5 0 1 1.5 2 2 VD = 15V 1.5 1 0.5 Tj = 25C Tj = 125C 0 0 10 20 30 40 50 60 COLLECTOR CURRENT IC (A) COLLECTOR-EMITTER SATURATION VOLTAGE (VS. VD) CHARACTERISTICS (TYPICAL) 2 SWITCHING TIME CHARACTERISTICS (TYPICAL) 1 0.5 IC = 50A Tj = 25C Tj = 125C 0 12 13 14 15 16 SWITCHING TIME ton, toff (s) 3 2 tc(on) 10-1 7 5 tc(off) VCC = 300V VD = 15V Tj = 25C Tj = 125C Inductive load 3 2 10-2 0 10 18 tc(off) 2 3 5 7 101 2 3 5 7 102 COLLECTOR CURRENT IC (A) SWITCHING TIME CHARACTERISTICS (TYPICAL) SWITCHING LOSS CHARACTERISTICS (TYPICAL) VCC = 300V VD = 15V Tj = 25C Tj = 125C Inductive load 7 5 3 2 7 5 7 5 CONTROL SUPPLY VOLTAGE VD (V) 101 100 17 SWITCHING TIME tc(on), tc(off) (s) 1.5 100 toff toff ton ton 3 2 10-1 0 10 2 3 5 7 101 2 3 5 7 102 COLLECTOR CURRENT IC (A) SWITCHING LOSS ESW(on), ESW(off) (mJ/Pulse) COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V) COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V) 101 7 5 3 2 100 VCC = 300V VD = 15V Tj = 25C Tj = 125C Inductive load ESW(off) 7 5 3 ESW(on) 2 10-1 7 5 ESW(off) 3 2 10-2 0 10 2 3 5 7 101 2 3 5 7 102 COLLECTOR CURRENT IC (A) Oct. 2005 MITSUBISHI PM50B6LA060 7 5 3 2 101 7 5 3 2 100 Tj = 25C Tj = 125C 0 0.5 1 1.5 2 FWDi REVERSE RECOVERY CHARACTERISTICS (TYPICAL) 101 102 7 5 7 5 3 2 3 2 100 7 5 3 2 10-1 7 5 trr EMITTER-COLLECTOR VOLTAGE VEC (V) 101 7 5 3 2 100 7 5 3 2 10-2 0 10 2.5 VCC = 300V VD = 15V Tj = 25C Tj = 125C Inductive load Irr 3 2 2 3 5 7 101 10-1 2 3 5 7 102 REVERSE RECOVERY CURRENT lrr (A) FWDi FORWARD VOLTAGE CHARACTERISTICS (TYPICAL) 102 VD = 15V REVERSE RECOVERY TIME trr (s) COLLECTOR REVERSE CURRENT -IC (A) FLAT-BASE TYPE INSULATED PACKAGE COLLECTOR CURRENT IC (A) REVERSE RECOVERY LOSS Err (mJ/Pulse) FWDi REVERSE RECOVERY LOSS CHARACTERISTICS (TYPICAL) 100 7 5 3 2 10-1 7 5 3 2 Err 10-2 VCC = 300V VD = 15V Tj = 25C Tj = 125C Inductive load 7 5 3 2 10-3 0 10 2 3 5 7 101 2 3 5 7 102 COLLECTOR REVERSE CURRENT -IC (A) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (FWDi PART) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (IGBT PART) 100 7 5 NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth (j - c) NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth (j - c) 100 3 2 10-1 7 5 3 2 10-2 7 5 3 Single Pulse 2 Per unit base = Rth(j - c)Q = 0.95C/W 10-3 -5 10 2 3 5 710-4 2 3 5 710-3 2 3 5 710-2 2 3 5 710-1 2 3 5 7100 2 3 5 7101 TIME (s) 7 5 3 2 10-1 7 5 3 2 10-2 7 5 3 Single Pulse 2 Per unit base = Rth(j - c)F = 1.61C/W 10-3 -5 10 2 3 5 710-4 2 3 5 710-3 2 3 5 710-2 2 3 5 710-1 2 3 5 7100 2 3 5 7101 TIME (s) Oct. 2005 MITSUBISHI PM50B6LA060 FLAT-BASE TYPE INSULATED PACKAGE (CONVERTER PART) COLLECTOR-EMITTER SATURATION VOLTAGE (VS. Ic) CHARACTERISTICS (TYPICAL) OUTPUT CHARACTERISTICS (TYPICAL) COLLECTOR CURRENT IC (A) Tj = 25C 13V 15V 50 COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V) 60 VD = 17V 40 30 20 10 0 0.5 0 1 1.5 2 2 VD = 15V 1.5 1 0.5 Tj = 25C Tj = 125C 0 0 10 20 30 40 50 60 COLLECTOR CURRENT IC (A) COLLECTOR-EMITTER SATURATION VOLTAGE (VS. VD) CHARACTERISTICS (TYPICAL) 2 SWITCHING TIME CHARACTERISTICS (Lower Arm * TYPICAL) 1 0.5 IC = 50A Tj = 25C Tj = 125C 0 12 13 14 15 SWITCHING TIME ton, toff (s) 3 2 tc(on) 10-1 7 5 tc(off) VCC = 300V VD = 15V Tj = 25C Tj = 125C Inductive load 3 2 10-2 0 10 18 tc(off) 2 3 5 7 101 2 3 5 7 102 COLLECTOR CURRENT IC (A) SWITCHING TIME CHARACTERISTICS (Lower Arm * TYPICAL) SWITCHING LOSS CHARACTERISTICS (Lower Arm * TYPICAL) VCC = 300V VD = 15V Tj = 25C Tj = 125C Inductive load 7 5 3 2 7 5 17 7 5 CONTROL SUPPLY VOLTAGE VD (V) 101 100 16 SWITCHING TIME tc(on), tc(off) (s) 1.5 100 toff ton 3 2 10-1 0 10 2 3 5 7 101 2 3 5 7 102 COLLECTOR CURRENT IC (A) SWITCHING LOSS ESW(on), ESW(off) (mJ/Pulse) COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V) COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V) 101 7 5 3 2 100 VCC = 300V VD = 15V Tj = 25C Tj = 125C Inductive load ESW(off) 7 5 ESW(on) 3 2 10-1 7 5 ESW(off) 3 2 10-2 0 10 2 3 5 7 101 2 3 5 7 102 COLLECTOR CURRENT IC (A) Oct. 2005 MITSUBISHI PM50B6LA060 7 5 3 2 101 7 5 3 2 100 Tj = 25C Tj = 125C 0 0.5 1 1.5 2 FWDi REVERSE RECOVERY CHARACTERISTICS (Upper Arm * TYPICAL) 101 102 7 5 7 5 3 2 3 2 100 7 5 3 2 10-1 7 5 7 5 3 2 Err 10-2 VCC = 300V VD = 15V Tj = 25C Tj = 125C Inductive load 7 5 3 2 10-3 0 10 2 3 5 7 101 2 3 5 3 2 2 3 5 7 101 10-1 2 3 5 7 102 7 5 3 2 10-1 7 5 3 2 10-2 7 5 3 Single Pulse 2 Per unit base = Rth(j - c)Q = 0.95C/W 10-3 -5 10 2 3 5 710-4 2 3 5 710-3 2 3 5 710-2 2 3 5 710-1 2 3 5 7100 2 3 5 7101 7 102 FWDi FORWARD CURRENT IF (A) TIME (s) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (FWDi PART * Upper Arm) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (FWDi PART * Lower Arm) 100 100 7 5 NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth (j - c) NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth (j - c) 7 5 100 NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth (j - c) REVERSE RECOVERY LOSS Err (mJ/Pulse) 10-1 3 2 TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (IGBT PART) FWDi REVERSE RECOVERY LOSS CHARACTERISTICS (Upper Arm * TYPICAL) 100 3 2 7 5 FWDi FORWARD CURRENT IF (A) FWDi FORWARD VOLTAGE VFM (V) 7 5 101 100 trr 3 2 10-2 0 10 2.5 VCC = 300V VD = 15V Tj = 25C Tj = 125C Inductive load Irr REVERSE RECOVERY CURRENT lrr (A) FWDi FORWARD VOLTAGE CHARACTERISTICS (Upper Arm * TYPICAL) 102 VD = 15V REVERSE RECOVERY TIME trr (s) FWDi FORWARD CURRENT IF (A) FLAT-BASE TYPE INSULATED PACKAGE 3 2 10-1 7 5 3 2 10-2 7 5 3 Single Pulse 2 Per unit base = Rth(j - c)F = 0.95C/W 10-3 -5 10 2 3 5 710-4 2 3 5 710-3 2 3 5 710-2 2 3 5 710-1 2 3 5 7100 2 3 5 7101 TIME (s) 7 5 3 2 10-1 7 5 3 2 10-2 7 5 3 Single Pulse 2 Per unit base = Rth(j - c)F = 1.61C/W 10-3 -5 10 2 3 5 710-4 2 3 5 710-3 2 3 5 710-2 2 3 5 710-1 2 3 5 7100 2 3 5 7101 TIME (s) Oct. 2005