Advanced sensor technologies
for today’s breakthrough applications
.
Table of Contents
www.optoelectronics.perkinelmer.com
PerkinElmer Optoelectronics provides Digital Imaging, Sensor and Lighting technologies
to speed the development of breakthrough applications for customers in biomedical,
communications and industrial markets. With development and manufacturing centers
around the world, the company is able to leverage and align global resources to serve
customers through innovation and operational excellence.
Consistent with PerkinElmer Optoelectronics’ policy of continually updating and improv-
ing its products, the type designation and data are subject to change, unless otherwise
arranged. No obligations are assumed for notice of change of future manufacture of these
devices or materials.
Copyright©2002 PerkinElmer Optoelectronics. All rights reserved.
Information furnished by PerkinElmer Optoelectronics is believed to be accurate and
reliable. However, no responsibility is assumed by PerkinElmer Optoelectronics for its
use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent
right of PerkinElmer, Inc.
Table of Contents
table of contents
Photo Detectors
Photon Counting Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Channel Photomultipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Photodiodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Photocells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Ultraviolet Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Thermopile Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Pyroelectric Infrared Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Analog Optical Isolators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Infrared Interruptive Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Phototransistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Imaging Components
Buffered Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Image Tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Line Scan Imagers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
CMOS Photodiode Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Cooled CCD Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
TDI Imagers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Solid State Emitters
Infrared Emitting Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Laser Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Medical Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Description
PerkinElmer Optoelectronics provides photon-counting modules
based on both APDs and innovative Channel Photomultipliers.
APD Based Single-Photon Counting Modules
The Single-Photon Counting Module (SPCM) is a self-contained
photon counter which covers the wavelength range from 400 nm
to 1100 nm, with photon detection efficiencies exceeding 70%
at 630 nm. It has an integral 2-stage TE cooler, cooler controller,
amplifier, discriminator and TTL output driver. It also contains
a high-voltage DC-to-DC converter and is powered from a single
5 V source. The module utilizes a patented active-quench
circuit which allows it to count over 10 million photons per
second. The photosensitive area is 0.2 mm, and units are
available with dark-count rates less than 25 counts/second.
SPCM-AQ4C Single-Photon Counting Array
The SPCM-AQ4C is a 4-channel photon-counting card capable
of detecting single photons of light over a wavelength range
from 400 nm to 1160 nm. Each channel is independent from
the others. The SPCM-AQ4C utilizes a unique silicon avalanche
photodiode (SliK) with a circular active area whose peak
photon-detection efficiency exceeds 60% at 650 nm. Each
photodiode is both thermoelectrically cooled and temperature
controlled, ensuring stabilized performance despite changes
in the ambient temperature.
photon counting modules
Features
Peak Photon-Detection Efficiency
@ 650 nm: 70% Typical
Active Area: SPCM-AQR-1X: 175 µm
Timing Resolution of 350 ps
FWHM
• User Friendly
• Gated Input
Single +5 V Supply
Typical Applications
• LIDAR
• Photon-Correlation Spectroscopy
• Astronomical Observation
Optical Range Finding
• Adaptive Optics
• Ultra-Sensitive Fluorescence
• Particle Sizing
Datasheets available upon request
2www.optoelectronics.perkinelmer.com
Table of Contents
Single-Photon Counting
Module—SPCM
SPCM-AQ4C Single-Photon
Counting Array
www.optoelectronics.perkinelmer.com 3
Photon Counting Modules
Parameter Typical Parameter Typical
Supply current 0.5 Amps Supply voltage 5 V
Power cable total resistance 0.2 Case operating temperature 5-40°C
Active area (diameter) @ min. Pd 175 µm
Photon detection efficiency (Pd) @ Quantum efficiency
400 nm 5% 400 nm 2%
650 nm 70% 650 nm 90%
830 nm 50% 830 nm 92%
1060 nm 2% 1060 nm 18%
Pd variation at constant case ±1-±3% Pd variation 5° C to 40° C case ±4-±10%
temperature (2 h @ 25° C) temperature
Dark count (cps) = Dark count (cps) =
SPCM-AQR-12 250-500 SPCM-AQR-15 50 max.
SPCM-AQR-13 150-250 SPCM-AQR-16 25 max.
SPCM-AQR-14 50-100
Average dark count variation Average dark count variation
at constant case temperature at 5°C to 40°C case
(6 hrs @ 25°C) temperature
SPCM-AQR-12/13 ±10% max. SPCM-AQR-12/13 ±20% max.
SPCM-AQR-14/15/16 ±1σ max.SPCM-AQR-14/15/16 ±2σ max.
Single-photon timing 350 ps @ FWHM Dead time (Count rates 50 ns
resolution below 5 Mc/s)
Output count rate before saturation 15 Mc/s Afterpulsing probability 0.3%
Linearity correction factor Gating turn on/off
@200 kc/s 1.01 (50 output)
@1 Mc/s 1.08 Disable = TTL Low 2 ns
@5 Mc/s 1.4 Enable = TTL High 45 ns
Settling time following power Threshold setting required on
up (1% stability) @ 1 meg 15 S counter for digital output 1 V
counts/sec and 25°C pulse (terminate in 50 )
Gate threshold voltage: Gate threshold voltage:
(@ Vsupply = 5 V) (@ Vsupply = 5 V)
Low level (sink current >90 mA) 0 V-0.4 V High level (sink current >30 mA) 3.5-5.25 V
SPCM-AQR-1X Series
Technical Specification
Parameter Typical Parameter Typical
Supply currents: Maximum power consumption: Counts/Second
@+2 V 1 Amp @+2 V 6 Watts max.
@+5 V 0.25 Amps @+5 V 5 Watts max.
@+30 V 0.01 Amps @+30 V 1.2 Watts max.
Supply voltage Photon detection efficiency
(per channel)
1.95 V-2.05 V @400 nm 5%
4.75 V-5.25 V @650 nm 65%
29 V-31 V @830 nm 25%
Operating temperature (heatsink) 5˚C-40˚C Dark count (per channel) 1000 counts/sec.
Average dark count variation per 10% Average dark count variation per 20%
channel @ constant heatsink temp. channel @ 5˚ to 40˚C heatsink temp.
Single-photon counting resolution 350 ps @ FWHM Dead time 50 ns-60 ns
Output pulse width 30 ns Maximum count rate 1 Mc/s-2 Mc/s
Continuous 1 Mc/s Afterpulsing probability 0.3%
Gate threshold voltage: Gate threshold voltage:
(@ Vsupply = 5 V) (@ Vsupply = 5 V)
Low level (sink current >90 mA) 0 V-0.4 V High level (source current >30 mA) 3.5 V-5.25 V
SPCM-AQ4C
Technical Specification
Test Conditions: T=22˚C
Test Conditions: T=22˚C
Table of Contents
Description
PerkinElmer Optoelectronics’ Channel Photomultiplier (CPM)
is an ultra-high sensitivity optical detector capable of replacing
conventional photomultipliers (PMTs). This device uses a proprietary
detector principle to produce ultra-high gain and dynamic range,
extremely low noise, and fast response within a compact form
factor. These detectors are available as components or in complete
modules designed for DC operation and photon counting. All
modules are gateable by an external TTL pulse for time-resolved
measurements.
Modules
MD Series DC-Module—contains the CPM, a high-voltage
power supply, an amplifier with I/U conversion, and an active
quenching circuit for high light protection.
MP Series Photon Counting Module—
The Photon Counting
Head MP 900 contains the Channel Photomultiplier, a high-
voltage power supply, a discrimination amplifier and a pulse
shaper for fast output pulses.
MH Series Channel Photomultiplier Head Module—The
Channel Photomultiplier module MH 900 series is designed
for both photon counting and dc operating modes. It contains
an adjustable high-voltage supply and a Channel Photomulti-
plier of the C900 series.
MP 96X-2, MP 97X-2 Single Photon Counting Module—
These modules are specially designed for particle
measurement with 530 nm and 632 nm lasers. Based on the
standard multialkali photocathode, the sensitive diameter is
reduced to 2 mm in order to achieve an excellent low dark-
count performance.
Power Supply
CHV 30N—A self-contained high-voltage supply specially
designed for the Channel Photomultipliers CPM C900, C1300
and C1900. It provides the matching voltages for the cathode,
channel entrance, and channel end.
CHV 30P—The equivalent power supply for positive high voltage.
All given values are nominal/typical at 20˚C ambient temperature;
specifications are subject to change without notice.
Principle of Operation
The CPM converts a very low light level into photoelectrons
through a semitransparent photocathode deposited on the inner
surface of the entrance window. On their way from the cathode to
the anode, the photoelectrons pass through
a narrow semiconductive channel. Each time the
electrons hit the inner surface of the curved channel, multiple sec-
ondary electrons are emitted. This effect occurs multiple times
along the path, leading to an avalanche effect with a gain exceed-
ing 108. The curved shape of the glass tube improves the multiplica-
tion effect.
channel photomultipliers
4www.optoelectronics.perkinelmer.com
CPM Features
Ultra-high anode sensitivity up to 10
7
A/W
Extremely low dark current, typically
3 pA @ 106gain
Very low equivalent noise input (down to
10-17 W)
High stability in dark current (“no bursts”)
High gain exceeding 108
• Compact dimensions
High dynamic range
Wide spectral response through multiple
window materials
• High resolution
• Fast response time
High immunity to magnetic fields
• Rugged design
Module Features
High dynamic range
No cooling required
Very high stability in noise level
• Adjustable gain
Active quenching circuit for high light
protection
Gateable CPM input (only Bialkali types)
Optical fiber read-out possible
5 volts operating voltage
Monitor voltage output
Typical Applications
Photon Detection and Counting
• Fluorescence Measurements
Analytical and Clinical Instrumentation
• Bioluminescence
• High-Energy Physics
Available Related Products
CPM:
1/3" C900 Series
1/2" C1300 Series
3/4" C1900 Series
CPM Modules:
MD Series
MP Series
MH Series
MP 96X-2, MP 97X-2
High Voltage Power Supply:
CHV 30N
CHV 30P
Datasheets available upon request
Table of Contents
Channel Photomultipliers
www.optoelectronics.perkinelmer.com 5
Channel Photomultipliers—
CPM Formats 1/2"and 3/4"
Useful Area: Min. 5 mm Photocathode Material: CsI, CsTe, Low-noise Bialkali, Bialkali,
Window Material: MgF2, Quartz or UV Glass Low-noise Multialk., Multialk. or Extended Red Multialk.
Electron Multiplication: Channel Electron Multiplier Supply Voltage (V): 2400 (Max. 3000)
Current Amplification: 5x107Linear Anode Current: Max. (DC linearity limit) 10% of Bias Current
Bias Current (
µ
A): 50 Response Time Rise Time (ns): 3
Anode Current: Max. 10 µA (Max. 30 sec.) Pulse Width/FWHM (ns): 6
Single Photo Electron gain: 3x106Peak to Valley: 10:1
Ambient Temperature (°C): Max. 50
Spectral Dark Counts
Response @140 nm @200 nm @400 nm @560 nm
Dark Current
per Second
/nm Model A/W A/W A/W A/W ENI (W) pA Model (cps)
115-200 C911 6x1051x10-17 2C911P 0.1
115-200 C921 1x1061x10-17 10 C921P 1
165-320 C922 1x1061x10-17 10 C922P 1
165-650 C942 3x1061x10-17 80 C942P 10
185-650 C943 3x1061x10-17 80 C943P 10
300-650 C944 3x1061x10-17 80 C944P 10
165-750 C952 3x1062.5x10-17 250 C952P 40
185-750 C953 3x1062.5x10-17 250 C953P 40
165-850 C962 2x1064x10-17 1000 C962P 100
185-850 C963 2x1064x10-17 1000 C963P 100
165-900 C972 2x1061.5x10-16 5000 C972P 500
185-900 C973 2x1061.5x10-16 5000 C973P 500
165-650 C982 3x1056x10-18 25 C982P 3
185-650 C983 3x1056x10-18 25 C983P 3
CPM—1/3" C 900 Series
Technical Specification
Useful Area: Min. 9 mm Photocathode Material: CsI, CsTe, Low-noise Bialkali, Bialkali,
Window Material: MgF2, Quartz, UV Glass or Borosil. Low-noise, Multialk., Multialk. or Extended Red Multialk.
Supply Voltage (V): 2400 (Max. 3000) Current Amplification: 5x107
Bias Current (µA): 50 Linear Anode Current: Max. (DC linearity limit) 10% of Bias Current
Response Time Rise Time (ns): 3Anode Current: Max. 10 µA (Max. 30 sec.)
Pulse Width/FWHM (ns): 6Single Photoelectron gain: 3x106
Peak to Valley: 10:1 Ambient Temperature (°C): Max. 50
Spectral Dark Counts
Response @140 nm @200 nm @400 nm @560 nm
Dark Current
per Second
/nm Model A/W A/W A/W A/W ENI (W) pA Model (cps)
115-200 C1311 6x1052x10-17 8C1311P 0.4
115-320 C1321 1x1062x10-17 40 C1321P 4
165-320 C1322 1x1062x10-17 40 C1322P 4
165-650 C1342 3x1062x10-17 320 C1342P 40
185-650 C1343 3x1062x10-17 320 C1343P 40
300-650 C 1344 3x1062x10-17 320 C1344P 40
165-750 C1352 3x1064x10-17 1000 C 1352P 160
185-750 C1353 3x1064x10-17 1000 C1353P 160
165-850 C1362 2x1068x10-17 4000 C1362P 400
185-850 C1363 2x1068x10-17 4000 C1363P 400
165-900 C1372 2x1063x10-16 20000 C1372P 2000
185-900 C1373 2x1063x10-16 20000 C1373P 2000
165-650 C1382 3x1061x10-17 100 C1382P 10
185-650 C1383 3x1061x10-17 100 C1383P 10
CPM—1/2" C 1300 Series
Technical Specification
Channel Photomultipliers—
CPM Format 1/3"
Table of Contents
channel photomultipliers
Test conditions: T = 20˚C
Voltage channel entrance: VSET=0-2.9 V
Voltage cathode: Vgate=low or open
Long-term stability @ VSET: <<1 E-5
Weight: 45 g
Operating temperature: 0-50°C
Storage temperature: -20-60°C
6www.optoelectronics.perkinelmer.com
Useful Area: Min. 15 mm Photocathode Material: CsI, CsTe, Low-noise Bialkali, Bialkali,
Window Material: MgF2, Quartz, UV Glass or Borosil. Low-noise Multialk., Multialk. or Extended Red Multialk.
Electron Multiplication: Channel Electron Multiplier Supply Voltage (V): 2400 (Max. 3000)
Current Amplification: 5x107Linear Anode Current: Max. (DC linearity limit) 10% of Bias Current
Bias Current (
µ
A): 50 Response Time Rise Time (ns): 3
Anode Current: Max. 10 µA (Max. 30 sec.) Pulse Width/FWHM (ns): 6
Single Photoelectron gain: 3x106Peak to Valley: 10:1
Ambient Temperature (°C): Max. 50
Spectral Dark Counts
Response @140 nm @200 nm @400 nm @560 nm
Dark Current
per Second
/nm Model A/W AW A/W A/W ENI (W) pA Model (cps)
115-200 C1911 6x1053x10-17 20 C1911P 1
115-320 C1921 1x1063x10-17 100 C1921P 10
165-320 C1922 1x1063x10-17 100 C1922P 10
165-650 C1942 3x1063x10-17 800 C1942P 100
185-650 C1943 3x1063x10-17 800 C1943P 100
300-650 C1944 3x1063x10-17 800 C1944P 100
165-750 C1952 3x1068x10-17 2500 C1952P 400
185-750 C1953 3x1068x10-17 2500 C1953P 400
165-850 C1962 2x1061x10-16 10000 C1962P 1000
185-850 C1963 2x1061x10-16 10000 C1963P 1000
165-900 C1972 2x1065x10-16 50000 C1972P 5000
185-900 C1973 2x1065x10-16 50000 C1973P 5000
165-650 C1982 3x1062x10-17 250 C1982P 25
185-650 C1983 3x1062x10-17 250 C1983P 25
CPM—3/4" C 1900 Series
Technical Specification
Part Voltage Channel Voltage Output Long Term Output Supply
Number Entrance Cathode Current Stability typ. Ripple typ. Voltage
CHV30N -2900 V max. -3000 V max. 100 µA max. < 1E-5 < 50 mVpp 5 V
Power Supply—CHV30N
Technical Specification
Test conditions: T = 20˚C
Voltage Anode: @ VSET=0-3 V
Voltage cathode: 190 V—when gated
Voltage channel entrance: @ VA1400 V
Long-term stability @ VSET: <<1 E-5
Weight: 45 g
Operating temperature: 0-50°C
Storage temperature: -20-60°C
Part Voltage Voltage Voltage Channel Output Long Term Output Supply
Number Anode Cathode typ. Entrance typ. Current Stability typ. Ripple typ. Voltage
CHV30P +3000 V max. 0 V 140 V 100 µA max. < 1E-5 < 30 mVpp 5 V
Power Supply—CHV30P
Technical Specification
Power Supply
CHV30N, CHV30P
Table of Contents
Photocathode Diameter: 5 mm (MP 9xx-2 types: 2 mm) Photocathode Material: Low-noise Bialkali, Bialkali, Low-noise Multialk.,
Window Material: Quartz or UV Glass Multialk. or Extended Red Multialk.
Additional models on request Quantum Efficiency: 20% typical (Ext. Red MA: 10% typical)
www.optoelectronics.perkinelmer.com 7
Channel Photomultipliers
Photocathode Diameter: Min. 9 mm Photocathode Material: Low-noise Bialkali, Bialkali, Low-noise Multialk.,
Window Material: Quartz or UV Glass Multialk. or Extended Red Multialk.
Additional models on request Quantum Efficiency: 20% typical (Ext. Red MA: 10% typical)
CPM Module Formats
1/3", 1/2", 3/4"
Spectral Dark Current/Offset Dark Counts
Dark Current
Dark Counts
Response Voltage @1x106Gain per Second pA per Second
/nm Model ENI (W) & 1 V/20 nA Model (cps) Model @
5x107Gain
Model ENI (W) (cps)
165-650 MD 942 1x10-17 3 pA/150 µV MP 942 10 MH 942 80 MH 942P 1x10-17 10
185-650 MD 943 1x10-17 3 pA/150 µV MP 943 10 MH 943 80 MH 943P 1x10-17 10
165-750 MD 952 2.5x10-17 10 pA/500 µVMP 952 40 MH 952 250 MH 952P 2.56x10-17 40
185-750 MD 953 2.5x10-17 10 pA/500 µVMP 953 40 MH 953 250 MH 953P 2.5x10-17 40
165-850 MD 962 4x10-17 30 pA/1.5 mV MP 962 100 MH 962 1000 MH 962P 4x10-17 100
MP 962-2 40
185-850 MD 963 4x10-17 30 pA/1.5 mV MP 963 100 MH 963 1000 MH 963P 4x10-17 100
MP 963-2 40
165-900 MD 972 1.5x10-16 200 pA/10 mV MP 972 500 MH 972 5000 MH 972P 1.5x10-16 400
MP 972-2 160
185-900 MD 973 1.5x10-16 200 pA/10 mV MP 973 500 MH 973 5000 MH 973P 1.5x10-16 400
MP 973-2 160
165-650 MD 982 6x10-18 1 pA/50 µVMP 982 3 MH 982 25 MH 982P 6x10-18 3
185-650 MD 983 6x10-18 1 pA/50 µVMP 983 3 MH 983 25 MH 983P 6x10-18 3
CPM Module—1/3" 900 Series
Technical Specification
Spectral Dark Current/Offset Dark Counts
Dark Current
Dark Counts
Response Voltage @1x106Gain per Second pA per Second
/nm Model ENI (W) & 1 V/20 nA Model (cps) Model @
5x107Gain
Model ENI (W) (cps)
165-650 MD1342 2x10-17 12 pA/600 µV MP1342 40 MH1342 320 MH1342P 2x10-17 40
185-650 MD1343 2x10-17 12 pA/600 µV MP1343 40 MH1343 320 MH1343P 2x10-17 40
165-750 MD1352 4x10-17 40 pA/2 mV MP1352 160 MH1352 1000 MH1352P 4x10-17 160
185-750 MD1353 4x10-17 40 pA/2 mV MP1353 160 MH1353 1000 MH1353P 4x10-17 160
165-850 MD1362 8x10-17 120 pA/6 mV MP1362 400 MH1362 4000 MH1362P 8x10-17 400
185-850 MD1363 8x10-17 120 pA/6 mV MP1363 400 MH1363 4000 MH1363P 8x10-17 400
165-900 MD1372 3x10-16 800 pA/40 mV MP1372 2000 MH1372 20000 MH1372P 3x10-16 2000
185-900 MD1373 3x10-16 800 pA/40 mV MP1373 2000 MH1373 20000 MH1373P 3x10-16 2000
165-650 MD1382 1x10-17 4 pA/200 µVMP1382 10 MH1382 100 MH1382P 1x10-17 10
185-650 MD1383 1x10-17 4 pA/200 µVMP1383 10 MH1383 100 MH1383P 1x10-17 10
CPM Module—1/2" 1300 Series
Technical Specification
Photocathode Diameter: Min. 15 mm Photocathode Material: Low-noise Bialkali, Bialkali, Low-noise Multialk.,
Window Material: Quartz or UV Glass Multialk. or Extended Red Multialk.
Additional models on request Quantum Efficiency: 20% typical (Ext. Red MA: 10% typical)
Spectral Dark Current/Offset Dark Counts
Dark Current
Dark Counts
Response Voltage @1x106Gain per Second pA per Second
/nm Model ENI (W) & 1 V/20 nA Model (cps) Model @
5x107Gain
Model ENI (W) (cps)
165-650 MD1942 3x10-17 30 pA/1.5 mV MP1942 100 MH 1942 800 MH 1942P 3x10-17 100
185-650 MD1943 3x10-17 30 pA/1.5 mV MP1943 100 MH1943 800 MH1943P 3x10-17 100
165-750 MD1952 8x10-17 100 pA/5 mV MP1952 400 MH1952 2500 MH1952P 8x10-17 400
185-750 MD1953 8x10-17 100 pA/5 mV MP1953 400 MH1953 2500 MH1953P 8x10-17 400
165-850 MD1962 1x10-16 300 pA/15 mV MP1962 1000 MH1962 10000 MH1962P 1x10-16 1000
185-850 MD1963 1x10-16 300 pA/15 mV MP1963 1000 MH1963 10000 MH1963P 1x10-16 1000
165-900 MD1972 5x10-16 2 nA/100 mV MP1972 5000 MH1972 50000 MH1972P 5x10-16 5000
185-900 MD1973 5x10-16 2 nA/100 mV MP1973 5000 MH1973 50000 MH1973P 5x10-16 5000
165-650 MD1982 2x10-17 10 pA/500 µVMP1982 25 MH1982 250 MH1982P 2x10-17 25
185-650 MD1983 2x10-17 10 pA/500 µVMP1983 25 MH1983 250 MH1983P 2x10-17 25
CPM Module—3/4" 1900 Series
Technical Specification
CPM Modules—
3/4" 1900 Series
Table of Contents
Description
PerkinElmer Optoelectronics offers a broad array of Silicon and
InGaAs PIN and APDs.
InGaAs Avalanche Photodiodes
The high-quality InGaAs avalanche photodiodes (APDs) are
packaged in hermetically sealed TO cans and ceramic blocks
designed for the 900 to 1700 nm wavelength region.
InGaAs PIN Photodiodes
High-quality Indium Gallium Arsenide photodiodes designed
for the 900 to 1700 nm wavelength region, these photodiodes
are available in standard sizes ranging from 50 microns to 5 mm
in diameter. Packages include ceramic submount, TO packages,
and chip form.
Silicon Avalanche Photodiodes
These are reliable, high-quality detectors in hermetically sealed
TO packages designed for high-speed and high-gain applications.
A “reach-through” structure is utilized which provides very
low noise performance at high gains, and a full range of active
areas is available.
Silicon PIN Photodiodes
Offered for low- to high-speed applications, these PINs are
designed for the 250 nm to 1100 nm range. Standard sizes range
from 100 microns to 10 mm in diameter.
Silicon PN Photodiodes
This format includes a variety of high-volume, low-cost silicon
photodiodes that meet the demanding requirements of today’s
commercial and consumer markets.
Alternate Source/Second Source Photodiodes
PerkinElmer’s nearest equivalent devices are selected on the
basis of general similarity of electro-optical characteristics and
mechanical configuration. Interchangeability in any particular
application is not guaranteed, suitability should be determined
by the customer's own evaluation.
Detector Modules
Preamplifier modules are hybrid devices with a photodiode
and a matching amplifier in a compact hermetic TO package.
An integral amplifier allows for better ease of use and noise
bandwidth performance. 14-pin, DIL, and/or fibered packaged
modules are available on a custom basis.
photodiodes
Features
Low-cost visible and near-IR
photodetector
Excellent linearity in output
photocurrent over 7 to 9 decades
of light intensity
Fast response times
Available in a wide range of
packages including epoxy-coated,
transfer-molded, cast, and hermetic
packages, as well as in chip form
Low noise
Mechanically rugged, yet compact
and lightweight
Available as duals, quads or as
linear arrays
Usable with almost any visible
or near-infrared light source such
as solid state laser diodes, neon,
fluorescent, incandescent bulbs,
lasers, flame sources, sunlight, etc.
Can be designed and tested to meet
the requirements of your application
Typical Applications
• Fiber-Optic Communications
• Instrumentation
• High-Speed Switching
Spot Position Tracking and
Measurement
• Photometry
• Data Transmission
UV Light Meters
Fluorescent Light Detection
Laser Range Finding
• Barcode Scanning
Laser Safety Scanning
• Distance Measurement
Datasheets available upon request
8www.optoelectronics.perkinelmer.com
Table of Contents
www.optoelectronics.perkinelmer.com 9
Photodiodes
Indium Gallium Arsenide
PIN Photodiodes, Large-Area,
and Small-Area
Indium Gallium Arsenide APDs
High Responsivity
Low Capacitance for High
Bandwidths
Available in Various Hermetic
Packages
Photo Sens. Resp. Dark Spect. Noise Cap. Bandwidth NEP @ Bias Volt
Part Standard Diam. A/W Curr. Curr. Dens. @100 kHz GHz 1550 nm for these
Number Package µm @1300 nm @1550 nm Id (nA) In (pA/Hz) Cd (pF) into 50 W pW/Hz Specs V
C30616ECER Ceramic 50 0.86 0.95 0.5 <0.02 0.35 >3.5 <0.02 5
C30637ECER Ceramic 75 0.86 0.95 0.8 <0.02 0.4 3.5 <0.02 5
C30617ECER Ceramic 100 0.86 0.95 1 <0.02 0.55 3.5 <0.02 5
C30617B Ball lens 100 0.8 0.9 1 <0.02 0.8 3.5 <0.02 5
C30618ECER Ceramic 350 0.86 0.95 2 0.02 4 0.8 0.02 5
C30618G TO window 350 0.86 0.95 2 0.02 4 0.8 0.02 5
InGaAs PIN Small-Area—900 nm to 1700 nm
Technical Specification
Test conditions: T = 22ºC
Photo Sens. Resp. Dark Spect. Noise Cap. Bandwidth NEP @ VOP
Part Standard Diam. A/W Curr. Curr. Dens. @100 kHz GHz 1550 nm for
Number Package µm @1300 nm @1550 nm Id (nA) In (pA/Hz) Cd (pF) into 50 W pW/Hz Gain=10 V
C30644E TO window 50 8.4 9.4 6 0.15 1 2 0.03 40-90
C30644ECER Ceramic 50 8.4 9.4 6 0.15 0.8 2 0.03 40-90
C30645E TO window 80 8.4 9.4 10 0.25 1.2 1 0.13 40-90
C30645ECER Ceramic 80 8.4 9.4 10 0.25 1 1 0.13 40-90
C30662E TO window 200 8.4 9.4 200 1.4 2.5 0.2 0.15 40-90
C30662ECER Ceramic 200 8.4 9.4 200 1.4 2.5 0.2 0.15 40-90
C30733ECER Ceramic 30 8.4 9.4 5 <0.1 0.25 3 0.01 40-90
InGaAs APDs—900 nm to 1700 nm
Technical Specification
Test conditions: T = 22ºC
Photo Sens. Resp. Dark NEP @ Cap. Bandwidth Max. Power Bias Volt
Part Standard Diam. A/W Curr. 1300 nm @100 kHz MHz for .15 dB for these
Number Package mm @850 nm @1300 nm @1550 nm Id (nA) pW/Hz Cd (pF) into 50 W Linearity (dBm) Specs V
C30619G TO-18 0.5 0.2 0.86 0.95 5 <0.1 8 350 >+13 5
C30641G TO-18 1 0.2 0.86 0.95 5 <0.1 40 75 >+13 2
C30642G TO-5 2 0.2 0.86 0.95 10 0.1 350 20 +11 0
C30665G TO-5 3 0.2 0.86 0.95 25 0.2 1000 3 +11 0
C30723G TO-8 5 0.2 0.86 0.95 30 0.3 2500 2.5 +11 0
InGaAs PIN Large-Area—900 nm to 1700 nm
Technical Specification
Test conditions: T = 22ºC
Table of Contents
photodiodes
10 www.optoelectronics.perkinelmer.com
Silicon Avalanche Photodiodes
Hermetically Sealed Packages
Photo Resp. Dark Spect. Noise Cap. Resp. NEP @ VOP
Part Standard Sens. Diam. 900 nm Curr. Curr. Dens. @100 kHz: Time 900 nm Range
Number Package mm A/W Id (nA) In (pA/Hz) Cd (pF) tr (ns) fW/Hz V
C30817E TO-5 0.8 75 50 0.5 2 2 7 275-425
C30872E TO-8 3 45 100 0.5 10 2 11 275-425
C30902E TO-18 0.5 77 (@ 830 nm) 15 0.23 1.6 0.05 3 (@ 830 nm) 180-250
C30902S TO-18 0.5 128 (@ 830 nm) 15 0.11 1.6 0.05 0.86 (@ 830 nm) 180-250
C30916E TO-5 1.5 70 100 0.5 3 2 8 275-425
Si APD—Standard Types–400 nm to 1100 nm
Technical Specification
Test conditions: T = 22ºC
Photo Resp. Dark Spect. Noise Cap. Resp. NEP @ VOP
Part Standard Sens. Diam. @900 nm Curr. Curr. Dens. @100 kHz Time 900 nm Range
Number Package mm A/W Id (nA) In (pA/Hz) Cd (pF) tr (ns) fW/Hz V
C30724E TO-18 0.5 9 (@ M=15) 25 0.1 1 5 11 120-200
C30724P Plastic 0.5 9 (@ M=15) 25 0.1 1 5 11 120-200
C30737E TO-18 0.5 47 (@ I-800 nm 20 0.3 2.5 0.3 6.4 (@ 800 nm 120-200
M=100) M=100)
Si APD—Low Cost, High Volume–400 nm to 1000 nm
Technical Specification
Test conditions: T = 22ºC
Photo Resp. Dark Spect. Noise Cap. Resp. NEP @ ADP VOP
Part Standard Sens. Diam. @830 nm Curr. Curr. Dens. @100 kHz Time 830 nm Range
Number Package mm A/W Id (nA) In (pA/Hz) Cd (pF) tr (ns) fW/Hz V
C30902S-TC TO-66 0.5 128 2 0.04 1.6 0.5 0.3 160-250
C30902S-DTC TO-66 0.5 128 1 0.02 1.6 0.5 0.16 160-250
Si APD—TE-Cooled
Technical Specification
Test conditions: T = 0ºC for -TC and -20ºC for -DTC ADP VOP Range: temperature dependent
Photo Resp. Dark Spect. Noise Cap. Resp. NEP @ VOP
Part Standard Sens. Diam. @830 nm Curr. Curr. Dens. @100 kHz Time 830 nm Range
Number Package mm A/W Id (nA) In (pA/Hz) Cd (pF) tr (ns) fW/Hz V
C30927E-01 TO-8 1.5 total 62 (@900 nm) 25 0.25 1 3 16 (@900 nm) 275-425
C30927E-02 TO-8 1.5 total 62 (@900 nm) 25 0.25 1 3 16 (@900 nm) 275-425
C30927E-03 TO-8 1.5 total 62 (@900 nm) 25 0.25 1 3 16 (@900 nm) 275-425
C30985E Custom 0.3 pitch 31 1 0.1 0.5 2 3 250-425
Si APD—Arrays Quadrant and Linear–400 nm to 1100 nm
Technical Specification
Test conditions: T = 22ºC
Table of Contents
www.optoelectronics.perkinelmer.com 11
Photodiodes
Photo Resp. Dark Spect. Noise Cap. Resp. NEP @ VOP
Part Standard Sens. Diam. @830 nm Curr. Curr. Dens. @100 kHz Time 830 nm Range
Number Package mm A/W Id (nA) In (pA/Hz) Cd (pF) tr (ns) fW/Hz V
C30921E TO-18 0.5 77 15 0.23 1.6 0.05 3 180-250
C30921S TO-18 0.5 128 15 0.11 1.6 0.05 0.86 180-250
Si APD—Lightpipe
Technical Specification
Test conditions: T = 22ºC
Photo Resp. Dark Spect. Noise Cap. Resp. NEP @ VOP
Part Standard Sens. Diam. @1060 nm Curr. Curr. Dens. @100 kHz Time 900 nm m=15 Range
Number Package mm A/W Id (nA) In (pA/Hz) Cd (pF) tr (ns) fW/Hz V
C30954E TO-5 0.8 36 50 0.5 2 2 14 275-425
C30955E TO-5 1.5 34 100 0.5 3 2 15 275-425
C30956E TO-8 3 25 100 0.5 10 2 20 275-425
Si APD—NIR-Enhanced–400 nm to 1100 nm
Technical Specification
Test conditions: T = 22ºC
Photo Dark Spect. Noise Cap. Resp. NEP @ VOP
Part Sens. Diam. Resp. Curr. Curr. Dens. @100 kHz Time Peak Range
Number mm A/W Id (nA) In (pA/Hz) Cd (pF) tr (ns) fW/Hz V
C30626 5x5 22 (@900 nm) 250 0.5 30 5 23 (@900 nm) 275-425
C30703 10x10 16 (@530 nm) 10 0.7 120 5 40 (@530 nm) 275-425
Si APD—Radiation Detection
Technical Specification
Test conditions: T = 22ºC
Silicon Avalanche Photodiodes
Low Cost, High Volume
Table of Contents
Silicon PIN Photodiodes
and Modules
Broad Range of Photosensitive
Areas
Low Operating Voltage
Hermetically Sealed Packages
photodiodes
12 www.optoelectronics.perkinelmer.com
Photo Resp. Dark Spect. Noise Cap. Resp. NEP @ Bias Volt
Part Standard Sens. Diam. @830 nm Curr. Id Curr. Dens. @100 kHz Time 830 nm for These
Number Package mm A/W nA In (fA/Hz) Cd (pF) tr (ns) fW/Hz Specs V
C30971E TO-18 0.5 0.5 10 57 1.6 0.5 113 100
C30971EL TO-18 Lightpipe 0.25 0.5 10 57 1.6 0.5 113 100
Si PINs—Window and Lightpipe Packages, Fast Response–400 nm to 1100 nm
Technical Specification
Test conditions: T = 22˚C
Photo Resp. Dark Spect. Noise Cap. Resp. NEP @ Bias Volt
Part Standard Sens. Diam. @900 nm Curr. Id Curr. Dens. @100 kHz Time 900 nm for These
Number Package mm A/W nA (fA/Hz) Cd (pF) tr (ns) fW/Hz Specs V
FFD-100 TO-5 2.5 0.58 2 25 8.5 3.5 44 15
FFD-200 TO-8 5.1 0.58 4 36 30 5 62 15
Si PINs—Large Area, Fast Response–400 nm to 1100 nm
Technical Specification
Test conditions: T = 22˚C
Photo Resp. Dark Spect. Noise Cap. Resp. NEP @ Bias Volt
Part Standard Sens. Diam. @900 nm Curr. Id Curr. Dens. @100 kHz Time 900 nm for These
Number Package total mm A/W nA In (fA/Hz) Cd (pF) tr (ns) fW/Hz Specs V
C30845E TO-5 8 0.6 7 47 8 6 79 45
UV-140BQ-4 TO-5 1.3x1.3 (x4) 0.58 4 34 <1 µsec 7 0
YAG-444-4A Custom 11.4 0.4 @1.06 µm 40 118 9 25 295 180
Si PINs—Quadrant–220 nm to 1100 nm
Technical Specification
Test conditions: T = 22˚C
Photo Resp. Dark Spect. Noise Cap. Resp. NEP @ Bias Volt
Part Standard Sens. Diam. @900 nm Curr. Id Curr. Dens. @100 kHz Time 900 nm for These
Number Package mm A/W nA In (fA/Hz) Cd (pF) tr (ns) fW/Hz Specs V
C30807E TO-18 1 0.6 1 18 2.5 3 30 45
C30808E TO-5 2.5 0.6 3 31 6 5 52 45
C30822E TO-8 5 0.6 5 40 17 7 67 45
C30809E TO-8 8 0.6 7 47 35 10 79 45
C30810E Custom 11.4 0.6 30 98 70 12 163 45
Si PINs—Standard N-Type–400 nm to 1100 nm
Technical Specification
Test conditions: T = 22˚C
Table of Contents
Photo Resp. Shunt Spect. Noise Cap. NEP @
Part Standard Sens. Diam. A/W Resis. Curr. Dens.: @100 kHz: 900 nm
Number Package mm @250 nm @900 nm Rd MW In (fW/Hz) Cd (pF) fA/Hz
UV-040BQ TO-8 1 0.12 0.58 2000 3 25 5
UV-100BQ TO-8 2.5 0.12 0.58 1000 4 120 7
UV-215BQ TO-8 5.4 0.12 0.58 250 8 450 25
UV-245BQ TO-8 4.4x4.7 0.12 0.58 375 7 375 20
UV-140BQ-2 TO-5 2.5x1.3 (x2) 0.12 0.58 1000 4 68 7
UV-140BQ-4 TO-5 1.3x1.3 (x4) 0.12 0.58 1000 4 34 7
Si PINs—UV Enhanced, Low Noise–220 nm to 1100 nm
Technical Specification
Test conditions: T = 22˚C
Silicon PINs—UV Enhanced
www.optoelectronics.perkinelmer.com 13
Photodiodes
Photo Resp. Spect. Noise NEP @ Bandwidth Bias Volt
Part Standard Sens. Diam. MV/W Volt. Dens. 900 nm kHz for These
Number Package mm @250 nm @900 nm Vn (µV/Hz) pW/Hz into 50 W Specs V
HUV-2000B Custom 5.4 24 116 2.5 0.02 2 0
HUV-1100BG TO-5 2.5 24 116 20 0.17 20 0
Si PIN Modules—Low Bandwidth–1 kHz to 50 kHz
Technical Specification
Test conditions: T = 22ºC
PIN Photo Sens. Resp. Lin. Spect. Noise NEP Bandwidth Photo. Diod.
Part or APD Standard Diam. kV/W Volt. Out Volt. Dens. @900 nm MHz (3 dB, Bias
Number Used Package mm @900 nm Swing (V) Vn (nV/Hz) pW/Hz into 50 W) Volt V
C30608E C30971 TO-5 0.5 32 (@ 830 nm) 0.7 60 1.8 (@ 830 nm) 50 12
C30659-1550-R2A C30662 TO-8 0.2 340 (@ 1550 nm) 2 35 0.103 (@ 1550 nm) 50 40-90
C30950E C30817 TO-8 0.8 560 0.7 20 .036 50 275-425
C30919E C30817 Custom 0.8 1000 0.7 25 .025 40 275-425
Si PIN Modules—High Bandwidth–40 MHz to 100 MHz
Technical Specification
Test conditions: T = 22ºC
Table of Contents
photodiodes
14 www.optoelectronics.perkinelmer.com
Part Isc TC Isc Voc TC Voc IDRSH CJRe SRλrange λpVBR
Number µA %/˚C mV mV/˚C nA max. GpF A/(W/cm2)A/W nm nm V
VTP100 55 0.24 300 -2 30 0.25 50
max. 0.047 0.5 725-1150 925 140
VTP100C 70 0.2 350 -2 30 0.25 50
max. 0.05 0.55 400-1150 925 140
VTP1012 17 0.2 350 -2 7 0.5 6
max. 0.011 0.55 400-1150 925 140
VTP1112 90 0.2 350 -2 7 0.5 6
max. 0.033 0.55 400-1150 925 140
VTP1188S 200 0.2 0.33 -2 30 67 0.18 0.55 400-1100 925
VTP1232 100 min. 0.2 0.42 min. -2 25 0.18 0.076 0.6 400-1100 920
VTP3310LA 36 0.2 350 -2 35 10 25
max. 0.015 0.55 400-1150 925 140
VTP3410LA 22 0.26 350 -2 35 10 25
max. 0.013 0.55 700-1150 925 140
VTP4085 200 0.2 0.33 -2 100 2 0.35 0.55 400-1100 925
VTP4085S 200 0.2 0.33 -2 50 4 0.35 0.55 400-1100 925
VTP5050 70 0.2 350 -2 18 0.25 24 max. 0.05 0.55 400-1150 925 140
VTP6060 200 0.2 350 -2 35 100 60 max. 0.14 0.55 400-1150 925 140
VTP7110 9 0.2 350 -2 35 7 25 max. 0.015 0.55 400-1150 925 140
VTP7210 7 0.26 350 -2 35 7 25 max. 0.015 0.55 700-1150 925 140
VTP7840 70 0.2 325 -2 20 0.25 40 max. 0.55 725-1150 925 1@10 mA
VTP8350 80 0.2 350 -2 30 100 50 max. 0.06 0.55 400-1150 925 140
VTP8440 55 0.2 350 -2 15 0.5 15 max. 0.025 0.55 400-1150 925 140
VTP8551 70 0.2 350 -2 30 0.15 50 max. 0.05 0.55 400-1150 925 140
VTP8651 55 0.24 300 -2 30 0.15 50 max. 0.045 0.5 725-1150 925 140
VTP9412 17 0.2 350 -2 7 0.4 6 max. 0.011 0.55 400-1150 925 140
Silicon PN—VTP Series
Technical Specification
Part Isc TC Isc IDTC IDRSH CJSRRe tR/tFVoc TC Voc
Number mA %/˚C µA %/˚C MnF A/W A/(W/cm2)µsec V mV/˚C
VTS__80 3 0.2 0.2 +11 0.3 7.5 0.2 0.7 13 0.45 -2.6
VTS__81 1.5 0.2 100 +11 0.6 3.5 0.2 0.34 6.4 0.45 -2.6
VTS__82 0.69 0.2 0.05 +11 1.2 1.75 0.2 0.16 3.4 0.45 -2.6
VTS__83 0.64 0.2 50 +11 1.2 1.75 0.2 0.15 3.4 0.45 -2.6
VTS__84 0.33 0.2 40 +11 1.5 1 0.2 0.07 1.8 0.45 -2.6
VTS__85 0.16 0.2 0.02 +11 3 0.5 0.2 0.04 1.2 0.45 -2.6
VTS__86 0.080 0.2 10 +11 6 0.25 0.2 0.02 0.75 0.45 -2.6
Silicon PN—VTS Series
Technical Specification
Table Key
ISC Short-Circuit Current
H=100 2850 K
TC ISC ISC Temperature Coefficient, 2850 K
VOC Open-Circuit Voltage
H=100 2850 K
TC VOC VOC Temperature Coefficient, 2850 K
IDDark Current
H=0, VR=10, 50, 100 V
RSH Shunt Resistance
H=0, V=10 mV
CJJunction Capacitance
H=0, V=0, 3, 15 V
REResponsivity 880-940 nm
SRSensitivity @ Peak
λrange Spectral Application Range
λpSpectral Response @ Peak
VBR Breakdown Voltage
Table Key
ISC Short-Circuit Current
H=1000 lux, 2850 K
TC ISC ISC Temperature Coefficient
H=1000 lux, 2850 K
IDDark Current H=0, VR=100 mV
TC IDID Temperature Coefficient
H=0, VR=100 mV
RSH Shunt Resistance
H=0, VR=10 mV
CJJunction Capacitance
H=0, V=0 V, 1 MHz
SRSensitivity @ 400 nm
REResponsivity 400 nm, 0.18 A/W
tR/tRRise/Fall Time @ 1 Kload
VR=1 V, 830 nm
VOC Open-Circuit Voltage
H=1000 lux, 2850 K
TC VOC VOC Temperature Coefficient
H=1000 lux, 2850 K
Electro-optical characteristics @ 25˚C
Electro-optical characteristics @ 25˚C
Silicon PN Photodiodes
Table of Contents
www.optoelectronics.perkinelmer.com 15
Photodiodes
Part Isc TC Isc Voc TC Voc IDCJtR/tFSRλrange λpVBR
Number µA %/˚C mV mV/˚C nA max. pF nsec A/W nm nm V
VTD31AA 150-225 0.2 350 -2 50 500
max. 0.55 400-1150 860 5 min.
VTD34 70 0.2 365 -2 30 60 50 0.6 400-1100 900 40
min.
VTD34F 350 -2 30 60 50 0.6 725-1150 940 40
min.
VTD205 25 0.2 350 -2.6 30.72 20 0.6 800-1100 925 50
VTD205K 80 0.2 365 -2.6 30 72 20 0.6 400-1100 925 50
VTD206 25 0.2 350 -2.6 30 72 20 0.6 750-1100 925 50
VTD206K 80 0.2 365 -2.6 30 72 20 0.6 400-1100 925 50
Silicon PN—VTD Series
Technical Specification
Table Key
ISC Short-Circuit Current
940 nm, H=0.5 mW/cm2 (VTD205,
VTD206)
H=5 mW/cm2, 2850 K (VTD31AA,
VTB Series)
100 Lux, 2850 K (VTD34, VTD205K)
100 Lux, 2856 K (VTD206K)
TC ISC ISC Temperature Coefficient
2850 K (VTD31AA, VTD34, VTD34F,
VTB Series)
2856 K (VTD205, VTD205K, VTD206,
VTD206K)
VOC Open-Circuit Voltage
940 nm, H=0.5 mW/cm2 (VTD 205,
VTD205K, VTD206, VTD206K)
2850 K (VTD31AA, VTD34, VTD34F)
TC VOC VOC Temperature Coefficient
2850 K (VTD31AA, VTD34, VTD34F,
VTB Series)
2856 K (VTD205, VTD205K, VTD206,
VTD206K)
IDDark Current
H=0, VR=2 V (VTB Series)
H=0, VR=10 V (VTD34, VTD34F,
VTD205, VTD205K, VTD206, VTD206K,
VTB100)
H=0, VR=15 V (VTD31AA)
RSH Shunt Resistance
H=0, V=10 mV (VTB Series)
TC RSH RSH Temperature Coefficient
H=0, V=10 mV (VTB Series)
CJJunction Capacitance
H=0, VR=0 V, 1 MHz (VTD205,
VTD205K, VTD206, VTD206K)
@ 1 MHz, VR=0 V (VTD34, VTD34F)
H=0, V=0 V (VTD31AA, VTB Series)
tR/tRRise/Fall Time
@ RL=50 , VR=5 V, 850 nm
(VTD205, VTD205K, VTD206, VTD206K)
@ RL=1 kLead, VR=10 V, 833 nm
(VTD34, VTD34F)
SRSensitivity @ Peak
365 nm (VTB Series)
λrange Spectral Application Range
λpSpectral Response @ Peak
VBR Breakdown Voltage
Electro-optical characteristics @ 25˚C
Part Isc TC Isc Voc TC Voc IDRSH TC RSH CJSRλrange λpVBR
Number µA %/˚C mV mV/˚C pA max. G%/˚C nF A/W nm nm V
VTB100 65 0.12 490 -2 500 1.4 -8 2 max. 0.1 320-1100 920 40
VTB1012 13 0.12 490 -2 100 0.25 -8 0.31 0.09 320-1100 920 40
VTB1012B 1.3 0.02 420 -2 100 0.25 -8 0.31 330-720 580 40
VTB1013 13 0.12 490 -2 20 7 -8 0.31 0.09 320-1100 920 40
VTB1013B 1.3 0.02 420 -2 20 7 -8 0.31 330-720 580 40
VTB1112 60 0.12 490 -2 100 0.25 -8 0.31 0.19 320-1100 920 40
VTB1112B 6 0.02 420 -2 100 0.25 -8 0.31 330-720 580 40
VTB1113 60 0.12 490 -2 20 7 -8 0.31 0.19 320-1100 920 40
VTB1113B 6 0.02 420 -2 20 7 -8 0.31 330-720 580 40
VTB4051 200 0.12 490 -2 250 0.56 -8 3 0.1 320-1100 920 40
VTB5051 130 0.12 490 -2 250 0.56 -8 3 0.1 320-1100 920 40
VTB5051B 13 0.02 420 -2 250 0.56 -8 3 330-720 580 40
VTB5051J 130 0.12 490 -2 250 0.56 -8 3 0.1 320-1100 920 40
VTB5051UV 130 0.12 490 -2 250 0.56 -8 3 0.1 200-1100 920 40
VTB5051UVJ 130 0.12 490 -2 250 0.56 -8 3 0.1 200-1100 920 40
VTB6061 350 0.12 490 -2 2 0.1 -8 8 0.1 320-1100 920 40
VTB6061B 35 0.02 420 -2 2 0.1 -8 8 330-720 580 40
VTB6061CIE — 2 0.1 -8 8 555
VTB6061J 350 0.12 490 -2 2 0.1 -8 8 0.1 320-1100 920 40
VTB6061UV 350 0.12 490 -2 2 0.1 -8 8 0.1 200-1100 920 40
VTB6061UVJ 350 0.12 490 -2 2 0.1 -8 8 0.1 200-1100 920 40
VTB8341 60 0.12 490 -2 100 1.4 -8 1 0.1 320-1100 920 40
VTB8440 45 0.12 490 -2 2000 0.07 -8 1 0.1 320-1100 920 40
VTB8440B 5 0.02 420 -2 2000 0.07 -8 1 330-720 580 40
VTB8441 45 0.12 490 -2 100 1.4 -8 1 0.1 320-1100 920 40
VTB8441B 5 0.02 420 -2 100 1.4 -8 1 330-720 580 40
VTB9412 13 0.12 490 -2 100 0.25 -8 0.31 0.09 320-1100 920 40
VTB9412B 1.3 0.02 420 -2 100 0.25 -8 0.31 330-720 580 40
VTB9413 13 0.12 490 -2 20 7 -8 0.31 0.09 320-1100 920 40
VTB9413B 1.3 0.02 420 -2 20 7 -8 0.31 330-720 580 40
Silicon PN—VTB Series
Technical Specification
Table of Contents
Description
Photocells or Light-Dependent Resistors can provide a very
economical and technically superior solution for many applications
where the presence or absence of light is sensed (digital operation)
or where the intensity of light needs to be measured (analog
operation).
Semiconductor light detectors can be divided into two major
categories: junction and bulk-effect devices. Junction devices,
when operated in the photoconductive mode, utilize the reverse
characteristic of a PN junction. Under reverse bias, the PN junction
acts as a light-controlled current source. Output is proportional
to incident illumination and is relatively independent of applied
voltage. Silicon photodiodes are examples of this type of detector.
In contrast, bulk-effect photoconductors have no junction. The
bulk resistivity decreases with increasing illumination, allowing
more photocurrent to flow. This resistive characteristic gives
bulk-effect photoconductors a unique quality: signal current from
the detector can be varied over a wide range by adjusting the
applied voltage. To clearly make this distinction, PerkinElmer
Optoelectronics refers to its bulk-effect photoconductors as
photoconductive cells or, simply, photocells.
Photocells are thin-film devices made by depositing a layer
of a photoconductive material on a ceramic substrate. Metal
contacts are evaporated over the surface of the photoconductor and
external electrical connection is made to these contacts. These thin
films of photoconductive material have a high sheet resistance.
Therefore, the space between the two contacts is made narrow
and interdigitated for low cell resistance at moderate light levels.
photocells
Features
Lowest-cost visible detector
Available in low-cost plastic-
encapsulated packages as well
as hermetic packages (TO-46,
TO-5, TO-8)
Responsive to both very low light
levels (moonlight) and to very high
light levels (direct sunlight)
Wide dynamic range: resistance
changes of several orders of
magnitude between "light" and
"no light"
Low noise distortion
Maximum operating voltages of 50
to 400 volts are suitable for opera-
tion on 120/240 VAC
Available in center-tap dual-cell
configurations as well as specially
selected resistance ranges for
special applications
Easy to use in DC or AC circuits
Usable with almost any visible or
near-infrared light source such as
LEDS; neon; fluorescent, incandes-
cent bulbs, lasers; flame sources;
sunlight; etc.
Available in a wide range of
resistance values
Typical Analog Applications
Camera Exposure Control
Auto-Focus for Slide Projector
• Colorimetric Test Equipment
• Densitometer
• Electronic Scales—dual-cell
• Automated Rear-View Mirror
Typical Digital Applications
Automatic Headlight Dimmer
Night Light Control
Oil Burner Flame Out
Street Light Control
Absence/Presence (beam breaker)
• Position Sensor
Datasheets available upon request
16 www.optoelectronics.perkinelmer.com
Table of Contents
VT Series
www.optoelectronics.perkinelmer.com 17
Photocells
Resistance (Ohms) Sensitivity (γ, typ.) Response Time @ 1fc
Part 10 lux 2850 K 2 fc 2850 K Dark Material LOG (R10/R100) Max. Volts ms, typ.
Number min. typ. max. typ. min. sec. Type LOG (100/10) V, pk Rise (1-1/e) Fall (1/e)
VT20N1 8 k 16 k 24 k 8 k 200 k 5 0 0.8 100 78 8
VT20N2 16 k 34 k 52 k 17 k 500 k 5 0 0.8 100 78 8
VT20N3 36 k 72 k 108 k 36 k 1 M 5 0 0.8 100 78 8
VT20N4 76 k 152 k 230 k 76 k 2 M 5 0 0.8 200 78 8
VT23N1 20 k 40 k 60 k 20 k 500 k 5 3 0.85 100 35 5
VT23N2 42 k 86 k 130 k 43 k 1 M 5 3 0.85 100 35 5
VT23N3 90 k 180 k 270 k 90 k 2 M 5 3 0.85 100 35 5
VT30N1 6 k 12 k 18 k 6 k 200 k 5 0 0.75 100 78 8
VT30N2 12 k 24 k 36 k 12 k 500 k 5 0 0.8 200 78 8
VT30N3 24 k 48 k 72 k 24 k 1 M 5 0 0.8 200 78 8
VT30N4 50 k 100 k 150 k 50 k 2 M 5 0 0.8 300 78 8
VT33N1 20 k 40 k 60 k 20 k 500 k 5 3 0.9 100 35 5
VT33N2 40 k 80 k 120 k 40 k 1 M 5 3 0.9 200 35 5
VT33N3 80 k 160 k 240 k 80 k 2 M 5 3 0.9 200 35 5
VT30CT 10 k 20 k 30 k 10 k 500 k 5 0 0.8 200 78 8
VT33CT 60 k 120 k 180 k 60 k 1 M 5 3 0.9 200 35 5
VT50N1 4 k 8 k 12 k 4 k 200 k 5 0 0.75 200 78 8
VT50N2 8 k 16 k 24 k 8 k 500 k 5 0 0.75 200 78 8
VT50N3 16 k 32 k 48 k 16 k 1 M 5 0 0.8 300 78 8
VT53N1 16 k 32 k 48 k 16 k 1 M 5 3 0.85 200 35 5
VT53N2 32 k 76 k 96 k 38 k 2 M 5 3 0.85 200 35 5
VT53N3 66 k 132 k 200 k 66 k 3 M 5 3 0.85 300 35 5
VT80N1 4 k 8 k 12 k 4 k 100 k 5 0 0.8 100 78 8
VT80N2 8 k 16 k 24 k 8 k 500 k 5 0 0.8 200 78 8
VT83N1 6 k 12 k 18 k 6 k 100 k 5 3 0.95 100 35 5
VT83N2 12 k 28 k 36 k 14 k 500 k 5 3 0.95 200 35 5
VT83N3 24 k 48 k 72 k 24k 1 M 5 3 0.95 200 35 5
VT83N4 50 k 100 k 150 k 50 k 2 M 5 3 0.95 200 35 5
VT83CT 30 k 60 k 90 k 30 k 1 M 5 3 0.90 100 35 5
VT90N1 6 k 12 k 18 k 6 k 200 k 5 0 0.8 100 78 8
VT90N2 12 k 24 k 36 k 12 k 500 k 5 0 0.8 100 78 8
VT90N3 25 k 50 k 75 k 25 k 1 M 5 0 0.85 100 78 8
VT90N4 50 k 100 k 150 k 50 k 2 M 5 0 0.9 100 78 8
VT93N1 12 k 24 k 36 k 12 k 300 k 5 3 0.9 100 35 5
VT93N2 24 k 48 k 72 k 24 k 500 k 5 3 0.9 100 35 5
VT93N3 50 k 100 k 150 k 50 k 500 k 5 3 0.9 100 35 5
VT93N4 100 k 200 k 300 k 100 k 500 k 5 3 0.9 100 35 5
VT935G-A 10 k 18.5 k 27 k 9.3 k 1 M 5 3 0.9 100 35 5
VT935G-B 20 k 29 k 38 k 15 k 1 M 5 3 0.9 100 35 5
VT935G-C 31 k 40.5 k 50 k 20 k 1 M 5 3 0.9 100 35 5
VT Series
Technical Specification
Specification Notes
Photocells categorized into groups by resistance. All
groups must be purchased together and PerkinElmer
maintains the right to determine the product mix among
these groups.
Dimensions controlled at base of package.
Photocells are tested at either 1 fc or 10 lux. 2 typical
values shown in the tables are for reference only.
Cells are light-adapted at 30–50 fc.
The photocell “grid” pattern can vary from that shown.
PerkinElmer reserves the right to change mix grid patterns
on any standard product.
The resistance for any standard cell is controlled at only
one light level. If the resistance at other light levels is a
concern, please contact the factory.
Table of Contents
Table Key
R 10 Resistance at E=10 lux light intensity
R 100 Resistance at E=100 lux light intensity
R01 Dark Resistance after 1 sec (E=0)
R05 Dark Resistance after 5 sec (E=0)
γ10/1oo Sensitivity log (R10/R100)/
log (100 lux/10 lux)
λpeak Peak Spectral Sensitivity
Top Operating Temperature
Tst Storage Temperature
TC Thermal Coefficient
ton Rise Time to 63% of final I (R10)
toff Decay Time to 37% of initial I (R10)
Vmax Maximum Operating Voltage
at E=0 lux
Pmax Power Dissipation at 25˚C
Ambient Temperature
photocells
18 www.optoelectronics.perkinelmer.com
Resistance () Sensitivity (γ, typ.) Response Time @ fc
Part 1 fc 6500 K 2 fc 2850 K Dark Material LOG (R10/R100) Max. Volts ms, typ.
Number min. typ. max. typ. min. sec. Type LOG (100/10) V, pk Rise (1-1/e) Fall (1/e)
VT43N1 4 k 8 k 12 k 300 k 30 3 0.9 250 90 18
VT43N2 8 k 16 k 24 k 300 k 30 3 0.9 250 90 18
VT43N3 16 k 32 k 48 k 500 k 30 3 0.9 400 90 18
VT43N4 33 k 66 k 100 k 500 k 30 3 0.9 400 90 18
VT43 Series
Technical Specification
Typical Electro-Optical Characteristics Limit Values
Part R10 range R100 typ. R01 min. R05 min. γ10/100 λpeak Top range Tst range TC 10 lux ton typ. toff typ. Vmax. Pmax.
Number kkMMtyp. nm ˚C ˚C %/˚k msec msec VmW
A106009 4-11 2 0.04 0.12 0.65 600 -20-+70 -20-+80 0.4 50 40 100 90
A106011 9-20 3.5 0.06 0.18 0.65 600 -20-+70 -20-+80 0.3 60 40 150 90
A106012 16-33 5 0.18 0.5 0.7 600 -20-+70 -20-+80 0.35 50 35 150 90
A106013 27-94 8 0.5 1.5 0.8 600 -20-+70 -20-+80 0.4 35 30 150 90
A106014 77-340 15 1.5 5 0.9 600 -20-+70 -20-+80 0.5 25 20 150 90
A106031 60-130 23 0.4 1.2 0.65 600 -20-+70 -20-+80 0.3 60 40 300 90
A106032 120-210 35 1 3 0.7 600 -20-+70 -20-+80 0.35 50 35 300 90
A106033 200-580 50 3 9 0.8 600 -20-+70 -20-+80 0.4 35 30 300 90
A106034 500-1200 100 5 15 0.9 600 -20-+70 -20-+80 0.5 25 20 300 90
A105009 4-11 2 0.04 0.12 0.65 530 -20-+70 -20-+80 0.3 70 50 100 90
A105011 9-22 4 0.05 0.15 0.6 530 -20-+70 -20-+80 0.2 70 50 150 90
A105012 18-44 7 0.15 0.45 0.65 530 -20-+70 -20-+80 0.2 60 40 150 90
A105013 36-88 12 0.4 1.2 0.7 530 -20-+70 -20-+80 0.3 50 30 150 90
A105014 70-200 20 1 3 0.75 530 -20-+70 -20-+80 0.3 40 30 150 90
A10 Series
Technical Specification
Typical Electro-Optical Characteristics Limit Values
Part R10 range R100 typ. R01 min. R05 min. γ10/100 λpeak Top range Tst range TC 10 lux ton typ. toff typ. Vmax. Pmax.
Number kkMMtyp. nm ˚C ˚C %/˚k msec msec VmW
A906009 4-11 2 0.04 0.12 0.65 600 -20-+70 -20-+80 0.4 50 40 100 90
A906011 9-20 3.5 0.06 0.18 0.65 600 -20-+70 -20-+80 0.3 60 40 150 90
A906012 16-33 5 0.18 0.5 0.7 600 -20-+70 -20-+80 0.35 50 35 150 90
A906013 27-94 8 0.5 1.5 0.8 600 -20-+70 -20-+80 0.4 35 30 150 90
A906014 77-340 15 1.5 5 0.9 600 -20-+70 -20-+80 0.5 25 20 150 90
A906031 60-130 23 0.4 1.2 0.65 600 -20-+70 -20-+80 0.3 60 40 300 90
A906032 120-210 35 1 3 0.7 600 -20-+70 -20-+80 0.35 50 35 300 90
A906033 200-580 50 3 9 0.8 600 -20-+70 -20-+80 0.4 35 30 300 90
A906034 500-1200 100 5 15 0.9 600 -20-+70 -20-+80 0.5 25 20 300 90
A905012 18-44 7 0.15 0.45 0.65 530 -20-+70 -20-+80 0.2 60 40 150 90
A905013 36-88 12 0.4 1.2 0.7 530 -20-+70 -20-+80 0.3 50 30 150 90
A905014 70-200 20 1 3 0.75 530 -20-+70 -20-+80 0.3 40 30 150 90
A995009 4-11 2 0.04 0.12 0.65 530 -20-+70 -20-+80 0.3 70 50 100 90
A995011 9-22 4 0.05 0.15 0.6 530 -20-+70 -20-+80 0.2 70 50 150 90
A995012 18-44 7 0.15 0.45 0.65 530 -20-+70 -20-+80 0.2 60 40 150 90
A995013 36-88 12 0.4 1.2 0.7 530 -20-+70 -20-+80 0.3 50 30 150 90
A995014 70-200 20 1 3 0.75 530 -20-+70 -20-+80 0.3 40 30 150 90
A90 Series
Technical Specification
All readings taken at standard light A (2854 K color temperature) after 2 hours of preillumination at 500 lux
All readings taken at standard light A (2854 K color temperature) after 2 hours of preillumination at 500 lux
A10 Series
B90 Series
Table of Contents
www.optoelectronics.perkinelmer.com 19
Photocells
Typical Electro-Optical Characteristics Limit Values
Part R10 R100 typ. R01 min. R05 min. γ10/10 λpeak top range tst range TC 10 lux ton typ. toff typ. Vmax Pmax
Number kkmmmin. nm ˚C ˚C %/˚K msec msec VmW
U116012 20-50 8 0.12 0.36 0.7 550 -20-+70 -20-+80 0.3 50 40 150 50
U116013 35-220 15 0.4 1.2 0.85 550 -20-+70 -20-+80 0.35 40 30 150 50
U116014 150-1000 35 1 3 0.95 550 -20-+70 -20-+80 0.4 30 25 150 50
U116032 100-320 40 1 3 0.7 550 -20-+70 -20-+80 0.3 40 30 400 50
U116033 250-1100 75 2 6 0.85 550 -20-+70 -20-+80 0.35 30 25 400 50
U Series
Technical Specification
All readings taken at standard light A (2854 K color temperature) after 2 hours of preillumination at 500 lux
Typical Electro-Optical Characteristics Limit Values
Part R10 range R100 typ. R01 min. R05 min. γ10/100 λpeak Top range Tst range TC 10 lux ton typ. toff typ. Vmax. Pmax.
Number kkMMtyp. nm ˚C ˚C %/˚k msec msec VmW
B906023 4-15 1.6 0.1 0.3 0.8 600 -20-+70 -20-+80 0.4 35 30 300 200
B906032 5-13 2 0.1 0.3 0.7 600 -20-+70 -20-+80 0.3 50 35 300 200
B906033 11-40 5 0.2 0.6 0.8 600 -20-+70 -20-+80 0.4 35 25 300 200
B Series
Technical Specification
All readings taken at standard light A (2854 K color temperature) after 2 hours of preillumination at 500 lux
Typical Electro-Optical Characteristics Limit Values
Part R10 range R100 typ. R01 min. R05 min. γ10/100 λpeak Top range Tst range TC 10 lux ton typ. toff typ. Vmax. Pmax.
Number kkMMtyp. nm ˚C ˚C %/˚k msec msec VmW
M996011a 1.5-5 0.7 0.05 0.15 0.7 600 -20-+70 -20-+80 0.3 50 30 100 200
M996011b 0.8-2 0.4 0.05 0.15 0.65 600 -20-+70 -20-+80 0.3 40 30 100 200
M Series
Technical Specification
All readings taken at standard light A (2854 K color temperature) after 2 hours of preillumination at 500 lux
Typical Electro-Optical Characteristics Limit Values
Part R10 range R100 typ. R01 min. R05 min. γ10/100 λpeak Top range Tst range TC 10 lux ton typ. toff typ. Vmax. Pmax.
Number kkMMtyp. nm ˚C ˚C %/˚k msec msec VmW
D996011 1.5-3 0.6 0.01 0.03 0.6 600 -20-+70 -20-+80 0.3 60 35 150 200
D996012 2.8-6 0.8 0.03 0.09 0.7 600 -20-+70 -20-+80 0.35 50 30 150 200
D996013 4.5-13 1.5 0.1 0.3 0.8 600 -20-+70 -20-+80 0.4 35 25 150 200
D996021 4-9 1.8 0.03 0.09 0.6 600 -20-+70 -20-+80 0.3 60 35 150 200
D996022 8-15 2.5 0.09 0.27 0.7 600 -20-+70 -20-+80 0.35 50 30 150 200
D996023 12-35 4 0.5 1.5 0.8 600 -20-+70 -20-+80 0.4 35 25 150 200
D Series
Technical Specification
All readings taken at standard light A (2854 K color temperature) after 2 hours of preillumination at 500 lux
M Series
D Series
U Series
Table of Contents
Description
PerkinElmer Optoelectronics offers a range of selective sensors
for ultraviolet radiation. This sensor series can be equipped
with an integrated amplifier and is perfectly suited for the
detection of any radiation ranging from 200 nm to 400 nm. High
sensitivity, hermetic encapsulation, small dimension (TO-5) and
low cost structure provide suitability for both industrial and
consumer applications.
UV Detector Basics
UV detectors from PerkinElmer Optoelectronics are based on
silicon-carbide, a material that offers new performance features at
reasonable cost. Silicon-carbide provides a unique sensitivity in
the spectral range from 200 to 400 nm (peak at 280 nm).
Standard UV Detectors
PerkinElmer Optoelectronics’ range of standard ultraviolet
detectors comprises different housings and window options.
Detectors of this ‘S’ type contain the UV-sensitive photodiode
only, and the signal output represents an intensity-dependent
photodiode current.
As a default, the standard window (>210 nm) will be applied.
Other windows with more selective wavelengths are A1, A2,
A0, C1.
Standard UV Detectors With Built-in Lens
Products can be supplied with a standard window or built-in lens.
Amplified Output Types
Sensors of this ‘T’ type consist of an additional transimpedance
amplifier of certain amplification, and the sensor output repre-
sents an intensity-dependent voltage.
E’xx’ corresponds to the power of ten of the amplification factor
ranging between 107(E07) and 1010(E10). Optional
versions are available on request only.
Different housings and window options are available. As a
default, the standard window will be applied. Other windows
with more selective wavelengths are A1, A2, A0, C1.
Amplified Output Types With Built-in Lens
Products can be supplied with a standard window or built-in lens.
ultraviolet detectors
Features
• High sensitivity
Low temperature dependence
Available in TO-5, TO-18 and
miniature housing
Various selective filter window
options
• Radiation resistant types
Built-in lens types
Built-in amplifier types
Long-term stability at high
radiation intensity
High temperature resistivity
Typical Applications
• Solar Measurement
• Sterilization
• Burner Controls
• Industrial Controls
Datasheets available upon request
20 www.optoelectronics.perkinelmer.com
Table of Contents
General Data
Max. Operating Temperature:
-20 to +80˚C
Max. Storage Temperature:
-20 to +80˚C
Spectral Response: 210-380 nm
Test conditions: T = 25˚C
L types are with lens built in
* Radiation resistant version
Radiant Sensitivity: Standard Window
Responsivity: Standard Window
Sensitive Area: Active Diode Area For Types Without Lens
Selectivity: 400-2000 nm
Rise Time: t (63%)
www.optoelectronics.perkinelmer.com 21
Ultraviolet Detectors
Radiant Pk. Response Sensitive Junction Temperature
Part Sensitivity Wavelength Area Dark Current Capacitance Coefficient
Number Housing mA/W nm mm2Selectivity fA pF %/K
UV10SF TO-5 140 280 5.4x10-2 >10-5 0.2 21 -0.5
UV10SL TO-5 25 280 12.5 >10-5 0.2 21 -0.5
UV20SF TO-18 140 280 5.4x10-2 <10-5 0.2 21 -0.5
UV21SF* TO-18 140 280 5.4x10-2 >10-5 0.2 21 -0.5
UV30SFA2 Mini 110 310 5.4x10-2 >10-5 0.2 21 -0.5
Standard UV Detectors
Technical Specification
Radiant Sensitive Operating Dark Offset Rise Temperature
Part Sensitivity Responsivity Area Voltage Voltage Time Coefficient
Number Housing V/nW V/mW/mm2mm2Selectivity V mV ms %/K
UV10T2E10F TO-5 4 0.25 5.4x10-2 >10-5 2.5-5 <5 10 <-0.3
UV10T2E10L TO-5 1 10 12.5 >10-5 2.5-5 <5 10 <-0.3
Amplified Output Detectors
Technical Specification
Test conditions: T = 25˚C
L types are with lens built in
2E10 is the built-in amplification. Other options on request
Radiant Sensitivity: Standard Window
Responsivity: Standard Window
Sensitive Area: Active Diode Area For Types Without Lens
Selectivity: 400-2000 nm
Rise Time: t (63%)
TO-5 Types
Ultraviolet Detectors
Table of Contents
Description
Thermopile detectors directly sense thermal radiation, providing
the perfect device for remotely measuring temperatures without
the need for any mechanical chopper. PerkinElmer's proprietary
and innovative Si-based micromachining technology guarantees
a new generation of components: extreme long-term stability,
very low temperature coefficient in sensitivity, and excellent
repeatability of electro-optical parameters.
Thermopile sensors allow remote temperature sensing at a low
system cost. The sensor does not require cooling, and can reach
an accuracy of ±1°C, dependent on the measurement range. For
narrow temperature ranges, as in body temperature measure-
ment, a precision of 0.1°C is possible.
Single-Element Thermopile Detectors: TPS series
The different available chip sizes and packaging types, together with
the variety in window openings with and without a silicon lens,
enable the adaptation of the PerkinElmer thermopiles to virtually
every application where a remote temperature measurement or
control is needed.
Dual- and Quad-Element Types: TPS 2 , TPS 4 series
PerkinElmer offers thermopile detectors with two or four channels,
each of which can be equipped with one of the many available
infrared spectral bandpass filters. The main application of multiple
channel thermopiles is gas detection through IR absorption.
Prominent gases to be detected are CO2, hydrocarbons and CO.
Thermopile Modules: TPM series
For convenient use, PerkinElmer offers a module with a single-
element thermopile sensor, on-board or with an integrated electronic
circuit, for the necessary amplification and ambient temperature
compensation. This thermopile module is offered as a fully
calibrated, ready-to-go sensor. Various temperature ranges and
optics are available. Most modules are customized versions.
Thermopile Line and Matrix Arrays: TPL, TPA series
The latest PerkinElmer thermopile technology development
features more than a single test spot. The new TPA- (matrix array)
and TPL- (line array) series offer multi-element thermopile arrays
combined with an optical lens, amplifier, and interface electronics
(multiplexer, ambient temperature sensor) in a compact TO-39-type
housing. This combines solid-state, non-choppered temperature
measurement without the need for in-field calibration.
Typically, the array sensors are sold as a modular type, i.e. on a
PCB with external data memory. These TPA- and TPL-Modules are
precalibrated with the data stored in an EEPROM. In an application,
the associated micro controller (µC) reads this calibration information
and converts the sensor signals to the object temperatures.
thermopile detectors
Features
Available in TO-39 and TO-18
housings
Single, dual or quad elements
8 element line arrays and 4x4
matrix arrays with various lens
optics and integrated ASIC with
multiplexer
Various filters for optical broad-
band or narrow-band applications
Excellent repeatability of electro-
optical parameters
Ambient temperature reference
(thermistor) included
High sensitivity of several 10 V/W;
DC radiation sensitive
Extremely low temperature
coefficient of sensitivity and
resistivity
Constant response over the
infrared spectrum
The absence of microphonic
noise effects
Low susceptibility to electromagnetic
pulses (EMP) due to the low internal
resistance (<100 k)
Rugged construction based on
CMOS silicon micromachining
technology
Typical Applications
Remote Temperature Sensing,
Hand-Held or Industrial
Pyrometers
Ear or Body Thermometers
Temperature-Sensor Modules in
Microwave Ovens, Hair Dryers,
Cookers, Toasters
Sensor Modules for Control
of Air Condition Systems (Heat
Management, Home, Automotive)
Temperature Control in Copiers
and Printers
Sensor Arrays for Spatial
Temperature Measurements
(Imaging Applications)
Sensors with Infrared Bandpass
Filters for Gas Detection by
Infrared Absorption
Datasheets available upon request
22 www.optoelectronics.perkinelmer.com
Table of Contents
Dual and Quad Element
Thermopile Detectors
General Data
Tc of sensitivity (absolute value):
0.02%/K
Tc of resistance (absolute value):
0.02%/K
Max. operating temperature: -20 to 100°C
Max. storage temperature: -40 to 100°C
Thermistor BETA: 3964 K
Option for all types: 8-14 um
Pyrometry filter: G9
www.optoelectronics.perkinelmer.com 23
Thermopile Detectors
DC Time Active TP Chip Thermistor
Part Field of Sensitivity Constant Area Resistance Noise NEP D* (25˚C)
Number Housing View V/W ms mm2knV/Hz nW/Hz cmHz/W k
TPS333 TO-18 100˚ 35 25 0.7x0.7 75 35 1 0.7x108100
TPS334 TO-39 60˚ 35 25 0.7x0.7 75 35 1 0.7x10830
TPS334L5.5 TO-39** 55 25 0.7x0.7 75 35 0.6 1.1x10830
TPS434 TO-39 55˚ 35 20 0.5x0.5 35 24 0.7 0.7x10830
TPS434IRA TO-39*** 15˚ 55 20 0.5x0.5 35 24 0.4 1.1x10830
TPS534 TO-39 80˚ 20 35 1.2x1.2 50 29 1.4 0.8x10830
TPS535 TO-39 80˚ 20 35 1.2x1.2 50 29 1.4 0.8x10830
Single Element Thermopile Detectors
Technical Specification
DC Time Active TP Chip Thermistor
Part Field of Sensitivity Constant Area Resistance Noise NEP D* (25˚C)
Number Housing View V/W ms mm2knV/Hz nW/Hz cmHz/W k
TPS2534 TO-39** 2x90˚ 42 35 1.2x.1.2 50 29 0.7 1.8x10830
TPS4339 TO-39*** 4x60˚ 75 25 0.7x0.7 75 35 0.5 1.5x108100
Dual and Quad Thermopile Detectors
Technical Specification
Test conditions: T = 25˚C
Field of view: at 50% intensity points
Noise: r.m.s., 300 K
* 500 K black body
** with 5.5 mm lens
*** with int. reflector
Test conditions: T = 25˚C
Field of view: at 50% intensity points
Noise: r.m.s., 300 K
Above data are referenced without the
bp filter. Option for all types:
individual bp filters for each channel
* 500 K black body
** with 2 channels
*** with 4 channels
Output Voltage Noise
Part Number Field of V (80˚C object, Object mV/Hz
Number Housing of Pixels View Optics 20˚C ambient) temperature (.5–20Hz)
TPLM086L5.5 TO-39 on PCB 8 element line 41˚x6˚ f/1 optics, f=5.5 mm 0.95 -20-100˚C 0.4
TPLM086L3.9 TO-39 on PCB 8 element line 56˚x8˚ f/1 optics, f=3.9 mm 0.95 -20-100˚C 0.4
TPAM166L3.9 TO-39 on PCB 4x4 matrix 41˚x32˚ f/1 optics, f=3.9 mm 0.95 -20-100˚C 0.4
Line and Matrix Arrays
Technical Specification
Part
Number Physical Size Optics Field of View
TPM 33x17x5 Aperture 100˚
TPML/TPMF 33x17x15 Mirror
TPMML5.5 20x17x8 5.5 mm lens
Modules
Technical Specification
Test conditions: T = 25˚C
Operating voltage: 5 V
Operating current: 1 mA
Zero signal offset: VDD/2
Output resistance: 200
Power up time: 0.3 s
Sample frequency: 3 kHz
Max. operating temperature: -20-100°C
Max. storage temperature: -40-100°C
Temperature reference slope: 10 mV/K
Temperature reference offset: 0 mV
For further details please contact us.
Thermopile Arrays
Thermopile Modules
Table of Contents
Description
Pyroelectric materials produce a charge transfer when they
undergo a change in thermal energy. This effect is applied
for detectors that show an output signal similar to alternating
current with a change in the infrared radiation. Such pyroelectric
detectors are used in movement detectors, passive infrared
alarms, and automatic light switches. Detectors based on the
same principle are used for gas monitoring based on the spectral
absorption method.
Dual-Element Types
Dual-element detectors combine two elements which are
connected in reverse polarity to each other to one FET source-
follower output.
Four-Element Types
Four-element detectors combine four elements to two outputs.
The two individual channels allow signal processing to avoid
false alarms and provide redundancy.
Ceiling-Mount Detectors
Ceiling-mount detectors have a special element configuration
suitable for ceiling lens designs. They combine two or four
separate elements into one output.
Single-Element Detectors
This range of detector offers one element with source-follower
output. Different element sizes are available. Most of the
preferred types have built-in thermal compensation. Special IR
windows of narrow bandwidth are offered.
Dual-Channel Detectors
These special designs offer two single-element detectors in one
TO-5 case. Each one is equipped with an individual filter and
provides its own output. Various narrow-band filter windows
can be chosen.
pyroelectric infrared detectors
Features
Low noise, high responsivity
Excellent common-mode balance
for dual-element types
Available in TO-39, TO-5 housings
Various filter windows for broad-
band or narrow-band applications
Single- and dual-channel devices
Dual- and quad-type elements for
intrusion applications
Thermally compensated versions
for single-element types
Typical Applications
Intrusion Alarms
Motion Detection
Ceiling-Mount Person Detection
Gas Analysis
Non-Contact Infrared
Measurements
Datasheets available upon request
24 www.optoelectronics.perkinelmer.com
Table of Contents
General Data
Max. Operating Temperature:
-40 to +85°C
Max. Storage Temperature:
-40 to +85°C
Operating Voltage: 2-12 V/47 k
Load Resistor
Offset Voltage: 0.2-1.5 V/47 k
Load Resistor
www.optoelectronics.perkinelmer.com 25
Pyroelectric Infrared Detectors
Part Responsivity Noise NEP D* Field of View Element Size
Number Housing V/W typ. (1 Hz) µVpp typ. W Hz typ. cmHz/W typ. Horizontal Vertical mm2
LHi954 TO-39 3700 20 8.1x10-10 1.75x107110˚ 110˚ 2x1/2x1
LHi958 TO-5 3700 20 8.1x10-10 1.75x107110˚ 110˚ 2x1/2x1
LHi968 TO-5 4000 20 7.5x10-10 1.9x107100˚ 100˚ 2x1/2x1
LHi874 TO-39 4200 20 7.5x10-10 1.9x10790˚ 95˚ 2x1/2x1
LHi878 TO-5 4200 20 7.5x10-10 1.9x10790˚ 95˚ 2x1/2x1
Dual-Element Detectors
Technical Specification
Part Responsivity Noise NEP D* Field of View Element Size
Number Housing V/W typ. (1 Hz) µVpp typ. W Hz typ. cmHz/W typ. Horizontal Vertical mm2
LHi1148 TO-5 4500 30 8.6x10-10 14x107108˚ 67˚ 0.8x1.2 ea.
LHi1448 TO-5 6500 30 8.6x10-10 14x107108˚ 67˚ 0.9532 ea.
LHi1548 TO-5 5000 30 8.6x10-10 14x107108˚ 67˚ 0.9532 ea.
Four-Element Detectors
Technical Specification
Part Responsivity Noise NEP D* Field of View Element Size
Number Housing V/W typ. (1 Hz) µVpp typ. W Hz typ. cmHz/W typ. X Y mm2
LHi906 TO-5 4000 20 7.5x10-10 719x107150˚ 150˚ 2.66 ea. (round)
LHi1128 TO-5 8000 40 7.5x10-10 28x107156˚ 144˚ 1.0x1.0 (4 elements)
Ceiling-Mount Application Detectors
Technical Specification
Part Responsivity Noise NEP D* Field of View Element Size
Number Housing V/W typ. (10 Hz) nVRMS(10Hz) W Hz typ. cmHz/W typ. X Y mm2
LHi807 TO-5 640 600 9.4x10-10 16x107135˚ 120˚ 1.5x1.5
LHi807TC TO-5 320 300 9.4x10-10 16x107135˚ 120˚ 1.5x1.5
PYS4198 TO-5 300 150 20x10-10 8x107130˚ 110˚ 2.0x2.0
PYS4198TC TO-5 150 75 20x10-10 8x107130˚ 110˚ 2.0x2.0
PYS3151TC TO-18 640 600 9.4x10-10 16x10790˚ 90˚ 1.5x1.5
Single-Element Detectors
Technical Specification
Part Responsivity Noise NEP D• Field of View Element Size
Number Housing V/W typ. (10 Hz) nVRMS(10 Hz) W Hz typ. cmHz/W typ. X (ea.) Y (ea.) mm2
LHi814G1/G20 TO-5 640 600 9.4x10-10 16x10777˚ 95˚ 1.5x1.5 (ea.)
LHi814G2/G20 TO-5 640 600 9.4x10-10 16x10777˚ 95˚ 1.5x1.5 (ea.)
Dual-Channel Detectors
Technical Specification
Test conditions: T = 22˚C
Responsivity: 100°C Black Body
Noise: 0.4 to 10 Hz Bandwidth
NEP:100°C Black Body, 1 Hz Electr. Bandwidth, 1 Hz
D*: 100°C Black Body, 1 Hz Electr. Bandwidth, 1 Hz
Each of these types can be equipped with two different
narrow band infrared filters.
Test conditions: T = 22˚C
Responsivity: 100°C Black Body
Noise: 0.4 to 10 Hz Bandwidth
NEP:100°C Black Body, 1 Hz Electr. Bandwidth, 1 Hz
D*: 100°C Black Body, 1 Hz Electr. Bandwidth, 1 Hz
Test conditions: T = 22˚C
Responsivity: 100°C Black Body
Noise: 0.4 to 10 Hz Bandwidth
NEP:100°C Black Body, 1 Hz Electr. Bandwidth, 1 Hz
D*: 100°C Black Body, 1 Hz Electr. Bandwidth, 1 Hz
Test conditions: T = 22˚C
Responsivity: 100°C Black Body
Noise: 0.4 to 10 Hz Bandwidth
NEP:100°C Black Body, 1 Hz Electr. Bandwidth, 1 Hz
D*: 100°C Black Body, 1 Hz Electr. Bandwidth, 1 Hz
Test conditions: T = 22˚C
Responsivity: 100°C Black Body
Noise: 0.4 to 10 Hz Bandwidth
NEP:100°C Black Body, 1 Hz Electr. Bandwidth, 1 Hz
D*: 100°C Black Body, 1 Hz Electr. Bandwidth, 1 Hz
Ceiling Mount Series
Dual Channel Series
Pyroelectric Infrared Detectors
Table of Contents
Description
PerkinElmer Optoelectronics has been a leading manufacturer of
analog optical isolators (AOI) for over twenty years and makes a
broad range of standard parts under its trademark VACTROL®.
There are many kinds of optical isolators, but the most common
is the LED/phototransistor type. Other familiar types use output
elements such as light-sensitive SCRs, Triacs, FETs and ICs. The
major application for these silicon-based devices is to provide
electrical isolation of digital lines connected between different
pieces of equipment. The principle of operation is very simple.
When an input current is applied to the LED, the output photo-
transistor turns on. The only connection between the LED and
phototransistor is through light—not electricity—thus the term
optical isolator. These optical isolators are primarily digital in
nature with fast response times for interfacing with logic gates.
Rise and fall times of a few microseconds, faster for some
isolators, are typical.
The AOI also uses an optical link between input and output.
The input element is an LED and the output element is always
a photoconductive cell or, simply a photocell. Together, the
coupled pair act as an electrically variable potentiometer. Since
the output element of the AOI is a resistor, the voltage applied
to this output resistor may be DC and/or AC and the magnitude
may be as low as zero or as high as the maximum voltage rating.
Because the input will control the magnitude of a complex
waveform in a proportional manner, this type of isolator is an
analog-control element. AOIs may be used in the ON-OFF mode
but the fastest response time is only in the millisecond range.
A level-sensitive Schmitt trigger is required between the AOI
and logic gates when used in digital circuits.
analog optical isolators
Features
High input-to-output voltage
isolation
True resistance element output
Single- or dual-element outputs
available
• Low cost
Suitable for AC or DC use
Wide range of input-to-output
characteristics
Low drive current
Low “on” resistance, high “off ”
resistance
Complete solid-state construction
Typical Applications
• DC Isolators
Feedback Elements in Automatic
Gain Control Circuits
Audio Limiting and Compression
• Noiseless Switching
• Logic Interfacing
Remote Gain Control for
Amplifiers
• Photochoppers
• Noiseless Potentiometers
Principle of Operation
Analog Optical Isolators are used in
many different types of circuits and
applications.
Available Related Products
VTL5C Series
LT3011 Series
LT9900 Series
Datasheets available upon request
26 www.optoelectronics.perkinelmer.com
Absolute Maximum Ratings @ 25°
Maximum Temperatures
Storage and Operating: –40°C to 75°C
Cell Power: 175 mW
Derate Above 30°C: 3.9 mW/°C
LED Current: 40 mA
Derate Above 30°C: 0.9 mA/°C
LED Reverse Breakdown Voltage: 3.0 V
LED Forward Voltage Drop @ 20 mA: 2.0 V (1.65 V Typ.)
VTL5C8 = 2.8 V (2.2 V typ.)
VTL5C9 = 2.8 V (2.2 V typ.)
VTL5C10 = 2.8 V (2.2 V typ.)
Minimum Isolation Voltage @
70% Rel. Humidity: 2500 VRMS
Output Cell Capacitance: 5.0 pF
Input/Output Coupling Capacitance: 0.5 pF
Table of Contents
Analog Optical Isolators—
VTL5C Series
PerkinElmer Optoelectronics’ line of
AOIs consists of a light-tight package
which houses a light source and one or
more photoconductive cells. Through
control of the input current or voltage
applied to the AOI, the output resistance
can be varied. The output resistance can
be made to switch between an “on” and
“off” state or made to track the input
signal in an analog manner. Because a
small change in input signal can cause a
large change in output resistance, AOIs
have been found to provide a very eco-
nomical and technically superior solu-
tion for many applications.
www.optoelectronics.perkinelmer.com 27
Optical Isolators
On Resistance Off Resistance Response Time
Part Material Input Dark @ 10 sec. Dynamic Cell Turn-on to 63% Turn-off (Decay)
Number Type Current Adapted typ. min. Slope Range Voltage Final RON typ. to 100max.
1 mA 20 k
VTL5C1 1 10 mA 600 50 M15 100 db 100 V 2.5 ms 35 ms
40 mA 200
1 mA 5.5 k
VTL5C2 0 10 mA 800 1 M24 69 db 200 V 3.5 ms 500 ms
40 mA 200
5 mA 2.5 k
VTL5C2/2 0 40 mA 700 1 M20 65 db 50 V 7 ms 150 ms
1 mA 30 k
VTL5C3 3 10 mA 5 10 M20 75 db 250 V 2.5 ms 35 ms
40 mA 1.5
1 mA 55 k
VTL5C3/2 3 40 mA 2 k10 M19 71 db 100 V 3 ms 50 ms
1 mA 1.2 k
VTL5C4 4 10 mA 125 400 k18.7 72 db 50 V 6 ms 1.5 sec
40 mA 75
1 mA 1.5 k
VTL5C4/2 4 10 mA 150 400 k8.3 68 db 30 V 6 ms 1.5 sec
1 mA 75 k
VTL5C6 0 10 mA 10 k100 M16.7 88 db 250 V 3.5 ms 50 ms (1 M)
40 mA 2 k
0.4 mA 5 k
VTL5C7 7 2 mA 1.1 k1 M5.7 75 db 50 V 6 ms 1 sec. (100 k)
1 mA 4.8 k
VTL5C8 0 4 mA 1.8 k10 M8 80 db 500 V 4 ms 60 ms
16 mA 1 k
VTL5C9 1 2 mA 630 50 M7.3 112 db 100 V 4 ms 50 ms
VTL5C10 4 1 mA 400 400 k3.8 75 db 50 V 1 ms 1.5 sec
VTL5C Series
Technical Specification
Specification Notes
LED Current: Since the input has a substantially constant
voltage drop, a current-limiting resistance is required.
ON Resistance: Dark adapted resistance measured after 24
or more hours of no input.
OFF Resistance: Measured 10 sec. after removal of the input.
The ultimate resistance is many times greater than the value
at 10 sec.
Response Time: Ascent measured to 63% of final conductance
from the application of 40 mA input. The conductance rise time
to a specified value is increased at reduced input drive while
the conductance decay time to a specified value is decreased.
Typical matching and tracking from 0.4 to 40 mA is 25%.
Measured 5 sec. after removal of the input. The ultimate
resistance is many times greater than the value at 5 sec.
VTL5C9 response times are based on a 2 mA input. VTL5C10
response times are based on a 10 mA input
for ascent time and a 1 mA input for decay time.
LT Series Key
R1mA Output Resistance at If=1 mA
R20mA Output Resistance at If=20 mA
R01 Dark Resistance after 1 sec (If=0)
R05 Dark Resistance after 5 sec (If=0)
Top Operating Temperature Range
Tst Storage Temperature Range
ViInput/Output Insulation Voltage
TC Module Thermal Coefficient
Ton Rise Time to 63% of final R20
Toff Decay Time to 37% of initial R20
CsOutput Capacity
Vmax Operating Voltage at If=0
Pmax Output Power Dissipation at 25˚C
Typical Electro-Optical Characteristics Limit Values
Part R1mA R20mA typ. R01 min. R05 min. top range tst range Vi min. TC 10 lux ton toff typ. Cs max. Vmax Pmax
Number kkmm˚C ˚C V %/˚K msec msec pF V mW
LT3011-2 1 3 9 -20-+60 -20-+80 2500 2 10 10 2 50 50
LT3011 0.32 0.1 0.3 -20-+70 -20-+70 2500 0.4 50 40 2 100 75
LT9909 0.7-1.2 0.35 0.06 0.18 -20-+70 -20-+70 1000 0.4 40 40 1 50 50
LT9910 1.2-2.5 0.7 0.06 0.18 -20-+70 -20-+70 1000 0.4 40 40 1 50 50
LT9911 2-5 1.5 0.1 0.3 -20-+70 -20-+70 1000 0.4 50 40 1 100 50
LT9912 4.5-9 2 0.2 0.6 -20-+70 -20-+70 1000 0.4 40 30 1 100 50
LT9913 8-16 3.5 0.5 1.5 -20-+70 -20-+70 1000 0.4 35 30 1 100 50
LT9914 14-25 6 0.7 2.1 -20-+70 -20-+70 1000 0.4 35 30 1 100 50
LT Series
Technical Specification
All readings taken at standard light A (2854 K color temperature) after 2 hours of preillumination at 500 lux.
Input/Output Coupling Capacity: 1 pF max.
Reverse Voltage: 4 V max.
Diode Forward Current: 25 mA max. DC
LT Series
Table of Contents
(@ 25°C unless otherwise noted)
Absolute Maximum Ratings
Maximum Temperatures
Storage and Operating: -40°C to 85°C
Lead-Soldering Temperature: 260°C (1.6 mm from case, 5 sec. max.)
Description
PerkinElmer Optoelectronics’ infrared interruptive switches are
ideal for non-contact sensing applications. The emitter is generally
an IR LED and the detector is either a phototransistor or a photodar-
lington.
Optoswitches, Optical Hybrids, and Custom Optical Assemblies
Optoswitches, optical hybrids, custom assemblies, photodiodes,
phototransistors, IR emitters, and photoconductive cells are
commonly used in industrial, commercial, and consumer
electronics applications. This product line is one of the broadest
in the industry and includes a variety of standard catalog
products as well as custom design and manufacturing capabilities.
Approximately 75% of the products shipped are custom designed
and tested to serve the needs of specific OEM applications.
Reflective Optoswitches
Reflective optical switches combine an infrared-emitting diode
(IRED) with an NPN phototransistor or photodarlington in a one-
piece, sealed, IR-transmitting plastic case. Sealed construction
improves resistance to moisture and debris. Units are available
with PC-board mounting leads (VTR16D1), or 12-inch, #26 AWG
flying leads (VTR17D1).
Transmissive Optoswitches
Interrupter-type optical switches combine an infrared-emitting
diode (IRED) with an NPN phototransistor. Units are available
in two different case styles; a one-piece, sealed, IR-transmitting
plastic case (VTL11 and VTL13 series) and an opaque case
(VTL23 series). Options also include apertures-over-detector
and/or emitter, and either PC-board mount leads or 12-inch,
#26 AWG leads (VTL13 only).
infrared interruptive switches
Features
Contains no mechanical parts to
wear out
Provides non-contact sensing
of objects
Low power consumption,
compatible with solid-state
electronics
Low cost
Capable of sensing any opaque object
Small size
Custom mechanical configurations
available
Can be specially selected or built
to meet the requirements of your
particular application
Typical Applications
Printers and Typewriters
Paper Sensor
Paper-Feed Detector
Imprinting Head Position
Detector
Floppy Disk Drives
Track-Zero Sensor
Index Sensor
Disk-In Sensor
• Vending Machines
Coin Sensor
Detection of Goods
Mechanism Position
• Facsimiles
Original Width Detection
Initial Position Detection
Final Position Detection
• Industrial
Rotational Speed/Position
Detection (Encoder)
Distance Detection
Object Sensor
VHS/VHSC/8 mm VCR
Tape Start
Tape Load
Tape End
• Copiers
Paper-Presence Detection
Toner-Density Control
Paper-Carrier Detection
Datasheets available upon request
28 www.optoelectronics.perkinelmer.com
General Characteristics
Parameter Symbol Conditions Input IRED Output Detector
Reverse Voltage VRIR=100 µA 2 V min.
Continuous Forward IFDerate 0.73 mA/°C 40 mA max.
Current above 30°C
Forward Voltage Drop VFIF=20 mA 1.8 V max.
Collector Breakdown VBR(CEO) IC=100 µA 30 V min.
Voltage
Emitter Breakdown VBR(ECO) IC=100 µA 5 V min.
Voltage IE=100 µA (VTR) 3 V min. (VTL23DxA)
Power Dissipation PDDerate 0.91 mW/°C 50 mW max.
above 30°C
Table of Contents
www.optoelectronics.perkinelmer.com 29
Infrared Interruptive Switches
Light Current, IpDark Current
Part Test Conditions Test Conditions Output Element
Number mA min. IF mA VCE Volts d inches (mm) µA max. IF mA VCE Volts Detector Device
VTR16D1 0.3 20 5 0.1 (2.5) 0.1 0 5 Phototransistor
VTR17D1 0.3 20 5 0.1 (2.5) 0.1 0 5 Phototransistor
VTR24F1 6.0 20 30 2.0 (50.8) Photodarlington
VTR Series
Technical Specification
Light Current, IpDark Current Saturation Volts
Part Test Cond. Test Cond. Test Cond. Aperture Combination
Number mA min. IF mA VCE Volts nA max. IF mA VCE Volts Volts max. IF mA IC mA Emitter Detector
D1 0.5 20 5 100 0 10 0.4 20 0.25 none none
D1-20 0.15 20 5 100 0 10 0.4 20 0.25 0.02" w none
D3 2 20 5 100 0 10 0.4 20 1.8 none none
D3-20 0.6 20 5 100 0 10 0.4 20 1.8 0.02" w none
D5-20 0.15 20 5 100 0 10 0.4 20 0.25 0.02" w 0.01" w
D6-20 0.075 20 5 100 0 10 0.4 20 0.25 0.02" w 0.005" w
D7 0.75 20 5 100 0 10 0.4 20 0.25 none 0.02" w
D7-20 0.225 20 5 100 0 10 0.4 20 0.25 0.02" w 0.02" w
VTL11D, 13D Series
Technical Specification
Specification Notes
The case material is polysulfone and should be cleaned with
alcohol or freon TF only. Avoid chlorinated hydrocarbons and
solvents such as acetone or toluene, as damage may result.
The light current is measured using a 90% reflective surface
at a specified distance.
The dark current is measured with the part totally shielded
from ambient light. With 2150 lux (200 from a cool white
fluorescent lamp perpendicular to the sensing axis, the
detector current will be typically 3 µA. The same illumination
concentric to the sensing axis will result in a detector current
of 50 µA. Equivalent light from an incandescent lamp will
result in significantly greater currents.
With the specified IRED forward current and no reflecting
surface, the crosstalk is typically less than 3 µA.
Accommodates most applications.
Specification Notes
The dark current is measured with the part totally shielded from
ambient light. With 2150 lux (200 from a cool white fluorescent
lamp perpendicular to the sensing axis, the detector current will
be typically 3 µA. Equivalent light from an incandescent lamp
will result in significantly greater currents.
The aperture used for these slotted switches are 0.04"
(1.02 mm) high.
The case material is polysulfone and should be cleaned with
alcohol or freon TF only. Avoid chlorinated hydrocarbons and
solvents such as acetone or toluene, as damage may result.
VTL11D7-20, VTL13D7-20, accommodate most applications.
The other parts in this series are available only for specialized,
high-volume applications
Specification Notes
The dark current is measured with the part totally shielded
from ambient light.
VTL23D2A00 and VTL23D3A00 contains a visible light-
blocking dust cover over the apertures.
The plastic case can be damaged by chlorinated hydrocarbons
and ketones. Methanol isopropanol alcohols are recommended
as cleaning agents.
VTL23D1A22 accommodate most applications. The other
parts in this series are available only for specialized, high-
volume applications.
Aperture Length is 0.075"
Light Current, IpDark Current Saturation Volts
Part Test Cond. Test Cond. Test Cond. Aperture Combination
Number mA min. IF mA VCE Volts nA max. IF mA VCE Volts Volts max. IFmA ICmA Emitter Detector
VTL23D0A21 0.2 20 10 100 0 10 0.4 20 0.1 0.02" w 0.01" w
VTL23D0A22 0.2 20 10 100 0 10 0.4 20 0.1 0.02" w 0.02" w
VTL23D1A00 0.5 20 10 100 0 10 0.4 20 0.4 0.04" w 0.04" w
VTL23D1A22 0.5 20 10 100 0 10 0.4 20 0.4 0.02" w 0.02" w
VTL23D2A00 2.5 20 10 100 0 10 0.6 20 1.8 0.04" w 0.04" w
VTL23D3A00 1.0 10 10 100 0 10 0.4 10 0.8 0.04" w 0.04" w
VTL23DxA Series
Technical Specification
Infrared Interruptive Switches—
Reflective Optoswitches
VTR Series
Transmissive Optoswitches
VTL11d Series, VTL13D Series,
VTL23DxA Series
Table of Contents
Description
Phototransistors are photodiode-amplifier combinations
integrated within a single silicon chip. These are combined to
overcome the major fault of photodiodes: unity gain. Many
applications demand a greater output signal from the photodetector
than can be generated by a photodiode alone. While the signal
from a photodiode can always be amplified through use of an
external op-amp or other circuitry, this approach is often not as
practical or as cost-effective as the use of phototransistors. The
phototransistor can be viewed as a photodiode whose output
photocurrent is fed into the base of a conventional small-signal
transistor. While not required for operation of the device as a
photodetector, a base connection is often provided, allowing the
designer the option of using base current to bias the transistor. The
typical gain of a phototransistor can range from 100 to over 1500.
Phototransistors can be used as ambient-light detectors. When
used with a controllable light source, typically an IRED, they
are often employed as the detector element for optoisolators and
transmissive or reflective optical switches.
phototransistors
Features
Low-cost visible and near-IR
photodetection
Available with gains from 100
to over 1500
Moderately fast response times
Available in a wide range of
packages including epoxy-coated,
transfer-molded, cast, hermetic
packages, and in chip form
Usable with almost any visible
or near-infrared light source such
as IREDs; neon, fluorescent,
incandescent bulbs; lasers; flame
sources; sunlight; etc.
Same general electrical
characteristics as familiar signal
transistors
Typical Applications
• Computer/Business Equipment
• Write-Protect Control
• Margin Controls—Printers
• Industrial
LED Light Source—Light Pens
• Security Systems
• Safety Shields
• Consumer
• Coin Counters
Lottery Card Readers
• Position Sensors—Joysticks
• Remote Controllers—Toys,
Appliances, Audio/Visual
Equipment
• Games—Laser Tag
Camera Shutter Control
Principle of Operation
Phototransistors are solid-state light
detectors that possess internal gain.
They can be used to provide either
an analog or digital output signal.
Datasheets available upon request
30 www.optoelectronics.perkinelmer.com
Absolute Maximum Ratings
Maximum Temperatures
Storage and Operating: -40°C to 100°C
-40°C to 110°C (VTT1015, VTT1016,
VTT1017, VTT1115, VTT1116, and VTT1117)
-40°C to 85°C (VTT7222, VTT7223,
VTT7225, VTT7122, VTT7123, and VTT7125)
-40°C to 70°C (VTT9002, VTT9003,
VTT9102, and VTT9103)
Continuous Power Dissipation: 50 mW
100 mW (VTT9002, VTT9003, VTT9102,
and VTT9103)
250 mW (VTT1015, VTT1016, VTT1017,
VTT1115, VTT1116, and VTT1117)
Derate above 30°C: 0.71 mW/˚C
2.5 mW/˚C (VTT9002, VTT9003, VTT9102,
and VTT9103)
3.12 mW/˚C (VTT1015, VTT1016, VTT1017,
VTT1115, VTT1116, and VTT1117)
0.91 mW/˚C (VTT7122, VTT7123, VTT7125)
Maximum Current: 25 mA
200 mA(VTT1015, VTT1016, VTT1017,
VTT1115, VTT1116, and VTT1117)
Lead-Soldering Temperature: 260°C (1.6 mm from case, 5 sec. max.)
Table of Contents
NPN Phototransistors
.25", small area, high speed
.04", medium area, high sensitivity
.05", large area, high sensitivity
www.optoelectronics.perkinelmer.com 31
Phototransistors
Light Current Dark Current Angular
Part H fc (mW/cm2)nA V
CE VBR(CEO) VBR(ECO) VCE(SAT) tR/tFResponse
Number mA min. VCE=5 V max. Volts Volts min. Volts min. Volts max. µsec, typ. θ1/2
VTT1222W 0.9 100 (5) 10 20 50 6 0.25 2 ±40˚
VTT1223W 1.5 100 (5) 10 20 40 6 0.25 3 ±40˚
VTT1225 4 100 (5) 100 10 30 5 0.25 1.5 ±5˚
VTT1226 7.5 100 (5) 100 10 30 5 0.25 3 ±5˚
VTT1227 12 100 (5) 100 10 30 5 0.25 4 ±5˚
VTT3323LA 2 20 (1) 100 10 30 5 0.25 3 ±10˚
VTT3324LA 4 20 (1) 100 10 30 5 0.25 4 ±10˚
VTT3325LA 6 20 (1) 100 10 30 5 0.25 5 ±10˚
VTT3423LA 1 20 (1) 100 10 30 5 0.25 3 ±10˚
VTT3424LA 2 20 (1) 100 10 30 5 0.25 4 ±10˚
VTT3425LA 3 20 (1) 100 10 30 5 0.25 5 ±10˚
VTT7122 1 100 (5) 100 10 30 5 0.25 2 ±36˚
VTT7123 2 100 (5) 100 10 30 5 0.25 2 ±36˚
VTT7125 4.5 100 (5) 100 10 30 5 0.25 2 ±36˚
VTT7222 0.9 100 (5) 100 10 30 5 0.25 2 ±36˚
VTT7223 1.8 100 (5) 100 10 30 5 0.25 2 ±36˚
VTT7225 4 100 (5) 100 10 30 5 0.25 4 ±36˚
.025" NPN Phototransistors
Technical Specification
Light Current Dark Current Angular
Part H fc (mW/cm2)nA V
CE VBR(CEO) VBR(ECO) VCE(SAT) tR/tFResponse
Number mA min. VCE=5 V max. Volts Volts min. Volts min. Volts max. µsec, typ. θ1/2
VTT1212 2 20 (1) 100 10 30 5 0.25 4 ±10˚
VTT1214 4 20 (1) 100 10 30 5 0.25 6 ±10˚
VTT9002 2 100 (5) 100 10 30 6 0.55 4 ±50˚
VTT9003 5 100 (5) 100 10 30 6 0.55 6 ±50˚
VTT9102 6 100 (5) 100 5 30 4 0.55 6 ±42˚
VTT9103 13 100 (5) 100 5 30 4 0.55 10 ±42˚
.04" NPN Phototransistors
Technical Specification
Light Current Dark Current Angular
Part H fc (mW/cm2)nA V
CE VBR(CEO) VBR(ECO) VCE(SAT) tR/tFResponse
Number mA min. VCE=5 V max. Volts Volts min. Volts min. Volts max. µsec, typ. θ1/2
VTT1015 0.4 100 (5) 25 20 40 6 0.4 5 ±35˚
VTT1016 1 100 (5) 25 20 30 6 0.4 5 ±35˚
VTT1017 2.5 100 (5) 25 10 20 4 0.4 8 ±35˚
VTT1115 1 20 (1) 100 10 30 6 0.4 5 ±15˚
VTT1116 2 20 (1) 100 10 30 4 0.4 8 ±15˚
VTT1117 4 20 (1) 100 10 30 4 0.4 8 ±15˚
.05" NPN Phototransistors
Technical Specification
Table Key
ICLight Current
ICEO Dark Current H=0
VBR(CEO) Collector Breakdown
IC=100 µA, H=0
VBR(ECO) Emitter Breakdown
IE=100 µA, H=0
VCE(SAT) Saturation Voltage
IC=1mA, H=400 fc
tR/tFRise/Fall Time
IC=1 mA, RL=100
Clear T- 1 3/4 (5 mm) Plastic Package
VTT1212 VTT1223W VTT1227
VTT1214 VTT1225
VTT1222W VTT1226
Clear Long T- 1 (3 mm) Plastic Package
VTT3323LA VTT3324LA VTT3325LA
IRT Long T- 1 (3 mm) Plastic Package
VTT3423LA VTT3424LA VTT3425LA
Molded, Lensed Lateral Package
VTT7122 VTT7123 VTT7125
IRT Molded, Lensed Lateral Package
VTT7222 VTT7223 VTT7225
Clear Epoxy TO-106 Ceramic Package
VTT9002 VTT9003
Epoxy Lensed TO-106 Ceramic Package
VTT9102 VTT9103
TO-46 Flat Window Package
VTT1015 VTT1016 VTT1017
TO-46 Lensed Package
VTT1115 VTT1116 VTT1117
Electro-Optical Characteristics @ 25°C
Electro-Optical Characteristics @ 25°C
Electro-Optical Characteristics @ 25°C
Table of Contents
Description
PerkinElmer Optoelectronics’ CMOS buffered multiplexers offer
the ideal solution to the increasing demand for low noise
amplification and multiplexing applications. They are designed
to interface with a variety of photosensitive arrays constructed
from materials such as amorphous silicon, gallium arsenide,
germanium or mercury cadmium telluride. These devices,
available in 64, 128 and 256 channel models, are widely used in
medical, scientific, and industrial applications to read electrical
signals generated by x-ray, infrared, and other radiation beyond
the direct detection range of silicon.
XL-1 Variable-Gain Multiplexers
These advanced devices offer a versatile solution to the increasing
demand for low noise amplification and multiplexing. They
are designed to interface with linear photosensitive arrays, such
as those made of gallium arsenide, germanium or amorphous
silicon, or any of several special purpose infrared-sensitive
materials. Each channel of the multiplexer consists of a charge
amplifier in series with two separate buffered sample-and-hold
paths for correlated double sampling (CDS). A broad range
of electrically selectable integrating capacitors provide
accommodation for charge packets from a wide range of sensor
materials, pixel sizes and exposure levels.
XL-1 multiplexers are available in 64, 128 or 256 active
channels, all with 100µm channel-to-channel spacing. They
offer a dynamic range in excess of 90 db, low offset voltage,
bidirectional readout, and integrated calibration facilities.
buffered multiplexers
32 www.optoelectronics.perkinelmer.com
XL-1 Variable-Gain Multiplexers
Multiplexer Individual Channel Schematic
Reset MUX
Sample MUX
+
-
+
-
Reset
Clock
Test
Charge
Input
Pad
Integrator
Reset
+
-
+
-
Sample
Clock Video
Buffer
VoutS
Pad
+
-
Video
Buffer
VoutR
Pad
Vref
Vdd 1, 2, 4 or 16 pF
Table of Contents
www.optoelectronics.perkinelmer.com 33
Buffered Multiplexers & Image Tubes
High-Resolution Image Tubes
Description
The use of image tubes in special
applications is indispensable. The
camera tube is superior to solid-state
image sensors in high-resolution televi-
sion systems with high frame-repetition
rates. The essential characteristics of the
camera tubes, such as absolute and
spectral sensitivity, resolution and lag
are determined by the photoconducting
material (target) and the electron optical
parameters of the scanning electron
beam.
Resistron Tubes
These are universally applied low cost
image tubes. The target material is
Antimony Trisulfide (Sb2S3) which
provides good resolution and integra-
tion of quantum noise.
Saticon Tubes
Saticon Tubes with a Selenium storage
layer (SeAsTe) are suited for acquiring
fast moving images, especially in med-
ical applications. Their typical character-
istics: low lag, excellent resolution and
signal uniformity.
Newvicon Tubes
Worldwide, these tubes have been
taken out of production. We offer
Resistron tubes as a close equivalent to
replace Newvicons.
image tubes
Facepl. Dark
Part Length Diameter Temperature Current Illumination
Number Version Characteristics mm mm ˚C nA Ix
XQ1305 Resistron electrostatic focusing 108 19.8 30+/-2 20 10
XQ1371 Resistron large dyn. range, gr.1 103 19.8 30+/-2 20 10
XQ1372 Resistron gr.2 103 19.8 30+/-2 20 10
Industrial and Surveillance 2/3" Tubes
Technical Specification
Facepl. Dark
Part Length Diameter Temperature Current Illumination
Number Version Characteristics mm mm ˚C nA Ix
XQ1371SF Resistron radiation resistant 103 19.8 30+/-2 20 10
XQ1372SF Resistron with reticles 103 19.8 30+/-2 20 10
XQ1380 Newvicon radiation resistant 108 19.8 25+/-2 2(<4) 1
Special TV 2/3" Tubes
Technical Specification
Facepl. Dark
Part Length Diameter Temperature Current Illumination
Number Version Characteristics mm mm ˚C nA Ix
XQ1292F Resistron fiberoptic faceplate 162 28.6 30+/-2 20 10
XQ1292SF Resistron radiation resistant 162 28.6 30+/-2 20 10
XQ1292RF Newvicon with reticles
Special TV 1" Tubes
Technical Specification
Facepl. Dark
Part Length Diameter Temperature Current Illumination
Number Version Characteristics mm mm ˚C nA Ix
XQ1290 Resistron high sensitivity + resolution 162 28.6 30+/-2 30 1.7
XQ1395 Resistron high resolution / line no. 162 28.6 30+/-2 30 1.7
XQ1560 Saticon short lag / high beam 162 28.6 30+/-2 <1 1.7
XQ1570 Saticon low lag / high beam 162 28.6 30+/-2 <1 1.7
XQ1575 Saticon with diode gun structure 162 28.6 30+/-2 <1 1.7
Medical 1" Tubes
Technical Specification
Facepl. Dark
Part Length Diameter Temperature Current Illumination
Number Version Characteristics mm mm ˚C nA Ix
XQ1292 Resistron large dyn. range, gr.1 162 28.6 30+/-2 20 10
XQ1293 Resistron gr.2 162 28.6 30+/-2 20 10
Industrial and Surveillance 1" Tubes
Technical Specification
Table of Contents
Description
Line scan sensors are ideal for imaging objects in motion on
webs or conveyors. Applications range from inspection of lead
frames and labels to scanning mail and parcels.
P-Series Linear Photodiode Array Imagers
In P-series linear imagers, PerkinElmer has combined the best
features of high-sensitivity photodiode array detection and high-
speed, charge-coupled scanning to offer an uncompromising
solution to the increasing demands of advanced imaging
applications. These high-performance imagers feature low noise,
high sensitivity, impressive charge-storage capacity, and lag-free
dynamic imaging in a convenient 1-output architecture. The
14 µm square contiguous pixels in these imagers reproduce
images with minimum information loss and artifact generation,
while their unique photodiode structure provides excellent blue
response extending below 250 nm in the ultraviolet.
The two-phase CCD readout registers require only modest clocking
voltages, yet achieve excellent charge-transfer efficiency.
Additional electrodes provide independent control of exposure
and antiblooming. Finally, high-sensitivity readout amplifiers
provide a large-output signal to relax the noise requirements
on the camera electronics that follow. These versatile imagers
are available in array lengths of 512 to 2048 elements with
either low-cost glass or UV-enhanced fused silica windows.
PerkinElmer Optoelectronics also maintains capabilities to
manufacture line scan imagers up to 8192 pixels combined
with 4 outputs and 7 or 14µm pixels with existing designs.
Contact PerkinElmer for more information.
line scan imagers
Features
2500:1 dynamic range
Ultra-low image lag
Electronic exposure control
• Antiblooming control
Square pixels with 100%
fill factor
Extended spectral range—
250-1000 nm
Typical Applications
High-Speed Document Reading
• Web Inspection
• Mail Sorting
• Production Measurement
• Position Sensing
• Spectroscopy
Principle of Operation
Line scan sensors are ideal for
imaging objects in motion on webs
or conveyors.
Datasheet available upon request
34 www.optoelectronics.perkinelmer.com
Table of Contents
Line Scan Imagers—P Series
www.optoelectronics.perkinelmer.com 35
Line Scan Imagers
Pixel Spectral Response Pixel Horizontal
Part Pixel Count Size Number of Range Data Rate Dynamic Clocking
Number elements µm Outputs nm MHz Range typ.
RL0512P 512 14x14 1 250-1000 40 2500:1 2 ø @ 5 V
RL1024P 1024 14x14 1 250-1000 40 2500:1 2 ø @ 5 V
RL2048P 2048 14x14 1 250-1000 40 2500:1 2 ø @ 5 V
P Series
Technical Specification
Operating Temperature: 0˚C min. to +55˚C max.
Storage Temperature: -25˚C min. to +85˚C max.
Lag: <1%
Saturation Voltage: 600 mV
Spectral Sensitivity Curve
80
90
70
60
50
40
30
20
10
0
80
90
70
60
50
40
30
20
10
0
350250 450 550 650 750 850 950 1050
Wavelength (nm)
Responsivity (V/ µJ/cm2)
Right Scale
Left Scale
QE (%)
Table of Contents
Description
For nearly thirty years, PerkinElmer Optoelectronics has been
a leader in the development of sensors for spectroscopy. In
spectroscopy and other instrumentation applications, large pixels,
very high charge storage capacity, low readout noise and dark
current, and direct access to the charge packet are all critical
to delivering the high dynamic range and linear response
demanded. The CMOS photodiode array architecture meets
all of these needs in a way no other sensor technology can
match.
L-Series Visible Range Spectroscopy Arrays
PerkinElmer Optoelectronics’ L-series CMOS linear photodiode
arrays offer a high-quality, low-cost solution for spectroscopy
and colorimetry applications in the 300-1000 nm range. The
L-Series family’s combination of high sensitivity, low dark current,
low switching noise and high saturation charge provides excellent
dynamic range and great flexibility in setting integration time.
L-series sensors consist of a linear array of silicon photodiodes,
each connected to a MOS switch for readout controlled by an
integrated shift register scanning circuit. Under external clock
control, the shift register sequentially enables each of the
switches, directing the charge on the associated photodiode to
an output line. A dummy output provides clock noise cancellation.
L-series devices are mounted in ceramic side-brazed, 22-pin,
dual-inline packages with ground and polished fused silica
windows and are pin-compatible with earlier PerkinElmer SB
and TB-series sensors.
L-series models are available with pixel spacings of 25 µm
and 50 µm and lengths from 128 to 1024 pixels. All models
feature a 2500 µm pixel aperture to simplify alignment
in spectroscopic instruments.
cmos photodiode arrays
Features
2.5 mm photodiode aperture
Extremely low dark leakage
current
Low power dissipation
• Clock-controlled sequential
readout at rates up to 1 MHz
Single-supply operation with
HCMOS-compatible inputs
Single shift register design
Wide dynamic range
Differential video output for
clock noise cancellation
High saturation charge 10 pC
(25 µm) or 20 pC (50 µm)
Antiblooming function for low
crosstalk
Line Reset Mode for simultaneous
reset of all photodiodes
Wide spectral response:
300 to 1000 nm
Polished fused silica window
On-chip diodes (two) for
temperature monitoring
Typical Applications
• Spectroscopy
• Colorimetry
Datasheet available upon request
36 www.optoelectronics.perkinelmer.com
Table of Contents
L-Series Linear CMOS
Spectroscopy Sensor—
25 or 50 µm pitch, 2.5 mm aperture
128, 256, 512 or 1024
photodiode elements with 25 µm
center-to-center spacing
128, 256, or 512 photodiode
elements with 50 µm
center-to-center spacing
www.optoelectronics.perkinelmer.com 37
CMOS Photodiode Arrays
Video Capacitance Saturation Saturation Dark
Part @ 5 V bias @ 2.5 V bias Sensitivity Exposure Charge Dynamic Current typ.
Number pF pF C/J/cm2nJ/cm2pC Range pA
RL1201 6.7 2x10-4 50 10 70,000 0.2
RL1202 10.2 2x10-4 50 10 70,000 0.2
RL1205 15.4 2x10-4 50 10 70,000 0.2
RL1210 28.7 2x10-4 50 10 70,000 0.2
RL1501 9.1 4x10-4 50 20 100,000 0.4
RL1502 14 4x10-4 50 20 100,000 0.4
RL1505 25 4x10-4 50 20 100,000 0.4
L Series
Technical Specification
Sensitivity Exposure/
Saturation Charge: Measured at 2.5 V video line bias
average 600-700 nm, includes 8% window loss
Dark Current: Maximum dark current 1.5 x average dark current
Spectral Response Peak: 650 nm, Range: 300-1000 nm typ.
Operating Temperature: 0˚C min. to 55˚C max.
Storage Temperature: -78˚C min. to +85˚C max.
Center-to-center spacing: RL12XX, 25 µm
RL15XX, 50 µm
Quantum Efficiency
80
90
70
60
50
40
30
20
10
0350250 450 550 650 750 850 950 1050
Wavelength (nm)
QE (%)
Table of Contents
Description
The RA1133J is a full-frame CCD sensor with reset capabilities
designed specifically for use in spectroscopy, biomedical imaging
and related scientific imaging applications. The package for the
array is designed with an integrated two-stage thermoelectric
cooler. This enables the device to be run 40°C below ambient
temperature, -15°C when compared to room temperature. Its
combination of very low noise and low dark current make
the RA1133J ideal for low-light, high dynamic range, and high-
resolution applications.
The imager is structured with a single-output register at one
end of the imaging columns. A lateral reset drain is located
adjacent to this readout register, which enables the dumping
of accumulated charge from the array. Two-phase clocks are
needed to drive the readout register, and three-phase clocks are
needed to drive imaging cells. The array is available in a 30-pin
metal package with an integrated TE cooler.
cooled ccd sensors
Features
363,000 picture elements (pixels)
in a 1100x330 configuration
• 24 µm square pixels
2-phase buried channel process
On-chip amplifier for low noise
and high-speed readout
Dynamic range greater than
25,000:1
On-chip temperature sensor
Two-stage TE cooler integrated
into the package
• Hermetically sealed
100% fill factor
10MHz data rate
Typical Applications
Spectroscopy
Fluorescence Microscopy
Luminescence
Protein Quantification
Datasheet available upon request
38 www.optoelectronics.perkinelmer.com
Dynamic Range: Full well/read noise, MPP mode
Full Well Charge: RLoad = 5.1 k, MPP mode
Dark Current MPP: MPP mode at -15˚C
Read Noise: Measured at 500 kHz at -15˚C
Absolute Maximum Ratings
Storage Temperature: -55°C min. to 85°C max.
Operating Temperature: 0°C min. to 55°C max.
General Characteristics
Parameter Symbol Min. Typ. Max. Units
Format 1100x330
Pixel Size 24x24 µm
Imaging Area 26.4x7.92 mm
Dynamic Range DR 25,000:1
Full Well Charge QSAT 250 300 Ke-
Saturation Voltage VSAT 1000 1200 mV
Dark Current MPP DL 1 3 pA/cm2
Photo Response Non Uniformity PRNU 5 10 ±%
Dark Signal Uniformity DSNU 2 5 ±%
Charge Transfer Efficiency CTE >0.9999 >0.99995
Output Amplifier Gain 4 µV/e-
Operating Frequency fclock 10 MHz
Read Noise 10 e-
Table of Contents
Cooled CCD Sensor—
24 µm sq. pitch,
1100x330 pixel configuration
Principle of Operation
A major source of dark current in
devices such as these originates in
surface states at the Si-SiO2interface.
A unique design and process enables the
RA1133J to be run in “multi-pinned
phase” or MPP mode of operation. This
helps eliminate dark current generation
in the interface surface states. By holding
the vertical clocks at negative potential
during integration and horizontal signal
readout, the surface will not be depleted
and the surface state will not generate
dark current.
www.optoelectronics.perkinelmer.com 39
Cooled CCD Sensors
Pixel Image Saturation Dark
Part Size Area Voltage Current MPP Dynamic Read
Number Format µm mm mV typ. pA/cm2Range Noise
RA1133JAS-912 1100x330 24x24 26.4x7.92 1200 1 >25,000:1 10e-
Technical Specification
Dynamic Range: Full well/read noise, MPP mode
Dark Current MPP: MPP mode at -15˚C
Read Noise: Measured at 500 kHz at -15˚C
Storage Temperature: -55˚C min. to +85˚C max.
Operating Temperature: 0˚C min. to 55˚C max.
60
50
40
30
20
10
0300200 400 500 600 700 800 900 1000 1100
Wavelength, nm
Quantum Efficiency (%)
Quantum Efficiency
Table of Contents
Description
The PT1109AAQ and PT1225AAQ Time Delay Integration (TDI)
imagers combine the best features of photodiode array detection
and TDI operation to offer an uncompromising solution to the
increasing demands of high-speed imaging applications.
PT 1109AAQ
The PT1109AAQ is a high-performance TDI imager featuring a
unique 13 µm x 13 µm-square TDI pixel architecture. The chip
has 96 stages with 1024 pixels per stage, allowing for stable imag-
ing in both fast and low-light applications. Eight extra stages are
present at the front end of the sensor, allowing for adequate dark
balancing. Full-well capacity of the sensor is 390,000 electrons,
and readout noise (rms) is <90 electrons, allowing for a >4300:1
dynamic range.
PT1225AAQ
The PT1225AAQ is a high-performance TDI imager featuring a
unique 27 µm x 27 µm-square TDI pixel architecture. The chip
has 256 stages with 2048 pixels per stage, allowing for stable
imaging in both fast and low-light applications. Full-well capaci-
ty of the sensor is 700,000 electrons, and readout noise (rms) is
<350 electrons, allowing for a dynamic range of over 66 dB.
tdi imagers
PT1109AAQ-711 Features
1024 pixel x 96 stage
Unidirectional operation
20 MHz data rate
High dynamic range (4300:1)
Line rates to 19 kHz
Quantum efficiency of 42%
at 700 nm
13 µm x 13 µm pixel size
>0.99995 horizontal, >0.9999
vertical CTE at maximum
saturation exposure
PT1225AAQ-711 Features
2048 pixel x 256 stage
64 outputs
8 MHz data rate per output
Unidirectional operation
High dynamic range of over 66 dB
Line rates to 256 kHz
27 µm x 27 µm pixel size
>0.99995 horizontal, >0.9999
vertical CTE at maximum
saturation exposure
Typical Applications
Semiconductor Inspection
Wafer Inspection
Sorting Applications
Datasheets available upon request
40 www.optoelectronics.perkinelmer.com
Table of Contents
TDI Imagers—PT 1109AAQ and
PT1225AAQ
www.optoelectronics.perkinelmer.com 41
TDI Imagers
PT1109AAQ-711 PT1225AAQ-711
Pixel Count* 1024 active elements 2048 active elements
Extra Stages* 8—
Pixel Size 13x13 µm 27x27 µm
Number of Directions 11
Integration Stages** 96 256
Extra Stages** 1—
Number of Outputs 164
Pixel Rate 20 MHz 8 MHz per output
Line Output Rate (max.) 19 kHz 256 kHz
Pixel Fill Factor 100% 100%
Net Quantum Efficiency >42% at 700 nm
Power Dissipation 15 mW per tap, 960 mW total
Well Capacity >390,000 electrons per pixel >700,000 electrons per pixel
RMS Noise >66 dB
Dynamic Range <350 e- rms
CTE @ Qsat >0.99995 (horizontal) >0.99995
>0.9999 (vertical)
Photo Response +/-10% +/-10% within output
Non-Uniformity (PRNU) +/-10% across array
Spectral Response 250 to 700 nm
Dark Current <1% of Vsat
Sensitivity 3.5 µV/electron 1.0 µV/electron
Operating Temperature 0 to 55˚C 0 to 55˚C
Package Type 32 pin ceramic
Technical Specification
Operating Temperature: 0˚C min. to 50˚C max.
* In readout direction
** In TDI direction
Table of Contents
Description
Light Emitting Diodes (LEDs) are solid-state P-N junction
devices that emit light when forward biased. An IRED is an
Infrared Emitting Diode, a term specifically applied to
PerkinElmer IR emitters. Unlike incandescent lamps, which emit
light over a very broad range of wavelengths, LEDs emit light
over such a narrow bandwidth that they appear to be emitting
a single “color”. Their small size, long operating lifetimes, low
power consumption, compatibility with solid-state drive
circuitry, and relatively low cost make LEDs the preferred light
source in many applications.
LEDs are made from a wide range of semiconductor materials.
The emitted peak wavelength depends on the semiconductor
material chosen and how it is processed. LEDs can be made that
emit in the visible or near-infrared part of the spectrum.
The P-N junction is formed by doping one region of the material
with donor atoms and the adjacent region with acceptor atoms.
Like all P-N junction devices, LEDs exhibit the familiar diode
current-voltage characteristics. LEDs emit light only when they
are biased in the forward direction. Under forward-biased
conditions, carriers are given enough energy to overcome the
potential barrier existing at the junction. After crossing the junction,
these carriers will recombine. A percentage of the carriers will
recombine by a radiative process in which the hole-electron
recombination energy is released as a photon of light. The
remaining carriers recombine by a non-radiative process and give
up their energy in the form of heat. The amount of light generated,
or power output of the LED, varies almost linearly with forward
current. Doubling the forward current approximately doubles
the power output.
880nm IREDs
This series of infrared emitting diodes (IREDs) consists of three
standard chips in nine different packages that provide a broad
range of mounting, lens and power-output options.
940nm IREDs
This series of infrared emitting diodes (IREDs) consists of two
standard chips in three different packages.
infrared emitting diodes
Features 880 nm
Nine standard packages in
hermetic and low-cost epoxy
End- and side-radiating packages
• Graded Output
High efficiency GaAIAs, 880 nm
LPE process Delivers twice the
power of conventional GaAs
940 nm emitters
Features 940 nm
Three standard packages in
hermetic and low-cost epoxy
• End-radiating packages
High power GaAs, 940 nm
LPE process
Typical Applications
• Computer/Business Equipment
• Write-Protect Control
• Margin Controls—Printers
• Industrial
LED Light Source—Light Pens
• Security Systems
• Safety Shields
• Consumer
• Coin Counters
Lottery Card Readers
• Position Sensors—Joysticks
• Remote Controllers—Toys,
Appliances, Audio/Visual
Equipment
• Games—Laser Tag
Camera Shutter Control
Principle of Operation
Because they emit at wavelengths
which provide a close match to the
peak spectral response of silicon
photodetectors, both GaAs and
GaAIAs IREDs are often used with
phototransistors.
Datasheets available upon request
42 www.optoelectronics.perkinelmer.com
Table of Contents
Infrared Emitting Diodes—
VTE Formats 880 nm and 940 nm
www.optoelectronics.perkinelmer.com 43
Infrared Emitting Diodes
Output Forward Drop
Irradiance EeIrradiance Cond.Radiant Total Test Current VF@ IFT Half Power
Part mW/cm2Distance Diameter Intensity Ie Power IFT mA volts Beam Angle
Number min. typ. mm mm mW/sr min. POmW typ. Pulsed typ. max. θ1/2 typ.
VTE1063 3.8 5 36 6.4 49 80 1 2.8 3.5 ±35˚
VTE1163 22 28 36 6.4 285 110 1 2.8 3.5 ±10˚
VTE1261 3 3.9 36 6.4 39 20 100 1.5 2 ±10˚
VTE1262 4 5.2 36 6.4 52 25 100 1.5 2 ±10˚
VTE1281-1 2.5 3.3 36 6.4 32 20 100 1.5 2 ±10˚
VTE1281-2 5 6.5 36 6.4 65 25 100 1.5 2 ±10˚
VTE1281F 0.16 0.21 36 6.4 2.1 20 100 1.5 2 ±45˚
VTE1281W-1 1.2 1.6 36 6.4 16 20 100 1.5 2 ±25˚
VTE1281W-2 2.5 3.3 36 6.4 32 25 100 1.5 2 ±25˚
VTE1285 3 5.5 36 6.4 39 20 100 1.5 2 ±8˚
VTE1291-1 2.5 3.3 36 6.4 32 20 100 1.5 2 ±12˚
VTE1291-2 5 6.5 36 6.4 65 25 100 1.5 2 ±12˚
VTE1291W-1 1.2 1.6 36 6.4 16 20 100 1.5 2 ±25˚
VTE1291W-2 2.5 3.3 36 6.4 32 25 100 1.5 2 ±25˚
VTE1295 3 5.5 36 6.4 39 20 100 1.5 2 ±8˚
VTE3372LA 2 2.6 10.16 2.1 2 3 20 1.3 1.8 ±10˚
VTE3374LA 4 5.2 10.16 2.1 4.1 5 20 1.3 1.8 ±10˚
VTE7172 0.4 0.6 16.7 4.6 1.1 2.5 20 1.3 1.8 ±25˚
VTE7173 0.6 0.8 16.7 4.6 1.7 5 20 1.3 1.8 ±25˚
VTE 880 nm Series
Technical Specification
Output Forward Drop
Irradiance EeIrradiance Cond.Radiant Total Test Current VF@ IFT Half Power
Part mW/cm2Distance Diameter Intensity Ie Power IFT mA volts Beam Angle
Number min. typ. mm mm mW/sr min. POmW typ. Pulsed typ. max. θ1/2 typ.
VTE1013 2.1 2.7 36 6.4 27 30 1 1.9 2.5 ±35˚
VTE1113 12 15 36 6.4 156 30 1 1.9 2.5 ±10˚
VTE3322LA 1 1.3 10.16 2.1 1 1.5 20 1.25 1.6 ±10˚
VTE3324LA 2 2.6 10.16 2.1 2 2.5 20 1.25 1.6 ±10˚
VTE 940 nm Series
Technical Specification
Electro-Optical Characteristics @ 25°C
Electro-Optical Characteristics @ 25°C
GaAlAs Infrared Emitting Diodes
TO-46 Flat Window Package
VTE1063
TO-46 Lensed Package
VTE1163
T- 1 3/4 (5 mm) Plastic Package
VTE1261 VTE1281F VTE1291-2
VTE1262 VTE1281W-1 VTE1291W-1
VTE1281-1 VTE1281W-2 VTE1291W-2
VTE1281-2 VTE1291-1
T- 1 3/4 (5 mm) Bullet Package
VTE1285 VTE1295
Long T-1 (3 mm) Plastic Package
VTE3372LA VTE3374LA
Molded Lateral Package
VTE7172 VTE7173
GaAs Infrared Emitting Diodes
TO-46 Flat Window Package
VTE1013
TO-46 Lensed Package
VTE1113
Long T-1 Plastic Package
VTE3322LA VTE3324LA
Table of Contents
Description
Pulsed Laser Diodes
These devices range in wavelength from 850 nm to 1550 nm and
are produced using Vapor Phase Epitaxial (VPE) and MOCVD
growth techniques. Fiber optic pigtailed devices employ an
advanced fibre alignment process yielding highly stable fiber to
laser diode positioning. Alternative packages and fiber optic core
diameters may be supplied on a custom basis.
High Energy Laser Diodes—Quasi CW Lasers
These devices have been designed specifically to meet the demanding
requirements of laser initiated ordnance (LIO) applications.
Product offerings include a 9.0 mm TO-style package and an 8 pin
miniDIL pigtailed package equipped with a rear facet monitor
photodiode and 100/140 µm optical fiber. The 980 nm laser chip
employs advanced epitaxial materials and processing techniques,
providing reliable high optical power output capability and
significant power retention at elevated temperatures. Alternate
package outlines and fiber optic core diameters may be
considered on a custom basis.
Typical Applications
Laser Range Finding
• LIDAR
• Optical Fusing
• High Speed Switching
• Weapons Simulation
• Laser Scanning
Fiber Optic Instrumentation
YAG Laser Simulation
44 www.optoelectronics.perkinelmer.com
laser diodes
Peak Output Peak Forward Pulse Maximum Response Beam Diverg. Number
Part Preferred Power Current Width Duty Factor Time Q¨xQ^ (deg.) of Diode
Number Package Pko (W) IF (A) tw (ns) DF (%) tr (ns) FWHM Elements
PFAS1S03 TO-52 5.5 7 50 0.025 <1 12x30 1
PFAS1S09 TO-52 17 20 50 0.025 <1 12x30 1
PFAS1S12 TO-52 26 30 50 0.025 <1 12x30 1
PFAS1S16 TO-52 34 40 50 0.025 <1 12x30 1
PFAS2S09 TO-52 34 20 50 0.025 <1 12x30 2
PFAS2S12 TO-52 52 30 50 0.025 <1 12x30 2
PFAS3S12 TO-52 78 30 50 0.025 <1 12x30 3
Multiple Quantum Well Types–850 nm
Technical Specification
Test conditions: T = 22ºC
Peak Output Peak Forward Pulse Maximum Response Beam Diverg. Number
Part Preferred Power Current Width Duty Factor Time Q¨xQ^ of Diode
Number Package Pko (W) IF (A) tw (ns) DF (%) tr (ns) (deg.) Elements
PGAS1S03 TO-52 5.5 7 150 0.01 <1 10x25 1
PGAS1S06 TO-52 12 15 150 0.01 <1 10x25 1
PGAS1S09 TO-52 18 22 150 0.01 <1 10x25 1
PGAS1S12 TO-52 24 30 150 0.01 <1 10x25 1
PGAS1S16 TO-52 33 40 150 0.01 <1 10x25 1
PGAS1S24 TO-52 49 60 150 0.01 <1 10x25 1
PGAS3S06 TO-52 34 15 150 0.01 <1 10x30 3
PGAS3S09 TO-52 50 22 150 0.01 <1 10x30 3
PGAS3S12 TO-52 67 30 150 0.01 <1 10x30 3
PGAS4S12 TO-52 90 30 150 0.01 <1 10x30 4
PGAS4S16 TO-52 120 40 150 0.01 <1 10x30 4
Multiple Quantum Well Types–905 nm–PGA Series
Technical Specification
Test conditions: T = 22ºC
Table of Contents
www.optoelectronics.perkinelmer.com 45
Laser Diodes
Peak Output Peak Forward Pulse Maximum Response Beam Diverg. Number
Part Standard Power Current Width Duty Factor Time Q¨xQ^ (deg.) of Diode
Number Package Pko (W) IF (A) tw (ns) DF (%) tr (ns) FWHM Elements
PVGR1S06 CD9.0CAP 4 20 200 0.1 <1 20x40 1
PVGS1S06 TO-52 4 20 200 0.1 <1 20x40 1
PVGR2S06 CD9.0CAP 8 20 100 0.1 <1 20x40 2
PVGS2S06 TO-52 8 20 100 0.1 <1 20x40 2
PVGR4S12 CD9.0CAP 40 75 50 .025 <1 20x40 4
Double Heterostructure Types–1550 nm
Technical Specification
Test conditions: T = 22ºC
Centre Peak Output Peak Forward Pulse Maximum Beam Diverg. Fibre Optic
Part Standard Wavelength Power Current Width Duty Factor Q¨xQ^ (deg.) Core/Clad
Number Package I0(nm) Pko (W) IF (A) tw (ns) DF (%) FWHM Diam. (µm)
C86153E-12 14 pin DIL 850 0.75 5 200 0.1 62.5/125
C86119E 10/32 COAX 1064 2 4 200 0.1 10x40
C86120E-10 14 pin DIL 1064 0.4 4 200 0.1 100/140
Double Heterostructure and Quantum Well Types–850 nm and 1064 nm
Technical Specification
Test conditions: T = 22ºC
Peak Output Peak Forward Pulse Maximum Response Beam Diverg. Fibre Optic
Part Standard Power Current Width Duty Factor Time Q¨xQ^ (deg.) Core/Clad
Number Package Pko (W) IF (A) tw (ns) DF (%) tr (ns) FWHM Diam. (µm)
C86118E CD9.0CAP 1.5 2 10 10 <1 10x35
C86155E-10 miniDIL 1.2 2 10 10 <1 100/140
C86159E-09 miniDIL 2 4 10 10 <1 — 200/240
Quantum Well Types–980 nm
Technical Specification
Test conditions: T = 22ºC
Peak Output Peak Forward Pulse Maximum Beam Diverg. Number
Part Standard Power Current Width Duty Factor Q¨xQ^ of Diode
Number Package Pko (W) IF (A) tw (ns) DF (%) (deg.) Elements
PGEW1S03 TO-52 plastic 5 7 30 0.0075 10x25 1
PGEW1S09 TO-52 plastic 15 25 30 0.0075 10x25 1
PGEW2S09 TO-52 plastic 33 25 30 0.0075 10x30 2
PGEW3S09 TO-52 plastic 50 25 30 0.0075 10x30 3
Multiple Quantum Well Types–905 nm–PGEW Series
Technical Specification
Test conditions: T = 22ºC
Laser Diodes
Laser Diodes
Table of Contents
Digital Sidestream CO2Bench
The PerkinElmer Digital Sidestream CO2Bench represents a
breakthrough in solid-state technology. These sensors achieve the
highest levels of accuracy and reliability while having no moving
parts. The low power consumption and compact design set a new
standard in sidestream monitoring. The bench incorporates our
latest advances in component design and signal processing.
All design requirements of ASTM standards have been met or
exceeded. The measurement technique is non-dispersive
infrared absorption, which utilizes a unique infrared emitter
design in conjunction with state-of-the-art detector technology.
Output from the bench is a digitized voltage function of CO2
concentration within the sampling cell. The sidestream sensor
is on a printed circuit board with an RS232 connector, has added
pneumatics circuit, and uses standard sampling disposables.
Digital Mainstream CO2Sensor
PerkinElmer introduces a significant advancement in mainstream
CO2sensing. Output from the sensor is a digitized voltage function
of CO2concentration, providing a noise-free signal and easy
interfacing. All processing electronics are self-contained within
the compact and rugged sensor head. The solid-state design
incorporates our latest advances in component innovation and
signal processing, and ensures high accuracy and long life.
All design requirements of ASTM standards have been met or
exceeded. The measurement technique is non-dispersive
infrared absorption, which utilizes a unique infrared emitter
design in conjunction with state-of-the-art detector technology.
This sensor has self-contained electronics on a flex circuit, a
cable, and uses low-cost disposable airway adapters.
medical sensors
Features
Meets ASTM standards for
capnometers
Neonatal, Pediatric and Adult use
Low-flow design
Fast rise time for high
respiration rates
Compatible with standard
sampling disposables
Easy-to-interface RS232
Digital Output
Rugged solid-state sensor—no
moving parts
Low power consumption
Fast warm-up time
Long life
Small footprint
Custom packaging available
Typical Applications
Real-time breath-to-breath quantita-
tive end-tidal CO2measurement
Datasheets available upon request
46 www.optoelectronics.perkinelmer.com
Table of Contents
CO2Sidestream Sensors
Mainstream CO2Sensors
www.optoelectronics.perkinelmer.com 47
Medical Sensors
Digital Sidestream CO2Bench Digital Mainstream CO2Sensor
Method Non-dispersive Infrared Absorption Non-dispersive Infrared Absorption
Calibration 3-point calibration 3-point calibration
Respiration Rate 150 bpm 150 bpm
Input Voltage 5 V 5 V
Power Consumption 1.0 W typical, 1.5 W max 1.0 W typical, 1.5 W max
Output Digital Serial RS232 Digital Serial RS232
Measurement Range 0-100 mmHg 0-100 mmHg
Accuracy ±2 mmHg plus ± 5% of reading ±2 mmHg ±5% from 0 to 10%
meets ASTM standards to 100mmHg meets ASTM standards to 100mmHg
Resolution 1 mmHg 1 mmHg
Rise Time Less than 250 ms Less than 200 ms
Flow Rate 50 ml/min ± 10 ml/min N/A
Warm-up Time 1 minute to ASTM Standards 1 minute to ASTM Standards
5 minutes to published specifications 5 minutes to published specifications
Mechanical Shock 100 G 1/2 sine wave 100 G 1/2 sine wave
Temperature 0-50˚C (operating) -40-75˚C (storage) 0-40˚C (operating at published specifications)
0-50˚C (operating at ASTM Standards)
-40-75˚C (storage)
Relative Humidity 15-95% non-condensing (operating) 15-95% non-condensing (operating)
10-95% non-condensing (storage) 10-95% non-condensing (storage)
Physical Dimensions 2.5x1.5x0.75" 1.38x1.06x0.88"
Cable N/A 10-foot standard length
Connector DB-9 or custom Standard or custom
Technical Specification
Table of Contents
.
Corporate Headquarters: PerkinElmer Optoelectronics, 44370 Christy Street, Fremont, CA 94538-3180
P: (510) 979-6500, (800) 775-6786, F: (510) 687-1140
www.optoelectronics.perkinelmer.com