- 1 -
June24,2014 |DATASHEET|Rev3.6
1
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
73
75
77
79
81
83
85
87
89
91
93
95
97
0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4
Load Current (A)
Efficiency (%)
1.2Vout 3.3Vout
12Vin,Internal bias,Frequency 600KHz
FEATURES
Single5Vto21Vapplication
WideInputVoltageRangefrom1.0Vto21Vwith
externalVcc
OutputVoltageRange:0.5Vto0.86×Vin
EnhancedLine/LoadRegulationwithFeedForward
ProgrammableSwitchingFrequencyupto1.5MHz
InternalDigitalSoftStart/SoftStop
EnableinputwithVoltageMonitoringCapability
ThermallyCompensatedCurrentLimitwithrobust
hiccupmodeovercurrentprotection
SmartInternalLDOtoimprovelightloadandfullload
efficiency
ExternalSynchronizationwithSmoothClocking
EnhancedPreBiasStartUp
PrecisionReferenceVoltage(0.5V+/0.5%)with
marginingcapability
VpforTrackingApplications(Source/SinkCapability
+/4A)
IntegratedMOSFETdriversandBootstrapDiode
ThermalShutDown
ProgrammablePowerGoodOutputwithtracking
capability
MonotonicStartUp
Operatingtemp:‐40oC<Tj<125oC
SmallSize:4mmx5mmPQFN
Leadfree,HalogenfreeandRoHSCompliant
BASICAPPLICATION
Figure1:IR3897BasicApplicationCircuit
DESCRIPTION
TheIR3897SupIRBuckTMisaneasytouse,fully
integratedandhighlyefficientDC/DCregulator.
TheonboardPWMcontrollerandMOSFETsmake
IR3897aspaceefficientsolution,providingaccurate
powerdelivery.
IR3897isaversatileregulatorwhichoffers
programmabilityofswitchingfrequencyandinternal
currentlimitwhileoperatesinwideinputandoutput
voltagerange.
Theswitchingfrequencyisprogrammablefrom300kHz
to1.5MHzforanoptimumsolution.
Italsofeaturesimportantprotectionfunctions,suchas
PreBiasstartup,thermallycompensatedcurrentlimit,
overvoltageprotectionandthermalshutdowntogive
requiredsystemlevelsecurityintheeventoffault
conditions.
APPLICATIONS
NetcomApplications
EmbeddedTelecomSystems
ServerApplications
StorageApplications
DistributedPointofLoadPowerArchitectures
Figure2:IR3897Efficiency
- 2 -
June24,2014 |DATASHEET|Rev3.6
2
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
ORDERINGINFORMATION
IR3897―

Package Tape&ReelQtyPartNumber
M750IR3897MTR1PBF
M4000IR3897MTRPBF
PINDIAGRAM
4mmx5mmPOWERQFN
TOPVIEW
PBFLeadFree
TR/TR1TapeandReel
MPackageType
-
32 /
2/
o
JA
o
JPCB
CW
CW
- 3 -
June24,2014 |DATASHEET|Rev3.6
3
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
BLOCKDIAGRAM
Figure3:IR3897SimplifiedBlockDiagram
- 4 -
June24,2014 |DATASHEET|Rev3.6
4
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
PINDESCRIPTIONS
PIN # PIN NAME PIN DESCRIPTION
1Fb
Invertinginputtotheerroramplifier.Thispinisconnecteddirectlytotheoutput
oftheregulatorviaresistordividertosettheoutputvoltageandprovide
feedbacktotheerroramplifier.
2Vref
Internalreferencevoltage,itcanbeusedformarginingoperationalso.In
normalandsequencingmodeoperation,a100pFceramiccapacitoris
recommendedbetweenthispinandGnd.Intrackingmodeoperation,Vref
shouldbetiedtoGnd.
3CompOutputoferroramplifier.Anexternalresistorandcapacitornetworkistypically
connectedfromthispintoFbtoprovideloopcompensation.
4GndSignalgroundforinternalreferenceandcontrolcircuitry.
5Rt/Sync
Multifunctionpintosetswitchingfrequency.Useanexternalresistorfromthis
pintoGndtosetthefreerunningswitchingfrequency.Oruseanexternalclock
signaltoconnecttothispinthroughadiode,thedevice’sswitchingfrequencyis
synchronizedwiththeexternalclock.
6S_Ctrl
Softstart/stopcontrol.Ahighlogicinputenablesthedevicetogointothe
internalsoftstart;alowlogicinputenablestheoutputsoftdischarged.Pullthis
pinhighifthisfunctionisnotused.
7PGoodPowerGoodstatuspin.Outputisopendrain.Connectapullupresistor(49.9k)
fromthispintothevoltagelowerthanorequaltotheVcc.
8VsnsSensepinforovervoltageprotectionandPGood.Itisoptionaltotiethispinto
FBpindirectlyinsteadofusingaresistordividerfromVout.
9Vin
InputvoltageforInternalLDO.A1.0µFcapacitorshouldbeconnectedbetween
thispinandPGnd.IfexternalsupplyisconnectedtoVcc/LDO_outpin,thispin
shouldbeshortedtoVcc/LDO_outpin.
10Vcc/LDO_OutInputBiasforexternalVccVoltage/outputofinternalLDO.Placeaminimum
2.2µFcapfromthispintoPGnd.
11PGndPowerGround.ThispinservesasaseparatedgroundfortheMOSFETdrivers
andshouldbeconnectedtothesystem’spowergroundplane.
12SWSwitchnode.Thispinisconnectedtotheoutputinductor.
13PVinInputvoltageforpowerstage.
14BootSupplyvoltageforhighsidedriver,a100nFcapacitorshouldbeconnected
betweenthispinandSWpin.
15EnableEnablepintoturnonandoffthedevice,ifthispinisconnectedtoPVinpin
througharesistordivider,inputvoltageUVLOcanbeimplemented.
16Vp
Inputtoerroramplifierfortrackingpurposes.Inthenormaloperation,itisleft
floatingandnoexternalcapacitorisrequired.Inthesequencingorthetracking
modeoperation,anexternalsignalcanbeappliedasthereference.
17GndSignalgroundforinternalreferenceandcontrolcircuitry.

- 5 -
June24,2014 |DATASHEET|Rev3.6
5
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
ABSOLUTEMAXIMUMRATINGS
Stressesbeyondthoselistedunder“AbsoluteMaximumRatings”maycausepermanentdamagetothedevice.Theseare
stressratingsonlyandfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedinthe
operationalsectionsofthespecificationsarenotimplied.
PVin,Vin 0.3Vto25V
Vcc/LDO_Out‐0.3Vto8V(Note2)
Boot 0.3Vto33V
SW‐0.3Vto25V(DC),‐4Vto25V(AC,100ns)
BoottoSW 0.3VtoVCC+0.3V(Note1)
S_Ctrl,PGood‐0.3VtoVCC+0.3V(Note1)
OtherInput/OutputPins 0.3Vto+3.9V
PGndtoGnd‐0.3Vto+0.3V
StorageTemperatureRange 55°Cto150°C
JunctionTemperatureRange‐40°Cto150°C(Note2)
ESDClassification(HBMJESD22A114)2kV
MoistureSensitivityLevelJEDECLevel2@260°C
Note1:Mustnotexceed8V
Note2:Vccmustnotexceed7.5VforJunctionTemperaturebetween‐10°Cand‐40°C
- 6 -
June24,2014 |DATASHEET|Rev3.6
6
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
ELECTRICALSPECIFICATIONS
RECOMMENDEDOPERATINGCONDITIONSFORRELIABLEOPERATIONWITHMARGIN
SYMBOLMINMAXUNITS
InputVoltageRange*PVin1.021
V

InputVoltageRange**Vin521
SupplyVoltageRange***VCC4.57.5
SupplyVoltageRangeBoottoSW4.57.5
OutputVoltageRangeVO0.50.86xVin
OutputCurrentRangeIO0±4A
SwitchingFrequencyFS3001500kHz
OperatingJunctionTemperatureTJ‐40125°C
*MaximumSWvoltageshouldnotexceed25V.
**Forinternallybiasedsinglerailoperation.WhenVindropsbelow6.8V,theinternalLDOentersdropout.PleaserefertoSmartLDO
sectionandOverCurrentProtectionfordetailedapplicationinformation.
***Vcc/LDO_Outcanbeconnectedtoanexternalregulatedsupply.Ifso,theVininputshouldbeconnectedtoVcc/LDO_Outpin.
ELECTRICALCHARACTERISTICS
Unlessotherwisespecified,thesespecificationsapplyover,6.8V<Vin=PVin<21V,Vref=0.5Vin0°C<TJ<125°C.
TypicalvaluesarespecifiedatTa=25°C.
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNIT
PowerStage
PowerLossesPLOSSVin=12V,VO=1.2V,IO=4A,
Fs=600kHz,L=1.5uH,
Vcc=6.4V,Note4
 0.5 W
TopSwitchRds(on)_TopVBootVsw=6.4V,IO=4A,Tj=25°C17.522.5mΩ
BottomSwitchRds(on)_BotVcc=6.4V,IO=4A,Tj=25°C17.923.3
BootstrapDiodeForwardVoltage I(Boot)=10mA180 260470mV
SWLeakageCurrentISWSW=0V,Enable=0V
1µA
SW=0V,Enable=high,
Vp=0V
DeadBandTimeTdbNote451030ns
SupplyCurrent
VINSupplyCurrent(standby)Iin(Standby)EN=Low,NoSwitching100µA
VINSupplyCurrent(dynamic)Iin(Dyn)EN=High,Fs=600kHz,
Vin=PVin=21V
 9.512.5mA
Vcc/LDO_Out
OutputVoltageVccVin(min)=6.8V,Icc=030mA,
Cload=2.2uF,DCM=06.06.46.7
V
Vin(min)=6.8V,Icc=030mA,
Cload=2.2uF,DCM=14.04.44.8
LDODropoutVoltageVcc_dropIcc=30mA,Cload=2.2uF0.7V
ShortCircuitCurrentIshort 70mA
- 7 -
June24,2014 |DATASHEET|Rev3.6
7
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNIT
ZerocrossingComparatorDelayTdly_zcNote4256/Fs s
ZerocrossingComparatorOffsetVos_zcNote4‐404mV
Oscillator
RtVoltageVrt 1.0  V
FrequencyRangeFsRt=80.6K270300330
kHz
Rt=39.2K540600660
Rt=15.0K135015001650
RampAmplitudeVrampVin=7.0V,Vinslewratemax=
1V/µs,Note4
1.05
Vpp
Vin=12V,Vinslewratemax=
1V/µs,Note4
1.80
Vin=21V,Vinslewratemax=
1V/µs,Note4
3.15
Vin=Vcc=5V,ForexternalVcc
operation,Note4
0.75
RampOffsetRamp(os)Note40.16 V
MinPulseWidthTmin(ctrl)Note460ns
MaxDutyCycleDmaxFs=300kHz,PVin=Vin=12V86 %
FixedOffTimeToffNote4200250ns
SyncFrequencyRangeFsync 2701650kHz
SyncPulseDurationTsync 100200 ns
SyncLevelThresholdHigh 3
V
Low 0.6
ErrorAmplifier
InputOffsetVoltageVos_VrefVFbVref,Vref=0.5V‐1.5+1.5
%
Vos_VpVFbVp,Vp=0.5V‐1.5 +1.5
InputBiasCurrentIFb(E/A) 1 +1
µA
InputBiasCurrentIVp(E/A) 0+4
SinkCurrentIsink(E/A) 0.40.851.2mA
SourceCurrentIsource(E/A) 47.511mA
SlewRateSRNote471220V/µs
GainBandwidthProductGBWPNote4203040MHz
DCGainGainNote4100110120dB
MaximumoutputVoltageVmax(E/A) 1.72.02.3V
MinimumoutputVoltageVmin(E/A) 100mV
CommonModeinputVoltage01.2V
ReferenceVoltage
FeedbackVoltageVfbVrefandVppinfloating0.5 V
Accuracy0°C<Tj<+70°C‐0.5 +0.5%
- 8 -
June24,2014 |DATASHEET|Rev3.6
8
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNIT
40°C<Tj<+125°C,Note3‐1.0 +1.0
VrefMarginingVoltage
Vref_marg 0.41.2V
SinkCurrentIsink_VrefVref=0.6V12.716.019.3
µA
SourceCurrentIsrc_VrefVref=0.4V12.716.019.3
VrefComparatorThresholdVref_disableVrefpinconnectedexternally0.15
V
Vref_enable0.4
SoftStart/Stop
SoftStartRampRateRamp(SS_start) 0.160.20.24
mV/µs
SoftStopRampRateRamp(SS_stop) 0.24‐0.2‐0.16
S_CtrlThresholdHigh 2.4
V
Low 0.6
PowerGood
PGoodTurnonThresholdVPG(on)VsnsRising,0.4V<Vref<1.2V859095 %Vref
VsnsRising,Vref<0.1V859095%Vp
PGoodLowerTurnoffThresholdVPG(lower)VsnsFalling,0.4V<Vref<1.2V808590%Vref
VsnsFalling,Vref<0.1V808590%Vp
PGoodTurnonDelayVPG(on)_DlyVsnsRising,seeVPG(on)1.28 ms
PGoodUpperTurnoffThresholdVPG(upper)VsnsRising,0.4V<Vref<1.2V115 120125 %Vref
VsnsRising,Vref<0.1V115120125%Vp
PGoodComparatorDelayVPG(comp)_
Dly
Vsns<VPG(lower)or
Vsns>VPG(upper)
123.5µs
PGoodVoltageLowPG(voltage)IPgood=‐5mA0.5 V
TrackerComparatorUpper
Threshold
VPG(tracker_
upper)
VpRising,Vref<0.1V0.4
V
TrackerComparatorLower
Threshold
VPG(tracker_
lower)
VpFalling,Vref<0.1V0.3
TrackerComparatorDelayTdelay(tracker)VpRising,Vref<0.1V,see
VPG(tracker_upper)
 1.28 ms
UnderVoltageLockout
VccStartThresholdVCC_UVLO_StartVccRisingTripLevel4.04.24.4
V
VccStopThresholdVCC_UVLO_StopVccFallingTripLevel3.73.94.1
EnableStartThresholdEnable_UVLO_StartSupplyrampingup1.141.21.26
V
EnableStopThresholdEnable_UVLO_StopSupplyrampingdown0.9511.05
EnableLeakageCurrentIenEnable=3.3V1µA
OverVoltageProtection
OVPTripThresholdOVP_VthVsnsRising,0.45V<Vref<1.2V115120125%Vref
VsnsRising,Vref<0.1V115120125%Vp
OVPComparatorDelyOVP_Tdly 123.5µs
- 9 -
June24,2014 |DATASHEET|Rev3.6
9
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNIT
OverCurrentProtection
CurrentLimitILIMITTj=25°C,Vcc=6.4V5.87.08.2A
HiccupBlankingTimeTblk_HiccupNote420.48 ms
OverTemperatureProtection
ThermalShutdownThresholdTtsdNote4145
°C
HysteresisTtsd_hysNote420
Note3:Coldtemperatureperformanceisguaranteedviacorrelationusingstatisticalqualitycontrol.Nottestedinproduction.
Note4:Guaranteedbydesignbutnottestedinproduction.
- 10 -
June24,2014 |DATASHEET|Rev3.6
10
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
71
73
75
77
79
81
83
85
87
89
91
93
95
97
0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4
Load Current (A)
Efficiency (%)
1.0V 1.2V 1.8V 3.3V 5.0V
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4
Load Current (A)
Power Dissipation(W)
1.0V 1.2V 1.8V 3.3V 5.0V
TYPICALEFFICIENCYANDPOWERLOSSCURVES
PVin=12V,Vcc=InternalLDO(4.4V/6.4V),Io=0A4A,Fs=600KHz,RoomTemperature,NoAirFlow.Notethatthe
efficiencyandpowerlosscurvesincludethelossesofIR3897,theinductorlossesandthelossesoftheinputandoutput
capacitors.Thetablebelowshowstheinductorsusedforeachoftheoutputvoltagesintheefficiencymeasurement.
VOUT(V)LOUT(µH) P/N DCR(m)
1.01.5 PCMB065T-1R5MS(Cyntec) 6.7
1.21.5 PCMB065T-1R5MS(Cyntec) 6.7
1.82.2 7443340220(Wurth Elektronik) 4.4
3.33.3 7443340330(Wurth Elektronik) 6.5
53.3 7443340330(Wurth Elektronik) 6.5
- 11 -
June24,2014 |DATASHEET|Rev3.6
11
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
80
82
84
86
88
90
92
94
96
98
0.40.81.21.6 2 2.42.83.23.6 4
Load Current (A)
Efficiency (%)
1.0V 1.2V 1.8V 3.3V 5.0V
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4
Load Current (A)
Power Dissiation(W)
1.0V 1.2V 1.8V 3.3V 5.0V
TYPICALEFFICIENCYANDPOWERLOSSCURVES
PVin=12V,Vcc=External5V,Io=0A4A,Fs=600KHz,RoomTemperature,NoAirFlow.Notethattheefficiencyandpower
losscurvesincludethelossesofIR3897,theinductorlossesandthelossesoftheinputandoutputcapacitors.Thetable
belowshowstheinductorsusedforeachoftheoutputvoltagesintheefficiencymeasurement.
VOUT(V)LOUT(µH) P/N DCR(m)
1.01.5 PCMB065T-1R5MS (Cyntec) 6.7
1.21.5 PCMB065T-1R5MS (Cyntec) 6.7
1.82.2 7443340220 (Wurth Elektronik) 4.4
3.33.3 7443340330 (Wurth Elektronik) 6.5
53.3 7443340330 (Wurth Elektronik) 6.5
- 12 -
June24,2014 |DATASHEET|Rev3.6
12
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
83
85
87
89
91
93
95
97
0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4
Load Current (A)
Efficiency (%)
1.0V 1.2V 1.8V 3.3V
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4
Load Current (A)
Power Dissipation(W)
1.0V 1.2V 1.8V 3.3V
TYPICALEFFICIENCYANDPOWERLOSSCURVES
PVin=5.0V,Vcc=5.0V,Io=0A4A,Fs=600KHz,RoomTemperature,NoAirFlow.Notethattheefficiencyandpowerloss
curvesincludethelossesofIR3897,theinductorlossesandthelossesoftheinputandoutputcapacitors.Thetablebelow
showstheinductorsusedforeachoftheoutputvoltagesintheefficiencymeasurement.
VOUT(V)LOUT(µH) P/N DCR(m)
1.01 SPM6550T-1R0M (TDK) 4.7
1.21 SPM6550T-1R0M (TDK) 4.7
1.81.5 PCMB065T-1R5MS (Cyntec) 6.7
3.31.5 PCMB065T-1R5MS (Cyntec) 6.7
- 13 -
June24,2014 |DATASHEET|Rev3.6
13
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
4.4
4.6
4.8
5
5.2
5.4
5.6
25 30 35 40 45 50 55 60 65 70 75 80 85
TAmb
Iout(A)
0 LFM
Lout-3.3uH,6.5m(Wurth Elektronik 7443340330)
4.4
4.6
4.8
5
5.2
5.4
5.6
25 30 35 40 45 50 55 60 65 70 75 80 85
TAmb
Iout(A)
0 LFM
Lout-1.5uH,6.7m(Cyntec PCMB065T-1R5MS)
THERMALDERATINGCURVES
MeasurementdoneonEvaluationboardofIRDC3897.PCBis4layerboardwith2ozCopper,FR4material,size2.23"x2"
PVin=12V,Vout=1.2V,Vcc=InternalLDO(6.4V),Fs=600kHz
PVin=12V,Vout=3.3V,Vcc=InternalLDO(6.4V),Fs=600kHz
Note: International Rectifier Corporation specifies current rating of SupIRBuck devices conservatively. The continuous current
load capability might be higher than the rating of the device if input voltage is 12V typical and switching frequency is below
750 kHz.The above derating curves are generated at 12V input ,600kHz with 0-200LFM air flow and ambient temperature up
to 85°C.Detailed thermal derating information can be found in the Application Note AN-1174 “Thermal Derating of DC DC
Convertors using IR3899/98/97”. However, the maximum current is limited by the internal current limit and designers need to
consider enough guard bands between load current and minimum current limit to guarantee that the device does not trip at
steady state condition.
- 14 -
June24,2014 |DATASHEET|Rev3.6
14
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
RDSONOFMOSFETSOVERTEMPERATUREATVcc=6.4V
RDSONOFMOSFETSOVERTEMPERATUREATVcc=5.0V
- 15 -
June24,2014 |DATASHEET|Rev3.6
15
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
TYPICALOPERATINGCHARACTERISTICS(40°Cto+125°C)
- 16 -
June24,2014 |DATASHEET|Rev3.6
16
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
TYPICALOPERATINGCHARACTERISTICS(40°Cto+125°C)
 
 
InternalLDOisinregulation InternalLDOisindropoutmode
 
WithanExternal5VVccVoltage
- 17 -
June24,2014 |DATASHEET|Rev3.6
17
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
TYPICALOPERATINGCHARACTERISTICS(40°Cto+125°C)
 

 

- 18 -
June24,2014 |DATASHEET|Rev3.6
18
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
THEORYOFOPERATION
DESCRIPTION
TheIR3897usesaPWMvoltagemodecontrolschemewith
externalcompensationtoprovidegoodnoiseimmunity
andmaximumflexibilityinselectinginductorvaluesand
capacitortypes.
Theswitchingfrequencyisprogrammablefrom300kHz
to1.5MHzandprovidesthecapabilityofoptimizingthe
designintermsofsizeandperformance.
IR3897providespreciselyregulatedoutputvoltage
programmedviatwoexternalresistorsfrom0.5Vto
0.86*Vin.
TheIR3897operateswithaninternalbiassupply(LDO)
whichisconnectedtotheVcc/LDO_outpin.Thisallows
operationwithsinglesupply.Thebiasvoltageisvariable
accordingtoloadcondition.Iftheoutputloadcurrentis
lessthanhalfofthepeaktopeakinductorcurrent,alower
biasvoltage,4.4V,isusedastheinternalgatedrive
voltage;otherwise,ahighervoltage,6.4V,isused.
Thisfeaturehelpstheconvertertoreducepowerlosses.
Thedevicecanalsobeoperatedwithanexternalsupply
from4.5to7.5V,allowinganextendedoperatinginput
voltage(PVin)rangefrom1.0Vto16V.Forusingthe
internalLDOsupply,theVinpinshouldbeconnectedto
PVinpin.Ifanexternalsupplyisused,itshouldbe
connectedtoVcc/LDO_OutpinandtheVinpinshouldbe
shortedtoVcc/LDO_Outpin.
Thedeviceutilizestheonresistanceofthelowside
MOSFET(synchronousMosfet)fortheovercurrent
protection.Thismethodenhancestheconverter’s
efficiencyandreducescostbyeliminatingtheneedfor
externalcurrentsenseresistor.
IR3897includestwolowRds(on)MOSFETsusingIR’sHEXFET
technology.Thesearespecificallydesignedforhigh
efficiencyapplications.
UNDERVOLTAGELOCKOUTANDPOR
Theundervoltagelockoutcircuitmonitorsthevoltageof
Vcc/LDO_OutpinandtheEnableinput.Itassuresthatthe
MOSFETdriveroutputsremainintheoffstatewhenever
eitherofthesetwosignalsdropbelowthesetthresholds.
NormaloperationresumesonceVcc/LDO_OutandEnable
riseabovetheirthresholds.
ThePOR(PowerOnReady)signalisgeneratedwhenall
thesesignalsreachthevalidlogiclevel(seesystemblock
diagram).WhenthePORisassertedthesoftstart
sequencestarts(seesoftstartsection).
ENABLE
TheEnablefeaturesanotherlevelofflexibilityforstartup.
TheEnablehasprecisethresholdwhichisinternally
monitoredbyUnderVoltageLockout(UVLO)circuit.
Therefore,theIR3897willturnononlywhenthevoltage
attheEnablepinexceedsthisthreshold,typically,1.2V.
IftheinputtotheEnablepinisderivedfromthebus
voltagebyasuitablyprogrammedresistivedivider,itcan
beensuredthattheIR3897doesnotturnonuntilthebus
voltagereachesthedesiredlevel(Fig.4).Onlyafterthebus
voltagereachesorexceedsthislevelandvoltageatthe
Enablepinexceedsitsthreshold,IR3897willbeenabled.
Therefore,inadditiontobeingalogicinputpintoenable
theIR3897,theEnablefeature,withitsprecisethreshold,
alsoallowstheusertoimplementanUnderVoltage
Lockoutforthebusvoltage(PVin).Thisisdesirable
particularlyforhighoutputvoltageapplications,wherewe
mightwanttheIR3897tobedisabledatleastuntilPVIN
exceedsthedesiredoutputvoltagelevel.
Pvin (12V)
Vcc
Enable
Intl_SS
10. 2 V
Enable Threshold = 1.2V
Figure4:NormalStartup,deviceturnson
whenthebusvoltagereaches10.2V
AresistordividerisusedatENpinfromPVintoturnonthe
deviceat10.2V.
- 19 -
June24,2014 |DATASHEET|Rev3.6
19
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
Pvin(12V)
Vcc
Intl_SS
Enable >1.2V
Vp>1V
Figure5a:RecommendedstartupforNormaloperation
Pvin (12V)
Vcc
Enable > 1. 2 V
Intl_SS
Vp
Figure5b:Recommendedstartupforsequencingoperation
(ratiometricorsimultaneous)
Figure5c:Recommendedstartupfor
memorytrackingoperation(VTTDDR4)
Figure5ashowstherecommendedstartupsequencefor
thenormal(nontracking,nonsequencing)operationof
IR3897,whenEnableisusedasalogicinput.Figure5b
showstherecommendedstartupsequenceforsequenced
operationofIR3897withEnableusedaslogicinput.Figure
5cshowstherecommendedstartupsequencefortracking
operationofIR3897withEnableusedaslogicinput.
Innormalandsequencingmodeoperation,Vrefisleft
floating.A100pFceramiccapacitorisrecommended
betweenthispinandGnd.Intrackingmodeoperation,
VrefshouldbetiedtoGnd.
ItisrecommendedtoapplytheEnablesignalaftertheVCC
voltagehasbeenestablished.IftheEnablesignalispresent
beforeVCC,a50kΩresistorcanbeusedinserieswiththe
EnablepintolimitthecurrentflowingintotheEnablepin.
PREBIASSTARTUP
IR3897isabletostartupintoprechargedoutput,which
preventsoscillationanddisturbancesoftheoutput
voltage.
Theoutputstartsinasynchronousfashionandkeepsthe
synchronousMOSFET(SyncFET)offuntilthefirstgate
signalforcontrolMOSFET(CtrlFET)isgenerated.Figure6a
showsatypicalPreBiasconditionatstartup.ThesyncFET
alwaysstartswithanarrowpulsewidth(12.5%ofa
switchingperiod)andgraduallyincreasesitsdutycycle
withastepof12.5%untilitreachesthesteadystatevalue.
Thenumberofthesestartuppulsesforeachstepis16and
it’sinternallyprogrammed.Figure6bshowstheseriesof
16x8startuppulses.
Vo
[V]
[Time]
Pre-Bias
Voltage
Figure6a:PreBiasstartup
... ... ...
HDRv
... ... ...
16 End of
PB
LDRv
12.5% 25% 87.5%
16 ...
...
...
...
Figure6b:PreBiasstartuppulses
- 20 -
June24,2014 |DATASHEET|Rev3.6
20
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
SOFTSTART
IR3897hasaninternaldigitalsoftstarttocontrolthe
outputvoltageriseandtolimitthecurrentsurgeatthe
startup.Toensurecorrectstartup,thesoftstart
sequenceinitiateswhentheEnableandVccriseabove
theirUVLOthresholdsandgeneratethePowerOnReady
(POR)signal.Theinternalsoftstart(Intl_SS)signallinearly
riseswiththerateof0.2mV/µsfrom0Vto1.5V.Figure7
showsthewaveformsduringsoftstart(alsorefertoFig.
20).ThenormalVoutstartuptimeisfixed,andisequalto:
0.65V-0.15V 2.5ms (1)
0.2mV/ s
start
T

Duringthesoftstarttheovercurrentprotection(OCP)and
overvoltageprotection(OVP)isenabledtoprotectthe
deviceforanyshortcircuitorovervoltagecondition.
POR
Intl_SS
Vout
0.15V
0.65V
t1t2t3
1.5V
3.0V
Figure7:Theoreticaloperationwaveformsduring
softstart(nontracking/nonsequencing)
OPERATINGFREQUENCY
Theswitchingfrequencycanbeprogrammedbetween
300kHz1500kHzbyconnectinganexternalresistorfrom
RtpintoGnd.Table1tabulatestheoscillatorfrequency
versusRt.
SHUTDOWN
IR3897canbeshutdownbypullingtheEnablepinbelow
its1.0Vthreshold.Thiswilltristateboththehighsideand
thelowsidedriver.
TABLE1:SWITCHINGFREQUENCY(FS)VS.EXTERNALRESISTOR(RT)
Rt(K)Freq(KHz)
80.6 300
60.4 400
48.7 500
39.2 600
34 700
29.4 800
26.1 900
23.2 1000
21 1100
19.1 1200
17.4 1300
16.2 1400
15 1500
OVERCURRENTPROTECTION
Theovercurrent(OC)protectionisperformedbysensing
currentthroughtheRDS(on)oftheSynchronousMosfet.This
methodenhancestheconverter’sefficiency,reducescost
byeliminatingacurrentsenseresistorandanylayout
releatednoiseissues.Thecurrentlimitispresetinternally
andiscompensatedaccordingtotheICtemperature.Soat
differentambienttemperature,theovercurrenttrip
thresholdremainsalmostconstant.
NotethattheovercurrentlimitisafunctionoftheVcc
voltage.Refertothetypicalperformancecurvesofthe
OCPcurrentlimitwiththeinternalLDOandtheexternal
Vccvoltage.DetailedoperationofOCPisexplainedas
follows.
OverCurrentProtectioncircuitsensestheinductorcurrent
flowingthroughtheSynchronousMosfetclosertothe
valleypoint.OCPcircuitsamplesthiscurrentfor40nsec
typicallyaftertherisingedgeofthePWMsetpulsewhich
hasawidthof12.5%oftheswitchingperiod.ThePWM
pulsestartsatthefallingedgeofthePWMsetpulse.This
makesvalleycurrentsensemorerobustascurrentis
sensedclosetothebottomoftheinductordownward
slopewheretransientandswitchingnoisearelowerand
helpstopreventfalsetrippingduetonoiseandtransient.
AnOCconditionisdetectediftheloadcurrentexceedsthe
threshold,theconverterentersintohiccupmode.PGood
willgolowandtheinternalsoftstartsignalwillbepulled
low.Theconvertergoesintohiccupmodewitha20.48ms
(typ.)delayasshowninFigure8.Theconvertorstaysin
thismodeuntiltheoverloadorshortcircuitisremoved.
TheactualDCoutputcurrentlimitpointwillbegreater
- 21 -
June24,2014 |DATASHEET|Rev3.6
21
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
thanthevalleypointbyanamountequaltoapproximately
halfofpeaktopeakinductorripplecurrent.Thecurrent
limitpointwillbeafunctionoftheinductorvalue,input,
outputvoltageandthefrequencyofoperation.
(2)
2
OCP LIMIT
i
II

IOCP=DCcurrentlimithiccuppoint
ILIMIT=CurrentlimitValleyPoint
Δi=Inductorripplecurrent
Figure8:TimingDiagramfor
CurrentLimitandHiccup
THERMALSHUTDOWN
TemperaturesensingisprovidedinsideIR3897.Thetrip
thresholdistypicallysetto145oC.Whentripthresholdis
exceeded,thermalshutdownturnsoffbothMOSFETsand
resetstheinternalsoftstart.
Automaticrestartisinitiatedwhenthesensed
temperaturedropswithintheoperatingrange.Thereis
a20oChysteresisinthethermalshutdownthreshold.
EXTERNALSYNCHRONIZATION
IR3897incorporatesaninternalphaselockloop(PLL)
circuitwhichenablessynchronizationoftheinternal
oscillatortoanexternalclock.Thisfunctionisimportantto
avoidsubharmonicoscillationsduetobeatfrequencyfor
embeddedsystemswhenmultiplepointofload(POL)
regulatorsareused.Amultifunctionpin,Rt/Sync,isused
toconnecttheexternalclock.Iftheexternalclockis
presentbeforetheconverterturnson,Rt/Syncpincanbe
connectedtotheexternalclocksignalsolelyandnoother
resistorisneeded.Iftheexternalclockisappliedafterthe
converterturnson,ortheconverterswitchingfrequency
needstotogglebetweentheexternalclockfrequencyand
theinternalfreerunningfrequency,anexternalresistor
fromRt/SyncpintoGndisrequiredtosetthefreerunning
frequency.
WhenanexternalclockisappliedtoRt/Syncpinafterthe
converterrunsinsteadystatewithitsfreerunning
frequency,atransitionfromthefreerunningfrequencyto
theexternalclockfrequencywillhappen.Thistransitionis
tograduallymaketheactualswitchingfrequencyequalto
theexternalclockfrequency,nomatterwhichoneis
higher.Onthecontrary,whentheexternalclocksignalis
removedfromRt/Syncpin,theswitchingfrequencyisalso
changedtofreerunninggradually.Inordertominimize
theimpactfromthesetransitionstooutputvoltage,a
diodeisrecommendedtoaddbetweentheexternalclock
andRt/Syncpin,asshowninFigure9a.Figure9bshows
thetimingdiagramofhesetransitions.
IR3897
Rt/Sync
Gnd
Figure9a:ConfigurationofExternalSynchronization
Figure9:TimingDiagramforSynchronization
totheexternalclock(Fs1>Fs2orFs1<Fs2)
AninternalcircuitisusedtochangethePWMrampslope
accordingtotheclockfrequencyappliedonRt/Syncpin.
Eventhoughthefrequencyoftheexternalsynchronization
clockcanvaryinawiderange,thePLLcircuitwillmake
surethattherampamplitudeiskeptconstant,requiringno
adjustmentoftheloopcompensation.Vinvariationalso
affectstherampamplitude,whichwillbediscussed
separatelyinFeedForwardsection.
- 22 -
June24,2014 |DATASHEET|Rev3.6
22
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
FEEDFORWARD
FeedForward(F.F.)isanimportantfeature,becauseitcan
keeptheconverterstableandpreserveitsloadtransient
performancewhenVinvariesinalargerange.InIR3897,
F.F.functionisenabledwhenVinpinisconnectedtoPVin
pin.Inthiscase,theinternallowdropout(LDO)regulatoris
used.ThePWMrampamplitude(Vramp)isproportionally
changedwithVintomaintainVin/Vrampalmostconstant
throughoutVinvariationrange(asshowninFig.10).Thus,
thecontrolloopbandwidthandphasemargincanbe
maintainedconstant.Feedforwardfunctioncanalso
minimizeimpactonoutputvoltagefromfastVinchange.
ThemaximumVinslewrateiswithin1V/µs.
IfanexternalbiasvoltageisusedasVcc,Vinpinshouldbe
connectedtoVcc/LDO_OutpininsteadofPVinpin.Then
theF.F.functionisdisabled.Arecalculationofcontrol
loopparametersisneededforrecompensation.
Figure10:TimingDiagramforFeedForward(F.F.)Function
SMARTLOWDROPOUTREGULATOR(LDO)
IR3897hasanintegratedlowdropout(LDO)regulator
whichcanprovidegatedrivevoltageforbothdrivers.
Inordertoimproveoverallefficiencyoverthewholeload
range,LDOvoltageissetto6.4V(typ.)atmid‐orheavy
loadconditiontoreduceRds(on)andthusMOSFET
conductionloss;anditisreducedto4.4(typ.)atlightload
conditiontoreducegatedriveloss.
ThesmartLDOcanselectitsoutputvoltageaccordingto
theloadconditionbysensingswitchnode(SW)voltage.At
lightloadconditionwhenpartoftheinductorcurrent
flowsinthereversedirection(DCM=1),VSW>0onLDrv
fallingedgeinaswitchingcycle.Ifthiscasehappensfor
consecutive256switchingcycles,thesmartLDOreduces
itsoutputto4.4.Ifinanyoneofthe256cycles,Vsw<0on
LDrvfallingedge,thecounterisresetandLDOvoltage
doesn’tchange.Ontheotherhand,ifVsw<0onLDrv
fallingedge(DCM=0),LDOoutputisincreasedto6.4V.A
hysteresisbandisaddedtoVswcomparisontoavoid
chattering.Figure11ashowsthetimingdiagram.
Wheneverdeviceturnson,LDOalwaysstartswith6.4V,
thengoesto4.4V/6.4Vdependingupontheload
condition.Forinternallybiasedsinglerailoperation,Vin
pinshouldbeconnectedtoPVinpin,asshowninFigure
11b.Ifexternalbiasvoltageisused,Vinpinshouldbe
connectedtoVcc/LDO_Outpin,asshowninFigure11c.
Vcc/
LDO
0
0
IL
256/Fs
... ...
...
6.4V 6.4V
4.4V
...
Figure11a:TimeDiagramforSmartLDO
IR3897
VCC/
LDO_OUT
PGnd
Vin
Vin PVin
Figure11b:InternallyBiasedSingleRailOperation
Figure11c:UseExternalBiasVoltage
WhentheVinvoltageisbelow6.8V,theinternalLDO
entersthedropoutmodeatmediumandheavyload.The
dropoutvoltageincreaseswiththeswitchingfrequency.
Figure11dshowstheLDOvoltagefor600kHzand1500
kHzswitchingfrequencyrespectively.
- 23 -
June24,2014 |DATASHEET|Rev3.6
23
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
Figure11d:LDO_OutVoltageindropoutmode
OUTPUTVOLTAGETRACKINGANDSEQUENCING
IR3897canaccommodateuserprogrammabletracking
and/orsequencingoptionsusingVp,Vref,Enable,and
PowerGoodpins.Intheblockdiagrampresentedonpage
3,theerroramplifier(E/A)hasbeendepictedwiththree
positiveinputs.Ideally,theinputwiththelowestvoltage
isusedforregulatingtheoutputvoltageandtheother
twoinputsareignored.Inpracticethevoltageoftheother
twoinputsshouldbeabout200mVgreaterthanthe
lowvoltageinputsothattheireffectscancompletely
beignored.Vpisinternallybiasedto3.3Vviaahigh
impedancepath.Fornormaloperation,VpandVrefis
leftfloating(Vrefshouldhaveabypasscapacitor).
Therefore,innormaloperatingcondition,afterEnable
goeshigh,theinternalsoftstart(Intl_SS)rampsupthe
outputvoltageuntilVfb(voltageoffeedback/Fbpin)
reachesabout0.5V.ThenVreftakesoverandtheoutput
voltageisregulated.
TrackingmodeoperationisachievedbyconnectingVrefto
GND.Intrackingmode,VfbalwaysfollowsVp,which
meansVoutisalwaysproportionaltoVpvoltage(typical
forDDR/VTTrailapplications).TheeffectiveVpvariation
rangeis0V~1.2V.Fig.5cillustratesthestartupofVTT
trackingforDDR4application.VpisproportionaltoVDDQ.
AfterVpisestablished,assertingEnableinitiatesthe
internalsoftstart.VTT,whichistheoutputofPOL,starts
torampupandtracksVp.
Insequencingmodeofoperation(simultaneousor
ratiometric),VrefisleftfloatingandVpiskepttoground
leveluntilIntl_SSsignalreachesthefinalvalue.ThenVpis
rampedupandVfbfollowsVp.WhenVp>0.5Vtheerror
amplifierswitchestoVrefandtheoutputvoltageis
regulatedwithVref.ThefinalVpvoltageaftersequencing
startupshouldbetween0.7V~3.3V.
Boot
Vcc/LDO
Fb
Comp
Gnd PGnd
SW
Vo2
(Salve)
PGood
PGood
Rt/
Sync
PVin
Vp
Vo1
(master)
S_Ctrl Vin
Vref EN
RE
RF
RC
RD
5V < Vin<21V
Vsns
Figure12:ApplicationCircuitforSimultaneous
andRatiometricSequencing
Trackingandsequencingoperationscanbeimplemented
tobesimultaneousorratiometric(refertoFig.13and14).
Figure12showstypicalcircuitconfigurationforsequencing
operation.Withthispowerupconfiguration,thevoltage
attheVppinoftheslavereaches0.5VbeforetheFbpinof
themaster.IfRE/RF=RC/RD,simultaneousstartupis
achieved.Thatis,theoutputvoltageoftheslavefollows
thatofthemasteruntilthevoltageattheVppinofthe
slavereaches0.5V.AfterthevoltageattheVppinofthe
slaveexceeds0.5V,theinternal0.5Vreferenceofthe
slavedictatesitsoutputvoltage.Inrealitytheregulation
graduallyshiftsfromVptointernalVref.Thecircuitshown
inFig.12canalsobeusedforsimultaneousorratiometric
trackingoperationifVrefoftheslaveisconnectedtoGND.
Table2summarizestherequiredconditionstoachieve
simultaneous/ratiometrictrackingorsequencing
operations.
- 24 -
June24,2014 |DATASHEET|Rev3.6
24
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
Vcc
Vref=0.5V
1.2V Soft Start (slave)
Enable (slave)
Vo1 (master)
Vo2 (slave)
(a)
Vo1 (master)
Vo2 (slave)
(b)
Figure13:Typicalwaveformsforsequencingmodeofoperation:
(a)simultaneous,(b)ratiometric
Figure14:Typicalwaveformsintrackingmodeofoperation:
(a)simultaneous,(b)ratiometric
TABLE2:REQUIREDCONDITIONSFORSIMULTANEOUS/RATIOMETRIC
TRACKINGANDSEQUENCING(FIG.12)
Operating
Mode
Vref
(Slave)
VpRequired
Condition
Normal
(Nonsequencing,
Nontracking)
0.5V
(Floating)Floating―
Simultaneous
Sequencing0.5VRampup
from0V
RA/RB>RE/
RF=RC/RD
Ratiometric
Sequencing0.5VRampup
from0V
RA/RB>RE/
RF>RC/RD
Simultaneous
Tracking0VRampup
beforeEn
RE/RF
=RC/RD
Ratiometric
Tracking0VRampup
beforeEn
RE/RF
>RC/RD
VREF
Thispinreflectstheinternalreferencevoltagewhichis
usedbytheerroramplifiertosettheoutputvoltage.In
mostoperatingconditionsthispinisonlyconnectedtoan
externalbypasscapacitoranditisleftfloating.A100pF
ceramiccapacitorisrecommendedforthebypass
capacitor.Tokeepstandbycurrenttominimum,Vrefis
notallowedtocomeupuntilENstartsgoinghigh.In
trackingmodethispinshouldbepulledtoGND.For
marginingapplications,anexternalvoltagesourceis
connectedtoVrefpinandoverridestheinternalreference
voltage.Theexternalvoltagesourceshouldhavealow
internalresistance(<100Ω)andbeabletosourceandsink
morethan25µA
POWERGOODOUTPUT(TRACKING,
SEQUENCING,VREFMARGINING)
IR3897continuallymonitorstheoutputvoltageviathe
sensepin(Vsns)voltage.TheVsnsvoltageisaninputto
thewindowcomparatorwithupperandlowerthresholdof
0.6Vand0.45Vrespectively.PGoodsignalishigh
wheneverVsnsvoltageiswithinthePGoodcomparator
windowthresholds.ThePGoodpinisopendrainandit
needstobeexternallypulledhigh.Highstateindicatesthat
outputisinregulation.
Thethresholdissetdifferentlyatdifferentoperating
modesandtheresultsofthecomparisonsetsthePGood
signal.Figures15,16,and17showthetimingdiagramof
thePGoodsignalatdifferentoperatingmodes.Vsnssignal
isalsousedbyOVPcomparatorfordetectingoutputover
voltagecondition.
0
0
0
Vref
PGood
Vsns
0.5 V
1.2*Vref
0.85*Vp
1.28ms 1.28ms
OVP
Latch
0.9*Vp
Figure15:Nonsequence,NontrackingStartup
andVrefMargin(Vppinfloating)
- 25 -
June24,2014 |DATASHEET|Rev3.6
25
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
0.3V
0
0
0
Vp
Vsns
0.4V
PGood
0.9*Vp
1.2*Vp
1.28ms
Figure16:VpTracking(Vref=0V)
Figure17:VpSequenceandVrefMargin
OVERVOLTAGEPROTECTION(OVP)
OVPisachievedbycomparingVsnsvoltagetoanOVP
thresholdvoltage.Innontrackingmode,OVPthreshold
voltageis1.2×Vref;intrackingmode,itissetat1.2×Vp.
WhenVsnsexceedstheOVPthreshold,anovervoltage
tripsignalassertsafter2us(typ.)delay.Thenthecontrol
FETislatchedoffimmediately,PGoodflagslow.Thesync
FETremainsontodischargetheoutputcapacitor.When
theVsnsvoltagedropsbelowthethreshold,thesyncFET
turnsofftopreventthecompletedepletionoftheoutput
capacitor.ThecontrolFETremainslatchedoffuntiluser
cycleeitherVccorEnable.
OVPcomparatorbecomesactiveonlywhenthedeviceis
enabled.Furthermore,forOVPtobeactiveVrefhasto
exceed0.2Vinnontrackingmode,orVphastoexceedthe
thresholdintrackingmode,asillustratedinFig18aandFig
18b.Ifeitheroftheaboveconditionsisnotsatisfied,OVP
isdisabled.Vsnsvoltageissetbythevoltagedivider
connectedtotheoutputanditcanbeprogrammed
externally.Figure18cshowsthetimingdiagramforOVPin
nontrackingmode.
Figure18a:ActivationofOVPinnontrackingmode
Figure18b:ActivationofOVPintrackingmode
0
0
0
1.2*Vref
0
1.15*Vref
Figure18c:TimingDiagramforOVPinnontrackingmode
- 26 -
June24,2014 |DATASHEET|Rev3.6
26
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
SOFTSTART/SOFTSTOP(S_CTRL)
Softstopfunctioncanmakeoutputvoltagedischarge
gradually.Toenablethisfunction,S_Ctrliskeptlowfirst
whenENgoeshigh.ThenS_Ctrlispulledhightocrossthe
logiclevelthreshold(typ.2V),theinternalsoftstartramp
isinitiated.SoVofollowsIntl_SStorampupuntilit
reachesitssteadystate.Insoftstopprocess,S_Ctrlneeds
tobepulledlowbeforeENgoeslow.AfterS_Ctrlgoes
belowitsthreshold,adecreasingrampisgeneratedat
Intl_SSwiththesameslopeasinsoftstartramp.Vo
followsthisramptodischargesoftlyuntilshutdown
completely.Figure19showsthetimingdiagramofS_Ctrl
controlledsoftstartandsoftstop.
IfthefallingedgeofEnablesignalassertsbeforeS_Ctrl
fallingedge,theconverterisstillturnedoffbyEnable.
BothgatedriversareturnedoffimmediatelyandVo
dischargestozero.Figure20showsthetimingdiagram
ofEnablecontrolledsoftstartandsoftstop.Softstop
featureensuresthatVoutdischargesandalsoregulates
thecurrentpreciselytozerowithnoundershoot.
0
0
0
Intl
_SS
S_Ctrl
Vout
0
Enable
0.15V
0.65V
0.15V
0.65V
Figure19:TimingDiagramforS_Ctrlcontrolled
SoftStart/SoftStop
0
0
0
Intl
_SS
S_Ctrl
Vout
0.15V
0
Enable 1.2V 1.0V
0.65V
Figure20:TimingDiagramforEnablecontrolled
SoftStart/Shutdown
MINIMUMONTIMECONSIDERATIONS
TheminimumONtimeistheshortestamountoftimefor
CtrlFETtobereliablyturnedon.Thisisverycritical
parameterforlowdutycycle,highfrequencyapplications.
Conventionalapproachlimitsthepulsewidthtoprevent
noise,jitterandpulseskipping.Thisresultstolowerclosed
loopbandwidth.
IRhasdevelopedaproprietaryschemetoimproveand
enhanceminimumpulsewidthwhichutilizesthebenefits
ofvoltagemodecontrolschemewithhigherswitching
frequency,widerconversionratioandhigherclosedloop
bandwidth,thelatterresultsinreductionofoutput
capacitors.AnydesignorapplicationusingIR3897must
ensureoperationwithapulsewidththatishigherthanthis
minimumontimeandpreferablyhigherthan60ns.
Thisisnecessaryforthecircuittooperatewithoutjitter
andpulseskipping,whichcancausehighinductorcurrent
rippleandhighoutputvoltageripple.
in
(3)
V
out
on
ss
V
D
tFF

InanyapplicationthatusesIR3897,thefollowingcondition
mustbesatisfied:
(min)
(min)
(min)
(4)
(5)
(6)
on on
out
on
in s
out
in s
on
tt
V
tVF
V
VFt



Theminimumoutputvoltageislimitedbythereference
voltageandhenceVout(min)=0.5V.Therefore,for
Vout(min)=0.5V,
V/uS 33.8
ns 60
V 0.5
V
V
in
(min)
(min)
in
s
on
out
s
F
t
V
F
Therefore,atthemaximumrecommendedinputvoltage
21Vandminimumoutputvoltage,theconvertershouldbe
designedataswitchingfrequencythatdoesnotexceed
396kHz.Conversely,foroperationatthemaximum
recommendedoperatingfrequency(1.65MHz)and
minimumoutputvoltage(0.5V).Theinputvoltage(PVin)
shouldnotexceed5.05V,otherwisepulseskippingwill
happen.
- 27 -
June24,2014 |DATASHEET|Rev3.6
27
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
MAXIMUMDUTYRATIO
AcertainofftimeisspecifiedforIR3897.Thisprovides
anupperlimitontheoperatingdutyratioatanygiven
switchingfrequency.Theofftimeremainsatarelatively
fixedratiotoswitchingperiodinlowandmidfrequency
range,whileinhighfrequencyrangethisratioincreases,
thusthelowerthemaximumdutyratioatwhichIR3897
canoperate.Figure21showsaplotofthemaximumduty
ratiovs.theswitchingfrequencywithbuiltininputvoltage
feedforwardmechanism.
Figure21:Maximumdutycyclevs.switchingfrequency.
- 28 -
June24,2014 |DATASHEET|Rev3.6
28
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
DESIGNEXAMPLE
Thefollowingexampleisatypicalapplicationfor
IR3897.TheapplicationcircuitisshowninFig.28.
=12 V ( 10% )
=1 2 V
= 4 A
Ripple Voltage= 1% *
= 5% * 50%
=600 kHz
in
o
o
o
oo
s
V
V.
I
V
V V load transient
F
for )
EnablingtheIR3897
Asexplainedearlier,theprecisethresholdoftheEnable
lendsitselfwelltoimplementationofaUVLOforthe
BusVoltageasshowninFig.22.
Figure22:UsingEnablepinforUVLOimplementation
ForatypicalEnablethresholdofVEN=1.2V
2
(min)
12
* 1.2 (7)
in EN
R
V V
RR

21
min
(8)
EN
in( ) EN
V
RR
VV

ForVin(min)=9.2V,R1=49.9KandR2=7.5Kohmisagood
choice.
Programmingthefrequency
ForFs=600kHz,selectRt=39.2KΩ,usingTable1.
OutputVoltageProgramming
Outputvoltageisprogrammedbyreferencevoltageand
externalvoltagedivider.TheFbpinistheinvertinginputof
theerroramplifier,whichisinternallyreferencedto0.5V.
Thedividerratioissettoprovide0.5VattheFbpinwhenthe
outputisatitsdesiredvalue.Theoutputvoltageisdefinedby
usingthefollowingequation:
5
6
1(9)
oref
R
VV R




Whenanexternalresistordividerisconnectedtotheoutput
asshowninFig.23.
65 (10)
ref
oref
V
RR
VV





ForthecalculatedvaluesofR5andR6,seefeedback
compensationsection.
Figure23:TypicalapplicationoftheIR3897
forprogrammingtheoutputvoltage
BootstrapCapacitorSelection
TodrivetheControlFET,itisnecessarytosupplyagate
voltageatleast4VgreaterthanthevoltageattheSWpin,
whichisconnectedtothesourceoftheControlFET.
Thisisachievedbyusingabootstrapconfiguration,which
comprisestheinternalbootstrapdiodeandanexternal
bootstrapcapacitor(C1).Theoperationofthecircuitisas
follows:WhenthesyncFETisturnedon,thecapacitornode
connectedtoSWispulleddowntoground.Thecapacitor
chargestowardsVccthroughtheinternalbootstrapdiode
(Fig.24),whichhasaforwardvoltagedropVD.ThevoltageVc
acrossthebootstrapcapacitorC1isapproximatelygivenas:
(11)
cccD
VVV

- 29 -
June24,2014 |DATASHEET|Rev3.6
29
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
WhenthecontrolFETturnsoninthenextcycle,the
capacitornodeconnectedtoSWrisestothebusvoltage
Vin.However,ifthevalueofC1isappropriatelychosen,
thevoltageVcacrossC1remainsapproximately
unchangedandthevoltageattheBootpinbecomes:
(12)
Boot in cc D
VVVV 
Figure24:BootstrapcircuittogenerateVcvoltage
Abootstrapcapacitorofvalue0.1uFissuitableformost
applications.
InputCapacitorSelection
Theripplecurrentgeneratedduringtheontimeofthe
controlFETshouldbeprovidedbytheinputcapacitor.
TheRMSvalueofthisrippleisexpressedby:
(1 ) (13)
RMS o
IIDD 
(14)
o
in
V
DV

Where:
DistheDutyCycle
IRMSistheRMSvalueoftheinputcapacitorcurrent.
Ioistheoutputcurrent.
ForIo=4AandD=0.1,theIRMS=1.8A.
Ceramiccapacitorsarerecommendedduetotheirpeak
currentcapabilities.TheyalsofeaturelowESRandESLat
higherfrequencywhichenablesbetterefficiency.
Forthisapplication,itisadvisabletohave3x10uF,25V
ceramiccapacitors,C3216X5R1E106MfromTDK.
Inadditiontothese,althoughnotmandatory,
a1x330uF,25VSMDcapacitorEEVFK1E331PfromPanasonic
mayalsobeusedasabulkcapacitorandisrecommendedif
theinputpowersupplyisnotlocatedclosetotheconverter.
InductorSelection
Theinductorisselectedbasedonoutputpower,operating
frequencyandefficiencyrequirements.Alowinductorvalue
causeslargeripplecurrent,resultinginthesmallersize,faster
responsetoaloadtransientbutpoorefficiencyandhigh
outputnoise.Generally,theselectionoftheinductorvalue
canbereducedtothedesiredmaximumripplecurrentinthe
inductor(Δi).Theoptimumpointisusuallyfoundbetween
20%and50%rippleoftheoutputcurrent.
Forthebuckconverter,theinductorvalueforthedesired
operatingripplecurrentcanbedeterminedusingthe
followingrelation:

1
;
(15)
*
in o
s
o
in o
in s
i
VVL tD
tF
V
LVV ViF




Where:
Vin=Maximuminputvoltage
V0=OutputVoltage
Δi=InductorPeaktoPeakRippleCurrent
Fs=SwitchingFrequency
Δt=ONtime
D=DutyCycle
IfΔi≈30%*Io,thentheoutputinductoriscalculatedtobe
1.5μH.SelectL=1.5μH,PCMB065T1R5MS,fromCyntecwhich
providesacompact,lowprofileinductorsuitableforthis
application.
- 30 -
June24,2014 |DATASHEET|Rev3.6
30
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
OutputCapacitorSelection
Thevoltagerippleandtransientrequirements
determinetheoutputcapacitorstypeandvalues.
Thecriteriaisnormallybasedonthevalueofthe
EffectiveSeriesResistance(ESR).Howevertheactual
capacitancevalueandtheEquivalentSeriesInductance
(ESL)areothercontributingcomponents.
Thesecomponentscanbedescribedas:
() () ()
()
()
()
*
*
(16)
8* *
o o ESR o ESL o C
oESR L
in o
oESL
L
oC
os
VV V V
VIESR
VV
VESL
L
I
VCF








Where:
ΔV0=OutputVoltageRipple
ΔIL=InductorRippleCurrent
Sincetheoutputcapacitorhasamajorroleinthe
overallperformanceoftheconverteranddetermines
theresultoftransientresponse,selectionofthe
capacitoriscritical.TheIR3897canperformwellwith
alltypesofcapacitors.
Asarule,thecapacitormusthavelowenoughESRto
meetoutputrippleandloadtransientrequirements.
Thegoalforthisdesignistomeetthevoltageripple
requirementinthesmallestpossiblecapacitorsize.
Thereforeitisadvisabletoselectceramiccapacitors
duetotheirlowESRandESLandsmallsize.FourofTDK
C2012X5R0J226M(22uF/0805/X5R/6.3V)capacitorsis
agoodchoice.
Itisalsorecommendedtousea0.1µFceramiccapacitor
attheoutputforhighfrequencyfiltering.
FeedbackCompensation
TheIR3897isavoltagemodecontroller.Thecontrolloop
isasinglevoltagefeedbackpathincludinganerroramplifier
anderrorcomparator.Toachievefasttransientresponse
andaccurateoutputregulation,acompensationcircuitis
necessary.Thegoalofthecompensationnetworkistoclose
thecontrolloopathighcrossoverfrequencywithphase
margingreaterthan45o.
TheoutputLCfilterintroducesadoublepole,‐40dB/decade
gainslopeaboveitscornerresonantfrequency,andatotal
phaselagof180o.TheresonantfrequencyoftheLCfilteris
expressedasfollows:
1 (17)
2
LC
oo
FLC


Figure25showsgainandphaseoftheLCfilter.Sincewe
alreadyhave180ophaseshiftfromtheoutputfilteralone,
thesystemrunstheriskofbeingunstable.
Phase
00
FLC
0
Frequency
FLC Frequency
00
-180
0
0dB
-40dB/Decade
-90
Gain
Figure25:GainandPhaseofLCfilter
TheIR3897usesavoltagetypeerroramplifierwithhighgain
(110dB)andhighbandwidth(30MHz).Theoutputofthe
amplifierisavailableforDCgaincontrolandACphase
compensation.
TheerroramplifiercanbecompensatedeitherintypeIIor
typeIIIcompensation.TypeIIcompensationisshowninFig.
26.Thismethodrequiresthattheoutputcapacitorshave
enoughESRtosatisfystabilityrequirements.Iftheoutput
capacitor’sESRgeneratesazeroat5kHzto50kHz,thezero
generatesacceptablephasemarginandtheTypeII
compensatorcanbeused.
- 31 -
June24,2014 |DATASHEET|Rev3.6
31
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
TheESRzerooftheoutputcapacitorisexpressedas
follows:
1(18)
2
ESR
o
Fπ*ESR*C

VOUT
VREF
R6
R5
CPOLE
C3
R3
Ve
FZFPOLE
E/A
Zf
Frequency
Gain(dB)
H(s) dB
Fb
Comp
ZIN
Figure26:TypeIIcompensationnetwork
anditsasymptoticgainplot
Thetransferfunction(Ve/Vout)isgivenby:
33
53
1
( ) (19)
f
e
out IN
Z
VsRC
Hs
VZsRC

The(s)indicatesthatthetransferfunctionvariesasa
functionoffrequency.Thisconfigurationintroducesa
gainandzero,expressedby:

3
5
33
(20)
1(21)
2* *
z
R
Hs R
FRC


Firstselectthedesiredzerocrossoverfrequency(Fo):

o(22) and F 1/5~1/10 *
oESR s
FF F
UsethefollowingequationtocalculateR3:
5
32
** * (23)
*
osc o ESR
in LC
VFF R
RVF

Where:
Vin=MaximumInputVoltage
Vosc=AmplitudeoftheoscillatorRampVoltage
Fo=CrossoverFrequency
FESR=ZeroFrequencyoftheOutputCapacitor
FLC=ResonantFrequencyoftheOutputFilter
R5=FeedbackResistor
TocanceloneoftheLCfilterpoles,placethezerobeforethe
LCfilterresonantfrequencypole:
75 % *
1
0.75* (24)
2*
zLC
z
oo
FF
FLC

Useequations(20),(21)and(22)tocalculateC3.
OnemorecapacitorissometimesaddedinparallelwithC3
andR3.Thisintroducesonemorepolewhichismainlyused
tosuppresstheswitchingnoise.
Theadditionalpoleisgivenby:
3
3
3
1(25)
*
2* *
P
POLE
POLE
FCC
RCC

Thepolesetstoonehalfoftheswitchingfrequencywhich
resultsinthecapacitorCPOLE:
3
3
3
11
(26)
1
POLE
s
s
C*R *F
*R *F C

Forageneralsolutionforunconditionalstabilityforanytype
ofoutputcapacitors,andawiderangeofESRvalues,atypeIII
compensationnetworkcanbeused,asshowninFig.27.
- 32 -
June24,2014 |DATASHEET|Rev3.6
32
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
V
OUT
V
REF
R6
R5
R4
C4
C2
C3
R3
Ve
F
Z1F
Z2F
P2FP3
E/A
Zf
ZIN
Frequency
Gain (dB)
|H(s)| dB
Fb
Comp
Figure27:TypeIIICompensationnetwork
anditsasymptoticgainplot
Again,thetransferfunctionisgivenby:
IN
f
out
e
Z
Z
sH
V
V )(
ByreplacingZinandZf,accordingtoFig.27,thetransfer
functioncanbeexpressedas:
33 4 4 5
23
52 3 3 44
23
(1 ) 1
*
() ()1 (1 )
(27)
sR C sC R R
CC
Hs
s
RC C sR sRC
CC










Thecompensationnetworkhasthreepolesandtwo
zerosandtheyareexpressedasfollows:
1
2
44
3
32
23
3
23
0(28)
1(29)
2* *
11
(30)
2* *
*
2*
P
P
P
F
FRC
FRC
CC
RCC






1
33
2
445 45
1(31)
2* *
11
(32)
2* *( ) 2* *
Z
Z
FRC
FCRR CR



Crossoverfrequencyisexpressedas:
34
1
* * * (33)
2* *
in
o
osc o o
V
FRC
VLC
Basedonthefrequencyofthezerogeneratedbytheoutput
capacitoranditsESR,relativetocrossoverfrequency,the
compensationtypecanbedifferent.Table3showsthe
compensationtypesforrelativelocationsofthecrossover
frequency.
TABLE3:DIFFERENTTYPESOFCOMPENSATORS
Compensator
Type FESRvsFOTypicalOutput
Capacitor
TypeIIFLC<FESR<FO<FS/2Electrolytic
TypeIIIFLC<FO<FESRSPCap,Ceramic
Thehigherthecrossoverfrequencyis,thepotentiallyfaster
theloadtransientresponsewillbe.However,thecrossover
frequencyshouldbelowenoughtoallowattenuationof
switchingnoise.Typically,thecontrolloopbandwidthor
crossoverfrequency(Fo)isselectedsuchthat:
so F F * 1/10~1/5
TheDCgainshouldbelargeenoughtoprovidehigh
DCregulationaccuracy.Thephasemarginshouldbegreater
than45oforoverallstability.
Forthisdesignwehave:
Vin=12V
Vo=1.2V
Vosc=1.8V(ThisisafunctionofVin,pls.seefeedforward
section)
Vref=0.5V
Lo=1.5uH
Co=4x22uF,ESR3mΩeach
Itmustbenotedherethatthevalueofthecapacitanceused
inthecompensatordesignmustbethesmallsignalvalue.
Forinstance,thesmallsignalcapacitanceofthe22uF
capacitorusedinthisdesignis10uFat1.2VDCbiasand
600kHzfrequency.Itisthisvaluethatmustbeusedforall
- 33 -
June24,2014 |DATASHEET|Rev3.6
33
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
computationsrelatedtothecompensation.Thesmall
signalvaluemaybeobtainedfromthemanufacturer’s
datasheets,designtoolsorSPICEmodels.Alternatively,
theymayalsobeinferredfrommeasuringthepower
stagetransferfunctionoftheconverterandmeasuring
thedoublepolefrequencyFLCandusingequation(17)
tocomputethesmallsignalCo.
Theseresultto:
FLC=20.5kHz
FESR=5.3MHz
Fs/2=300kHz
SelectcrossoverfrequencyF0=120kHz
SinceFLC<F0<Fs/2<FESR,TypeIIIisselectedtoplacethe
poleandzeros.
DetailedcalculationofcompensationTypeIII:
DesiredPhaseBoostΘ=70°
2
1sin 21.2 KHz
1sin
Zo
FF



2
1sin 680.6 kHz
1sin
Po
FF



Select:
12
0.5* 10.6 kHz and
ZZ
FF
30.5* 300 kHz
Ps
FF
SelectC4=2.2nF.
CalculateR3,C3andC2:
33
4
2* * * * ;3.08
*
oo oosc
in
FLCV
R
Rk
CV

SelectR3=3.01k:
33 3
13
1; 4.9 nF, Select: 10 nF
2* *
Z
CC C
FR

22 2
33
1; 176 pF, Select: 120 pF
2* *
P
CC C
FR

CalculateR4,R5andR6:
44 4
42
1; 106 , Select: 100
2* *P
RR R
CF

545
42
1- ; 3.41 k,
2* *Z
RRR
CF

SelectR5=3.32k:
656 6
*; 2.37 k Select: 2.37 k
-
ref
oref
V
RRR R
VV

SettingthePowerGoodThreshold
InthisdesignIR3897isusedinnormal(nontracking,
nonsequencing)mode,thereforethePGoodthresholdsare
internallysetat90%and120%ofVref.Atstartupassoonas
Vsnsvoltagereaches0.9*0.5V=0.45V(Fig.15),after1.28ms
delay,PGoodsignalisasserted.AslongastheVsnsvoltage
isbetweenthethresholdrange,Enableishigh,andnofault
happens,thePGoodremainshigh.
Thefollowingformulacanbeusedtosetthethreshold.
VoutPGood_Thcanbetakenas90%ofVout.ChooseR7=3.32KΩ:
_
*0.9* 7
8 (34)
*0.9
82.37
PGood Th
Vref R
RVout Vref
RK

ThePGoodisanopendrainoutput.Hence,itisnecessaryto
useapullupresistor,RPG,fromPGoodpintoVcc.Thevalue
ofthepullupresistormustbechosensuchastolimitthe
currentflowingintothePGoodpintolessthan5mAwhen
theoutputvoltageisnotinregulation.Atypicalvalueused
is49.9kΩ.
OVPcomparatoralsousesVsnssignalforoverVoltage
dectection.WithabovevaluesforR7andR8,OVPtrippoint
(Vout_OVP)is
_
*1.2*( 7 8) / 8 1.44 (35)OVPVout Vref R R R V

VrefBypassCapacitor
Aminimumvalueof100pFbypasscapacitorisrecommended
tobeplacedbetweenVrefandGndpins.Thiscapacitorshould
beplacedascloseaspossibletoVrefpin..
- 34 -
June24,2014 |DATASHEET|Rev3.6
34
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
APPLICATIONDIAGRAM
Figure28a:ApplicationCircuitfora12Vto1.2V,4APointofLoadConverter
Suggestedbillofmaterialsfortheapplicationcircuit
Part Reference Qty Value Description Manufacturer Part Number
Cin 2 10uF 1206, 25V, X5R, 20% TDK C3216X5R1E106M
C1 C5 C6 4 0.1uF 0603, 25V, X7R, 10% Murata GRM188R71E104KA01B
Cref 1 100pF 0603,50V,NP0, 5% Murata GRM1885C1H101JA01D
C4 1 2200pF 0603,50V,X7R Murata GRM188R71H222KA01B
C2 1 120pF
0603, 50V, NP0, 5% Murata GRM1885C1H121JA01D
Co 4 22uF
0805, 6.3V, X5R, 20% TDK C2012X5R0J226M
CVcc 1 2.2uF
0603, 16V, X5R, 20% TDK C1608X5R1C225M
C3 1 10nF
0603, 25V, X7R, 10% Murata GRM188R71E103KA01J
Cvin 1 1.0uF
0603, 25V, X5R, 10% Murata GRM188R61E105KA12D
Lo 1 1.5H SMD 7.05x6.6x4.8mm,6.7m Cyntec PCMB065T-1R5MS
R3 1 3.01K
Thick Film, 0603,1/10W,1% Panasonic ERJ-3EKF3011V
R5 R7 2 3.32K Thick Film, 0603,1/10W,1% Panasonic ERJ-3EKF3321V
R6 R8 2 2.37K Thick Film, 0603,1/10W,1% Panasonic ERJ-3EKF2371V
R4 1 100
Thick Film, 0603,1/10W,1% Panasonic ERJ-3EKF1000V
Rt 1 39.2K
Thick Film, 0603,1/10W,1% Panasonic ERJ-3EKF3922V
R1 Rpg 2 49.9K Thick Film, 0603,1/10W,1% Panasonic ERJ-3EKF4992V
R2 1 7.5K
Thick Film, 0603,1/10W,1% Panasonic ERJ-3EKF7551V
U1 1 IR3897 PQFN 4x5mm IR IR3897MPBF
- 35 -
June24,2014 |DATASHEET|Rev3.6
35
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
Boot
Vcc/LDO_out
Fb
Comp
Gnd PGnd
SW
S_Ctrl
Vo=1.2V
PGood
Enable
Rt/Sync
Vin=12 V
Vin
Vp
R5
3.32k
2.37K
Co=4X22uF
Lo
1.5 uH
C4
2.2nF
R4
143
R3
1.78k
C3
10nF
C2
120pF
C1
0. 1 uF
Cin = 3 X 10uF
Rt
39.2.K
RPG
49.9K
R1
49.9K
R2
7.5K
IR3897
2.2uF
CVcc
PVin
Vref
100pF
Cref
Vsns
R6
R7
3.32k
2.37K
R8
U1
C5
0.1uF
C6
0.1uF
External VCC=5V
Figure28b:ApplicationCircuitfora12Vto1.2V,4APointofLoadConverterwithExternal5VVCC
- 36 -
June24,2014 |DATASHEET|Rev3.6
36
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
Boot
Vcc/LDO_out
Fb
Comp
Gnd PGnd
SW
S_Ctrl
Vo=1V
PGood
Enable
Rt/Sync
Vin=5V
Vin
Vp
R5
3.32k
3.32k
Co=4X22uF
Lo
1uH
C4
2.2nF
R4
100
R3
3.01k
C3
5.6nF
C2
100pF
C1
0. 1 uF
Cin = 3 X 10uF
Rt
39.2.K
RPG
49.9K
IR3897
2.2uF
CVcc
PVin
Vref
100pF
Cref
Vsns
R6
R7
3.32k
3.32k
R8
U1
C5
0.1uF
C6
0.1uF
PGood
Enable
Figure29:ApplicationCircuitfora5Vto1V,4APointofLoadConverter
Suggestedbillofmaterialsfortheapplicationcircuit5Vto1V
Part Reference Qty Value Description Manufacturer Part Number
Cin 3 10uF 1206, 25V, X5R, 20% TDK C3216X5R1E106M
C1 C5 C6 3 0.1uF 0603, 25V, X7R, 10% Murata GRM188R71E104KA01B
Cref 1 100pF 0603,50V,NP0, 5% Murata GRM1885C1H101JA01D
C4 1 2200pF 0603,50V,X7R Murata GRM188R71H222KA01B
C2 1 100pF
0603, 50V, NP0, 5% Murata GRM1885C1H101JA01D
Co 4 22uF
0805, 6.3V, X5R, 20% TDK C2012X5R0J226M
CVcc 1 2.2uF
0603, 16V, X5R, 20% TDK C1608X5R1C225M
C3 1 5.6nF
0603, 50V, X7R, 10% Murata GRM188R71H562KA01D
Cvin 1 1.0uF
0603, 25V, X5R, 10% Murata GRM188R61E105KA12D
Lo 1 1uH SMD 6.86x6.47x5mm,4.7m TDK SPM6550T-1R0M
R3 1 3.01k
Thick Film, 0603,1/10W,1% Panasonic ERJ-3EKF3011V
R5 R6 R7 R8 4 3.32K Thick Film, 0603,1/10W,1% Panasonic ERJ-3EKF3321V
R4 1 100
Thick Film, 0603,1/10W,1% Panasonic ERJ-3EKF1000V
Rt 1 39.2K
Thick Film, 0603,1/10W,1% Panasonic ERJ-3EKF3922V
Rpg 2 49.9K
Thick Film, 0603,1/10W,1% Panasonic ERJ-3EKF4992V
U1 1 IR3897 PQFN 4x5mm IR IR3897MPBF
- 37 -
June24,2014 |DATASHEET|Rev3.6
37
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
Vo=0.6V
Boot
Vcc/LDO_out
Fb
Comp
Gnd PGnd
SW
S_Ctrl
PGood
PGood
Enable
Rt/Sync
Vin=12 V
Vin
Vp
R5
3.32k
Co=4X47uF
Lo
0.82uH
C4
3.3nF
R4
100
R3
1.6k
C3
8.2nF
C2
150pF
C1
0. 1 uF
Cin = 3 X 10
uF
Rt
60.4 K
RPG
49.9k
IR3897
2.2uF
CVcc
PVin
Vref
Vsns
R7
3.32k
Cvin
1.0uF
U1
C5
0.1uF
C6
0.1uF
1k
1k
R6
VDDQ=
1.2V
R8 10nF
C7
N/S
(optional)
Enable
Figure30:ApplicationCircuitfora12Vto0.6V,4A,VTTrail
Boot
Vcc/LDO_out
Fb
Comp
Gnd PGnd
SW
S_Ctrl
Vo=0.6V
PGood
PGood
Enable
Rt/Sync
Vin=1.2V
Vin
Vp
R5
5.62k
Co=5X22uF
Lo
0.36uH
C4
2.2nF
R4
182
R3
4.64k
C3
5.6nF
C2
110pF
C1
0. 1 uF
Cin = 3 X 22uF
Rt
39.2 K
RPG
49.9k
IR3897
2.2uF
CVcc
PVin
Vref
Vsns
R7
5.62k
U1
C5
0.1uF
C6
0.1uF
1k
1k
R6
R8 10nF
C7
Ext VCC
Enable
Vin=1.2V N/S
(optional)
Figure31:ApplicationCircuitfora1.2Vto0.6V,4A,VTTrail
- 38 -
June24,2014 |DATASHEET|Rev3.6
38
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
TYPICALOPERATINGWAVEFORMS
Vin=12V,Vo=1.2V,Iout=04A,RoomTemperature,NoAirFlow

Figure32:Startupat4ALoad,Figure33:Startupat4ALoad,
Ch1:Vin,Ch2:Vo,Ch3:PGood,Ch4:Enable Ch1:Vin,Ch2:Vo,Ch3:PGood,Ch4:Vcc
Figure34:Startupwith1Vprebias,Figure35:OutputVoltageRipple
0ALoad,Ch2:Vo 4ALoad,Ch2:Vo

Figure36:Inductornodeat4ALoad,Ch2LX Figure37:ShortCircuitRecovery,
Ch2:Vo,Ch4:Iout(2A/Div)
- 39 -
June24,2014 |DATASHEET|Rev3.6
39
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
TYPICALOPERATINGWAVEFORMS
Vin=12V,Vo=1.2V,Iout=04A,RoomTemperature,NoAirFlow

Figure38:TurnonatNoLoadshowingVcclevel, Figure39:TurnonatFullLoadshowingVcclevel,
Ch1:Vin,Ch2:Vo,Ch3:Vcc,Ch4:InductorCurrent Ch1:Vin,Ch2:Vo,Ch3:Vcc,Ch4:InductorCurrent
40:TransientResponse,2Ato4Astep@2.5A/uSecslewrate,
Ch2:Vout,Ch4Iout(1A/Div)
- 40 -
June24,2014 |DATASHEET|Rev3.6
40
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
TYPICALOPERATINGWAVEFORMS
Vin=12V,Vo=1.2V,Iout=04A,RoomTemperature,NoAirFlow
Figure41:BodePlotat4Aloadshowsabandwidthof112.6KHzandphasemarginof52.4degrees
Figure42:ThermalImageoftheBoardat4ALoad,
TestPoint1isIR3897,
TestPoint2isinductor
- 41 -
June24,2014 |DATASHEET|Rev3.6
41
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
TYPICALOPERATINGWAVEFORMS
Vin=12V,Vo=1.2V,Iout=04A,RoomTemperature,NoAirFlow

Figure43:FeedForwardforVinchangefrom7to16V Figure44:Start/StopusingSCtrlpin,
andbackto7V,Ch2:Vo,Ch4:Vin Ch1:Enable,Ch2:Vo,Ch3:pGood,Ch4:SCtrl
Figure45:ExternalFrequencySynchronizationto Figure46:OverVoltageprotection,
800KHzfromfreerunning600KHz,Ch1:LX,Ch2:Vo,Ch4Rt/SyncCh2Vo,Ch3PGood
Figure47:VoltageMarginingusingVrefpin 48:VoltagetrackingusingVppin
Ch2Vo,Ch3Vref,Ch4PGood Ch2Vo,Ch3Vp,Ch4PGood
- 42 -
June24,2014 |DATASHEET|Rev3.6
42
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
LAYOUTRECOMMENDATIONS
Thelayoutisveryimportantwhendesigninghigh
frequencyswitchingconverters.Layoutwillaffectnoise
pickupandcancauseagooddesigntoperformwithless
thanexpectedresults.
Maketheconnectionsforthepowercomponentsinthe
toplayerwithwide,copperfilledareasorpolygons.In
general,itisdesirabletomakeproperuseofpowerplanes
andpolygonsforpowerdistributionandheatdissipation.
Theinductor,outputcapacitorsandtheIR3897shouldbe
asclosetoeachotheraspossible.Thishelpstoreducethe
EMIradiatedbythepowertracesduetothehighswitching
currentsthroughthem.Placetheinputcapacitordirectly
atthePVinpinofIR3897.
Thefeedbackpartofthesystemshouldbekeptawayfrom
theinductorandothernoisesources.
ThecriticalbypasscomponentssuchascapacitorsforVin,
VccandVrefshouldbeclosetotheirrespectivepins.Itis
importanttoplacethefeedbackcomponentsincluding
feedbackresistorsandcompensationcomponentscloseto
FbandComppins.
InamultilayerPCBuseonelayerasapowergroundplane
andhaveacontrolcircuitground(analogground),towhich
allsignalsarereferenced.Thegoalistolocalizethehigh
currentpathtoaseparateloopthatdoesnotinterfere
withthemoresensitiveanalogcontrolfunction.Thesetwo
groundsmustbeconnectedtogetheronthePCboard
layoutatasinglepoint.Itisrecommendedtoplaceall
thecompensationpartsovertheanaloggroundplanein
toplayer.
ThePowerQFNisathermallyenhancedpackage.Basedon
thermalperformanceitisrecommendedtouseatleasta
4layersPCB.Toeffectivelyremoveheatfromthedevice
theexposedpadshouldbeconnectedtothegroundplane
usingvias.Figures46adillustratestheimplementationof
thelayoutguidelinesoutlinedabove,ontheIRDC38974
layerdemoboard.
Figure49a:IRDC3897DemoboardLayoutConsiderationsTopLayer
Compensation parts
should be placed
as close as possible
to the Comp pin
Resistor Rt and Vref
decoupling cap should
be placed as close as
possible to their pins
Enough copper &
minimum ground length
path between Input and
Output
A
ll bypass caps
should be placed
as close as possible
to their connecting pins
SW node copper is
kept only at the top
layer to minimize
the switching noise
- 43 -
June24,2014 |DATASHEET|Rev3.6
43
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
Figure49b:IRDC3897DemoboardLayoutConsiderationsBottomLayer
AnalogGroundplanePowerGroundplane
Figure49c:IRDC3897DemoboardLayoutConsiderationsMidLayer1
Figure49d:IRDC3897DemoboardLayoutConsiderationsMidLayer2
Single point connection
between AGND & PGND,
should be close to the
SupIRBuck kept away from
noise sources
Feedback andVsnstrace
routingshouldbekeptaway
fromnoisesources
- 44 -
June24,2014 |DATASHEET|Rev3.6
44
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
PCBMETALANDCOMPONENTPLACEMENT
Evaluationshaveshownthatthebestoverall
performanceisachievedusingthesubstrate/PCBlayout
asshowninfollowingfigures.PQFNdevicesshouldbe
placedtoanaccuracyof0.050mmonbothXandYaxes.
Selfcenteringbehaviorishighlydependentonsolders
andprocesses,andexperimentsshouldberuntoconfirm
thelimitsofselfcenteringonspecificprocesses.
Forfurtherinformation,pleasereferto“SupIRBuck™
MultiChipModule(MCM)PowerQuadFlatNoLead
(PQFN)BoardMountingApplicationNote.”(AN1132)
Figure50:PCBMetalPadSpacing(alldimensionsinmm)
*ContactInternationalRectifiertoreceiveanelectronicPCBLibraryfileinyourpreferredformat
- 45 -
June24,2014 |DATASHEET|Rev3.6
45
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
SOLDERRESIST
IRrecommendsthatthelargerPowerorLand
AreapadsareSolderMaskDefined(SMD.)
ThisallowstheunderlyingCoppertracestobeas
largeaspossible,whichhelpsintermsofcurrent
carryingcapabilityanddevicecoolingcapability.
WhenusingSMDpads,theunderlyingcopper
tracesshouldbeatleast0.05mmlarger(oneach
edge)thantheSolderMaskwindow,inorderto
accommodateanylayertolayermisalignment.
(i.e.0.1mminX&Y.)
However,forthesmallerSignaltypeleadsaround
theedgeofthedevice,IRrecommendsthatthese
areNonSolderMaskDefinedorCopperDefined.
WhenusingNSMDpads,theSolderResist
WindowshouldbelargerthantheCopperPad
byatleast0.025mmoneachedge,(i.e.0.05mm
inX&Y,)inordertoaccommodateanylayerto
layermisalignment.
Ensurethatthesolderresistinbetweenthe
smallersignalleadareasareatleast0.15mm
wide,duetothehighx/yaspectratioofthe
soldermaskstrip.
Figure51:Solderresist
*ContactInternationalRectifiertoreceiveanelectronicPCBLibraryfileinyourpreferredformat
- 46 -
June24,2014 |DATASHEET|Rev3.6
46
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
STENCILDESIGN
StencilsforPQFNcanbeusedwiththicknesses
of0.1000.250mm(0.0040.010").Stencilsthinner
than0.100mmareunsuitablebecausethey
depositinsufficientsolderpastetomakegood
solderjointswiththegroundpad;highreductions
sometimescreatesimilarproblems.Stencilsin
therangeof0.125mm0.200mm(0.0050.008"),
withsuitablereductions,givethebestresults.
Evaluationshaveshownthatthebestoverall
performanceisachievedusingthestencildesign
showninfollowingfigure.Thisdesignisfor
astencilthicknessof0.127mm(0.005").
Thereductionshouldbeadjustedforstencils
ofotherthicknesses.
Figure52:StencilPadSpacing(alldimensionsinmm)
*ContactInternationalRectifiertoreceiveanelectronicPCBLibraryfileinyourpreferredformat
- 47 -
June24,2014 |DATASHEET|Rev3.6
47
IR3897
4AHighlyIntegratedSupIRBuckTM
SingleInputVoltage,SynchronousBuckRegulator
PD
9766
3
MARKING INFORMATION
PACKAGE INFORMATION
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
This product has been designed and qualified for the Industrial market
Visit us at www.irf.com for sales contact information
Data and specifications su bje ct to change without notice.9/11
Figure54:PackageDimensions
Figure53:MarkingInformation