1
LT1001
Precision Operational
Amplifier
Guaranteed
Low Offset Voltage
LT1001AM 15µV max
LT1001C 60µV max
Guaranteed
Low Drift
LT1001AM 0.6µV/°C max
LT1001C 1.0µV/°C max
Guaranteed
Low Bias Current
LT1001AM 2nA max
LT1001C 4nA max
Guaranteed
CMRR
LT1001AM 114dB min
LT1001C 110dB min
Guaranteed
PSRR
LT1001AM 110dB min
LT1001C 106dB min
Low Power Dissipation
LT1001AM 75mW max
LT1001C 80mW max
Low Noise 0.3µV
P-P
The LT®1001 significantly advances the state-of-the-
art of precision operational amplifiers. In the design,
processing, and testing of the device, particular atten-
tion has been paid to the optimization of the entire
distribution of several key parameters. Consequently,
the specifications of the lowest cost, commercial tem-
perature device, the LT1001C, have been dramatically
improved when compared to equivalent grades of com-
peting precision amplifiers.
Essentially, the input offset voltage of all units is less
than 50µV (see distribution plot below). This allows the
LT1001AM/883 to be specified at 15µV. Input bias and
offset currents, common-mode and power supply re-
jection of the LT1001C offer guaranteed performance
which were previously attainable only with expensive,
selected grades of other devices. Power dissipation is
nearly halved compared to the most popular precision
op amps, without adversely affecting noise or speed
performance. A beneficial by-product of lower dissipa-
tion is decreased warm-up drift. Output drive capability
of the LT1001 is also enhanced with voltage gain
guaranteed at 10 mA of load current. For similar perfor-
mance in a dual precision op amp, with guaranteed
matching specifications, see the LT1002. Shown below
is a platinum resistance thermometer application.
Thermocouple amplifiers
Strain gauge amplifiers
Low level signal processing
High accuracy data acquisition
APPLICATIONS
U
Linearized Platinum Resistance Thermometer
with ±0.025°C Accuracy Over 0 to 100°C
+
LT1001
+
LT1001
2
3
6
R plat.
†
1k = 0°C
10k*
1.2k**
LM129
+15
2
3
6
200
1001 TA01
LINEARITY
TRIM
GAIN
TRIM
OUTPUT
0 TO 10V =
0 TO 100°C
1 µf
10k*
10k*
* ULTRONIX 105A WIREWOUND
** 1% FILM
†
PLATINUM RTD
 118MF (ROSEMOUNT, INC.)
Trim sequence: trim offset (0 °C = 1000.0),
 trim linearity (35 °C = 1138.7), trim gain
 (100 °C = 1392.6). Repeat until all three
 points are fixed with ±0.025°C.
90k* 20k OFFSET TRIM
20k
330k*
1MEG.**
, LTC and LT are registered trademarks of Linear Technology Corporation.
FEATURES
DESCRIPTION
U
Typical Distribution
of Offset Voltage
VS = ±15V, TA = 25°C
INPUT OFFSET VOLTAGE (MICROVOLTS)
–60
NUMBER OF UNITS
200
150
100
50
020
1001 TA02
–40 –20 040 60
954 UNITS
FROM THREE RUNS
2
LT1001
ABSOLUTE MAXIMUM RATINGS
W
WW
U
Supply Voltage ...................................................... ±22V
Differential Input Voltage ...................................... ±30V
Input Voltage ........................................................ ±22V
Output Short Circuit Duration ......................... Indefinite
Operating Temperature Range
LT1001AM/LT1001M ....................... 55°C to 150°C
LT1001AC/LT1001C .............................. 0°C to 125°C
Storage: All Devices.......................... 65°C to 150°C
Lead Temperature (Soldering, 10 sec.).................300°C
ORDER PART NUMBER
LT1001AMH/883
LT1001MH
LT1001ACH
LT1001CH
PACKAGE/ORDER INFORMATION
W
UU
LT1001AMJ8/883
LT1001MJ8
LT1001ACJ8
LT1001CJ8
LT1001ACN8
LT1001CN8
LT1001CS8
S8 PART MARKING
1001
VS = ±15V, TA = 25°C, unless otherwise noted
ELECTRICAL CHARACTERISTICS
LT1001AM/883
LT1001AC LT1001M/LT1001C
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage Note 1 LT1001AM/883 7 15 18 60 µV
LT1001AC 10 25
V
OS
Long Term Input Offset Voltage
Time Stability Notes 2 and 3 0.2 1.0 0.3 1.5 µV/month
I
OS
Input Offset Current 0.3 2.0 0.4 3.8 nA
I
b
Input Bias Current ±0.5 ±2.0 ±0.7 ±4.0 nA
e
n
Input Noise Voltage 0.1Hz to 10Hz (Note 2) 0.3 0.6 0.3 0.6 µV
p-p
e
n
Input Noise Voltage Density f
O
= 10Hz (Note 5) 10.3 18.0 10.5 18.0 nVHz
f
O
= 1000Hz (Note 2) 9.6 11.0 9.8 11.0
A
VOL
Large Signal Voltage Gain R
L
2k, V
O
= ±12V 450 800 400 800 V/mV
R
L
1k V
O
= ±10V 300 500 250 500
CMRR Common Mode Rejection Ratio V
CM
= ±13V 114 126 110 126 dB
PSRR Power Supply Rejection Ratio V
S
= ±3V to ±18V 110 123 106 123 dB
R
in
Input Resistance Differential Mode 30 100 15 80 M
Input Voltage Range ±13 ±14 ±13 ±14 V
V
OUT
Maximum Output Voltage Swing R
L
2kΩ±13 ±14 ±13 ±14 V
R
L
1kΩ±12 ±13.5 ±12 ±13.5 V
S
R
Slew Rate R
L
2k (Note 4) 0.1 0.25 0.1 0.25 V/µs
GBW Gain-Bandwidth Product (Note 4) 0.4 0.8 0.4 0.8 MHz
P
d
Power Dissipation No load 46 75 48 80 mW
No load, V
S
= ±3V 4 6 4 8
See Notes on page 3.
TOP VIEW
OFFSET ADJUST
V+
–IN OUT
NC
+
+IN
V– (CASE)
87
6
5
3
2
1
4
H PACKAGE
METAL CAN
1
2
3
4
8
7
6
5
TOP VIEW

V+
OUT
NC
IN
+IN
V–
J8 PACKAGE
8 PIN HERMETIC DIP
+
VOS
TRIM
VOS
TRIM
S8 PACKAGE
8 PIN PLASTIC SO
N8 PACKAGE
8 PIN PLASTIC DIP
3
LT1001
ELECTRICAL CHARACTERISTICS
LT1001AM/883 LT1001M
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage 30 60 45 160 µV
V
OS
Average Offset Voltage Drift 0.2 0.6 0.3 1.0 µV/°C
Temp
I
OS
Input Offset Current 0.8 4.0 1.2 7.6 nA
I
B
Input Bias Current ±1.0 ±4.0 ±1.5 ±8.0 nA
A
VOL
Large Signal Voltage Gain R
L
2k, V
O
= ±10V 300 700 200 700 V/mV
CMRR Common Mode Rejection Ratio V
CM
= ±13V 110 122 106 120 dB
PSRR Power Supply Rejection Ratio V
S
= ±3 to ±18V 104 117 100 117 dB
Input Voltage Range ±13 ±14 ±13 ±14 V
V
OUT
Output Voltage Swing R
L
2k±12.5 ±13.5 ±12.0 ±13.5 V
P
d
Power Dissipation No load 55 90 60 100 mW
VS = ±15V, –55°C TA 125°C, unless otherwise noted
LT1001AC LT1001C
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage 20 60 30 110 µV
V
OS
Average Offset Voltage Drift 0.2 0.6 0.3 1.0 µV/°C
Temp
I
OS
Input Offset Current 0.5 3.5 0.6 5.3 nA
I
B
Input Bias Current ±0.7 ±3.5 ±1.0 ±5.5 nA
A
VOL
Large Signal Voltage Gain R
L
2k, V
O
= ±10V 350 750 250 750 V/mV
CMRR Common Mode Rejection Ratio V
CM
= ±13V 110 124 106 123 dB
PSRR Power Supply Rejection Ratio V
S
= ±3V to ±18V 106 120 103 120 dB
Input Voltage Range ±13 ±14 ±13 ±14 V
V
OUT
Output Voltage Swing R
L
2k±12.5 ±13.8 ±12.5 ±13.8 V
P
d
Power Dissipation No load 50 85 55 90 mW
The denotes the specifications which apply over the full operating
temperature range.
Note 1: Offset voltage for the LT1001AM/883 and LT1001AC are measured
after power is applied and the device is fully warmed up. All other grades
are measured with high speed test equipment, approximately 1 second
after power is applied. The LT1001AM/883 receives 168 hr. burn-in at
125°C. or equivalent.
Note 2: This parameter is tested on a sample basis only.
Note 3: Long Term Input Offset Voltage Stability refers to the averaged
trend line of V
OS
versus Time over extended periods after the first 30 days
of operation. Excluding the initial hour of operation, changes in V
OS
during
the first 30 days are typically 2.5µV.
Note 4: Parameter is guaranteed by design.
Note 5: 10Hz noise voltage density is sample tested on every lot. Devices
100% tested at 10Hz are available on request.
VS = ±15V, 0°C TA 70°C, unless otherwise noted
4
LT1001
TYPICAL PERFORMANCE CHARACTERISTICS
UW
TIME AFTER POWER ON (MINUTES)
0
CHANGE IN OFFSET VOLTAGE (MICROVOLTS)
4
3
2
1
4
1001 G03
1235
V
S
= ±15V
T
A
= 25°C
METAL CAN (H) PACKAGE
DUAL-IN-LINE PACKAGE
PLASTIC (N) OR CERDIP (J)
Long Term Stability of Four
Representative Units0.1Hz to 10Hz Noise
TIME (SECONDS)
0
NOISE VOLTAGE 100nV/DIV
8
1001 G04
24610
TEMPERATURE (°C)
–50
1.4
1.2
1.0
0.8
0.6
0.4
0.2
25 75
1001 G07
–25 0 50 100 125
INPUT BIAS AND OFFSET CURRENTS (nA)
V
S
= ±15V
BIAS CURRENT
OFFSET CURRENT
Input Bias and Offset Current
vs Temperature
±DIFFERENTIAL INPUT (VOLTS)
0.1
0
INVERTING OR NON-INVERTING
INPUT BIAS CURRENT (mA)
10
20
30
1.0 3.00.3 10 30
1001 G09
V
S
= ±15V
T
A
= 25°C
I
B
1 nA to V
DIFF
= 0.7V
TIME (MONTHS)
0
OFFSET VOLTAGE CHANGE (µV)
4
1001 G06
1235
10
5
0
–5
–10
COMMON-MODE INPUT VOLTAGE
–15
INPUT BIAS CURRENT (nA)
1.5
1.0
0.5
0
–.5
1.0
1.5 –10 –5 0 5
1001 G08
10 15
VS = ±15V
TA = 25°C
DEVICE WITH POSITIVE INPUT CURRENT
DEVICE WITH NEGATIVE INPUT CURRENT
+
VCM
Ib
COMMON-MODE
INPUT RESISTANCE = = 280G
28V
0.1nA
FREQUENCY (Hz)
1
1
3
10
30
100
0.1
1.0
3
10
10 100 1000
1001 G05
VOLTAGE NOISE nV/Hz
T
A
= 25°C
V
S
= ±3 TO ±18V
VOLTAGE
CURRENT
1/f CORNER
70Hz
1/f CORNER
4Hz
0.3
CURRENT NOISE pA/Hz
Noise Spectrum
OFFSET VOLTAGE DRIFT (µV/°C)
1.0
NUMBER OF UNITS
100
80
60
40
20
+0.2
1001 G01
0.6 0.2 0+0.6 +1.0
265 UNITS
TESTED
Input Bias Current
Over the Common Mode Range Input Bias Current vs
Differential Input Voltage
TEMPERATURE (°C)
–50
OFFSET VOLTAGE (µV)
50
40
30
20
10
0
10
20
30
40
–50 050 75
1001 G02
–25 25 100 125
LT1001
LT1001A
LT1001A
LT1001
V
S
= ±15V
Warm-Up Drift
Offset Voltage Drift withTemperature
of Representative Units
Typical Distribution of Offset
Voltage Drift with Temperature
5
LT1001
TYPICAL PERFORMANCE CHARACTERISTICS
UW
Common Mode Limit
vs Temperature
TEMPERATURE °C
–50
V+
0.2
0.4
0.6
0.8
1.0
+1.0
+0.8
+0.6
+0.4
+0.2
V
25 75
1001 G13
–25 0 50 100 125
COMMON MODE LIMIT (VOLTS)
REFERRED TO POWER SUPPLY
V = –1.2 to –4V
V = –12 to –18V
V+ = 12 to 18V
V+ = 1.2 to 4V
FREQUENCY (MHz)
0.1 0.2 0.5
VOLTAGE GAIN (dB)
PHASE SHIFT (DEGREES)
1
1001 G12
PHASE MARGIN –55°C = 63°
125°C = 57°
20
16
12
8
4
0
–4
–8
80
100
120
140
160
180
200
220
2
PHASE 25°C
GAIN 125°C
V
S
= ±15V
GAIN 25°C & –55°C
25°C
PHASE
MARGIN
= 60°
Gain, Phase Shift vs Frequency
FREQUENCY (Hz)
0.1
OPEN LOOP VOLTAGE GAIN (dB)
10M
1001 G11
10 100 10k 1M1 1k 100k
140
120
100
80
60
40
20
0
–20
T
A
= 25°C
V
S
= ±15V
V
S
= ±3V
Open Loop Voltage Gain
Frequency Response
FREQUENCY (Hz)
1
COMMON MODE REJECTION (dB)
140
120
100
80
60
40
20 10 100 1k 10k
1001 G14
100k 1M
V
S
= ±15V
T
A
= 25°C
Common Mode Rejection Ratio
vs Frequency
SUPPLY VOLTAGE (V)
SUPPLY CURRENT (mA)
2.0
1.5
1.0
0.5
±9±15
1001 G16
±3±6±12 ±18 ±21
–55°C
125°C
25°C
Supply Current vs Supply Voltage
LOAD RESISTANCE ()
100 300
OUTPUT SWING (VOLTS)
16
12
8
4
01000 3k 10k
1001 G17
V
S
= ±15V
T
A
= 25°C
POSITIVE SWING
NEGATIVE SWING
Output Swing vs Load Resistance
TEMPERATURE (°C)
–50
1200k
1000k
800k
600k
400k
200k
025 75
1001 G10
–25 0 50 100 125
OPEN LOOP VOLTAGE GAIN (V/V)
V
S
= ±15V, V
O
= ±12V
V
S
= ±3V, V
O
= ±1V
Open Loop Voltage Gain
vs Temperature
TIME FROM OPUTPUT SHORT (MINUTES)
0
SHORT CIRCUIT CURRENT (mA)
SINKING SOURCING
2
50
40
30
20
10
10
20
30
40
–50
1001 G18
134
–55°C
–55°C
25°C
25°C
125°C
125°C
V
S
= ±15V
Output Short-Circuit Current
vs Time
FREQUENCY (Hz)
POWER SUPPLY REJECTION (dB)
140
120
100
80
60
40
20
0
1001 G15
0.1 110 100 1k 10k 100k
V
S
= ±15V ±1V
p-p
T
A
= 25°C
NEGATIVE SUPPLY
POSITIVE SUPPLY
Power Supply Rejection Ratio
vs Frequency
6
LT1001
TYPICAL PERFORMANCE CHARACTERISTICS
UW
Voltage Follower Overshoot
vs Capacitive Load
Small Signal Transient Response
1001 G22
A
V
= +1, C
L
= 50pF
1001 G19
Large Signal Transient Response
FREQUENCY (kHz)
1
OUTPUT VOLTAGE, PEAK-TO-PEAK (VOLTS)
28
24
20
16
12
8
4
010 100 1000
1001 G23
VS = ±15V
TA = 25°C
Maximum Undistorted
Output vs. Frequency
FREQUENCY (Hz)
1
OUTPUT IMPEDANCE ()
100
10
1
0.1
0.01
0.001 10k
1001 G24
10 100 1k 100k
AV = 1000
AV = +1
IO = ±1mA
VS = ±15V
TA = 25°C
Closed Loop Output Impedance
A
V
= +1, C
L
= 1000pF
1001 G21
Small Signal Transient Response
CAPACITIVE LOAD (PICOFARADS)
100
PERCENT OVERSHOOT
1001 G20
1000 10,000 100,000
100
80
60
40
20
0
V
S
= ±15V
T
A
= 25°C
V
IN
= 100mV
R
L
> 50k
Application Notes and Test Circuits
The LT1001 series units may be inserted directly into
OP-07, OP-05, 725, 108A or 101A sockets with or without
removal of external frequency compensation or nulling
components. The LT1001 can also be used in 741, LF156
or OP-15 applications provided that the nulling circuitry is
removed.
The LT1001 is specified over a wide range of power supply
voltages from ±3V to ±18V. Operation with lower supplies
is possible down to ±1.2V (two Ni-Cad batteries). How-
ever, with ±1.2V supplies, the device is stable only in
closed loop gains of +2 or higher (or inverting gain of one
or higher).
APPLICATIONS INFORMATION
WUU U
Unless proper care is exercised, thermocouple effects
caused by temperature gradients across dissimilar metals
at the contacts to the input terminals, can exceed the
inherent drift of the amplifier. Air currents over device
leads should be minimized, package leads should be
short, and the two input leads should be as close together
as possible and maintained at the same temperature.
Test Circuit for Offset Voltage and its Drift with Temperature
+
15V
LT1001
+15V
*50k
*100
*50k
2
3
7
6VO
1001 F01
VO = 1000VOS
* RESISTORS MUST HAVE LOW
 THERMOELECTRIC POTENTIAL.
** THIS CIRCUIT IS ALSO USED AS THE BURN-IN
 CONFIGURATION FOR THE LT1001, WITH SUPPLY
 VOLTAGES INCREASED TO ±20V.
4
7
LT1001
0.1Hz to 10Hz Noise Test Circuit
Offset Voltage Adjustment
The input offset voltage of the LT1001, and its drift with tempera-
ture, are permanently trimmed at wafer test to a low level.
However, if further adjustment of Vos is necessary, nulling with
a 10k or 20k potentiometer will not degrade drift with tempera-
ture. Trimming to a value other than zero creates a drift of (Vos/
300)µV/°C, e.g., if Vos is adjusted to 300 µV, the change in drift
will be 1 µV/°C. The adjustment range with a 10k or 20k pot is
approximately ±2.5mV. If less adjustment range is needed, the
sensitivity and resolution of the nulling can be improved by using
a smaller pot in conjunction with fixed resistors. The example
below has an approximate null range of ±100 µV.
+
LT1001
+
LT1001
100k
2k
100k
4.3k
110k
SCOPE
× 1
R
IN
= 1M
0.1µF
4.7 µF
24.3k
10
1001 F03
0.1 µF
22µF
VOLTAGE GAIN = 50,000
2.2µF
DEVICE
UNDER
TEST
Improved Sensitivity Adjustment
+
15V
LT1001
+15V
2
3
76OUTPUT
INPUT
1001 F02
4
8
7.5k
1k
7.5k
1
(Peak-to-Peak noise measured in 10 sec interval)
The device under test should be warmed up for three minutes and
shielded from air currents.
1001 F04
+
+
+–
+
2.2µF
TANTALUM
INPUT
1k
30k
3.9k
30k
390
1.2k
.5
.5
470
300
1.8k
3.9k
300
*ADJUST FOR
BEST SQUARE WAVE
AT OUTPUT
FULL POWER
BANDWIDTH 8MHz
200*
200*
22
33
2N3866
2N5160
2N5160
2N3904
2N4440
2N3866
+15V
2N4440
OUTPUT
2N3904
2N3906
1N914
1N914
6
3
15pF
10k
R
IN
1k
2
15V
LT1001
0.01 µF
22µF TANTALUM
22µF TANTALUM
0.1µF
.1µF
15V
200pf
.001
µF
0.01µF
200pF
2N5486
15-60pF
TUSONIX # 519-3188
1k
R
f
DC Stabilized
1000v/µsec Op Amp
8
LT1001
TYPICAL APPLICATIONS
U
Microvolt Comparator with TTL Output Photodiode Amplifier
+
LT1001
2
2
3
3
6
6
2.0k*
8.2k
LM329
+15V
2
3
6
1001 TA07
2k
4.99k*
2k
15V
*RN60C FILM RESISTORS
+15V
IN4148
350 BRIDGE
2N2219
REFERENCE OUT
TO MONITORING
A/D CONVERTER
IN4148
100
100Ω
5W
10k
ZERO
1µF340k*
0 TO 10V
OUT
301k
1.1k*
2N2907
+
LT1001
+
LT1001
*
GAIN
TRIM
Strain Gauge Signal Conditioner with Bridge Excitation
2
3
–5V
7
8
+5V
NON
INVERTING
INPUT
INVERTING
INPUT 4IN914
1001 TA03
OUTPUT
2N3904
4.99k 1%
20k
5%
1.21M
1%
39.2 1%
5k 5%
+
LT1001
Positive feedback to one of the nulling terminals
creates 5 µ to 20 µV of hysteresis. Input offset
voltage is typically changed by less than 5 µV due
to the feedback.
2
3
6
100pF
100pF
1001 TA04
OUTPUT
1V/µA
500k
1%
500k 1%
+
LT1001
λ
Precision Current Sink
2
3
6
7
R
–5V
V
IN
V
+
= 2 to 35V
4
1001 TA06
10K
+
LT1001 2N3685
2N2219
0 to (V
+
– 1V)
I
OUT
=
V
IN
R
2
3
6
7
R
5V
V
IN
V
=
2 to –35V
4
1001 TA05
C
RC 10
–4
5k
5k
10k
+
LT1001 2N3685
1000pF
2N2219
0 to (V
+ 1V)
I
OUT
=
V
IN
R
Precision Current Source
9
LT1001
rejections. Worst-case summation of guaranteed
specifications is tabulated below.
Large Signal Voltage Follower
With 0.001% Worst-Case Accuracy
The voltage follower is an ideal example illustrating
the overall excellence of the LT1001. The contributing
error terms are due to offset voltage, input bias cur-
rent, voltage gain, common-mode and power-supply
OUTPUT ACCURACY
LT1001AM LT1001C LT1001AM LT1001C
/883 /883
25
°
C25
°
C –55 to 125
°
C 0 to 70
°
C
Error Max. Max. Max. Max.
Offset Voltage 15µV60µV60µV 110µV
Bias Current 20µV40µV40µV55µV
Common-Mode Rejection 20µV30µV30µV50µV
Power Supply Rejection 18µV30µV36µV42µV
Voltage Gain 22µV25µV33µV40µV
Worst-case Sum 95µV 185µV 199µV 297µV
Percent of Full Scale
(=20V) 0.0005% 0.0009% 0.0010% 0.0015%
Precision Absolute Value Circuit
1001 TA10
10k
0.1%
10k
0.1%
10k
0.1%
10k
0.1%
10k
0.1%
INPUT
10 to 10V OUTPUT
0 to 10V
2
3
6
+
LT1001
2
3
6
+
LT1001
IN4148
IN4148
2
3
6
7
10
15V
+15V
4
*
++–
1001 TA09
620k
BATTERY AMBIENT 2k
–15V
0.6
5W
+
LT1001
IN4148
IN4001
10V, 1.2 AMP HR
NICAD STACK
**
*SINGLE POINT GROUND
THERMOCOUPLES ARE
40µV/°C CHROMEL-ALUMEL
(TYPE K)
CIRCUIT USES TEMPERATURE DIFFERENCE
BETWEEN BATTERY PACK MOUNTED
THERMOCOUPLE AND AMBIENT THERMO-
COUPLE TO SET BATTERY CHARGE
CURRENT. PEAK CHARGING
CURRENT IS 1 AMP.
43k
1µF
0.1µF
2N6387
Thermally Controlled NiCad Charger
2
3
6
7
12 to –18V
+12 to +18V
INPUT
10 to +10V 4
1001 TA08
OUTPUT
10 to +10V
R
S
0 to 10k
+
LT1001
10
LT1001
Precision Power Supply with Two Outputs
(1) 0V to 10V in 100µV STEPS
(2) 0V to 100V in 1mV STEPS
+
+
2
3
1
8
6
+
2
3
6
1k
2N4393
Q1
2N4393
Q6
1001 TA12
**
100k
**
100k 10k*
10k*
10k**
10k**
10k
2k
100k
INPUT
100k
4.7k
4.7k
10k
4.7k 3.3k
15pF
30pF
+15V
IN914
15V
LM301A
2
3
62
3
6V
OUT
LT1001
LM301A
15pF
IN914
* 1% FILM
** RATIO MATCH 0.05%
Q2, 3, 4, 5 CA 3096 TRANSISTOR ARRAY
47pF
Q4
Q2
V
SET
DEAD ZONE
CONTROL INPUT
0 to 5V
+
Q5
LT1001
V
SET
V
SET
V
OUT
V
IN
Q3
+
+
+
+15V
15V
+15V
25k
LM399 KVD
00000 –
99999 + 1
KELVIN-VARLEY
DIVIDER
ESI#DP311
+
2
100
6IN
914
2N2219
2k
22k*
43k*
(select)
+15V
1005W
8.2k
3
2
4
0.1 2.2
22µF
2N6533
2N2907
1001 TA11
+15
1.8k
+15V
5k
90k*
10k* (select)
TRIM–100V
100
15
DIODES =
SEMTECH #
FF-15
OUTPUT 2
0-100V, 25mA
OUTPUT 1
0-10V
25mA
6
IN914
2k
IN914
3
LT1001
+
LT1001
+
2
6
VN-46
TRIAD TY-90
VN-46
33k 33k 74C74
33k
680pF
*JULIE RSCH. LABS
#R-44
3LT301A
D
CLK
Q
Q
CLAMP SET
Dead Zone Generator
BIPOLAR SYMMETRY IS EXCELLENT BECAUSE ONE DEVICE, Q2, SETS BOTH LIMITS
11
LT1001
Information furnished by Linear Technology Corporation is believed to be accurate and
reliable.
However, no responsibility is assumed for its use. Linear Technology Corpora-
tion makes no representation that the interconnection of its circuits as described herein
will not infringe on existing patent rights.
Instrumentation Amplifier with ±300V
Common Mode Range and CMRR > 150dB
+
OUT
OUTPUT
1001 TA13
**
1µF
0.1µF
0.1µF
**0.2µF
330k*
200
GAIN
TRIM
820820
909*
10k
OUT
IN
INPUT
+15V
IN
10k 1k
74C906
(ACQUIRE)
S1
S2
S3
S4
0201
(READ)
12
2
3
6
2
3
2k*
2k*
R1 1k
5.6k*
6
C
EN R
CLK
74C04 74C86
4022
+
+
LT1001
A
LM301A
1) ALL DIODES IN4148
2) S1–S4 OPTO MOS SWITCH OFM-1A, THETA-J CORP.
3) *FILM RESISTOR
4) **POLYPROPYLENE CAPACITORS
5) ADJUST R1 for 93 Hz AT TEST POINT A
LM329 A FLYING CAPACITOR CHARGED BY CLOCKED
PHOTO DRIVEN FET SWITCHES CONVERTS A
DIFFERENTIAL SIGNAL AT A HIGH COMMON
MODE VOLTAGE TO A SINGLE ENDED SIGNAL
AT THE LT1001 OUTPUT.
12
LT1001
LT/GP 0396 2K REV A • PRINTED IN USA
LINEAR TECHN OLOGY CORPORATION 1983
Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900
FAX
: (408) 434-0507
TELEX
: 499-3977
SCHE ATIC DIAGRA
WW
2
500
500
4
V
V+
+
Q7
Q5
Q3
Q6
Q27
Q28
Q29 Q24 Q25
Q31
Q32
Q4
Q8
Q11 Q12
Q33
Q34
1001 SS
Q22
2k 2k
Q15
Q26
20
240
120
180
20
3k
8k
1.5k
25k
Q16
Q21
Q23
Q13 Q14
55pF 20pF
3k
30pF
Q1B
Q10
Q9
Q19
Q20
T1
Q17 Q18 Q30
Q2B Q2A
3
18
40k40k
6k 6k
6
7
OUT
Q1A
Dimensions in inches (millimeters) unless otherwise noted.
PACKAGE DESCRIPTION
U
T
jmax
150°Cθ
ja
150°C/W
0.016 – 0.050
0.406 – 1.270
0.010 – 0.020
(0.254 – 0.508)× 45°
0°– 8° TYP
0.008 – 0.010
(0.203 – 0.254)
SO8 0695
0.053 – 0.069
(1.346 – 1.752)
0.014 – 0.019
(0.355 – 0.483)
0.004 – 0.010
(0.101 – 0.254)
0.050
(1.270)
BSC
1234
0.150 – 0.157**
(3.810 – 3.988)
8765
0.189 – 0.197*
(4.801 – 5.004)
0.228 – 0.244
(5.791 – 6.197)
DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE
*
**
S8 Package
8-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG # 05-08-1610)
T
jmax
150°Cθ
ja
100°C/W T
jmax
150°Cθ
ja
130°C/W
N8 Package
8-Lead PDIP (Narrow 0.300)
(LTC DWG # 05-08-1510)
J8 Package
8-Lead CERDIP (Narrow 0.300, Hermetic)
(LTC DWG # 05-08-1110)
0.050
(1.270)
MAX
0.016 – 0.021**
(0.406 – 0.533)
0.010 – 0.045*
(0.254 – 1.143)
SEATING
PLANE
0.040
(1.016)
MAX 0.165 – 0.185
(4.191 – 4.699)
GAUGE
PLANE
REFERENCE
PLANE
0.500 – 0.750
(12.700 – 19.050)
0.305 – 0.335
(7.747 – 8.509)
0.335 – 0.370
(8.509 – 9.398)
DIA
0.200
(5.080)
TYP
0.027 – 0.045
(0.686 – 1.143)
0.027 – 0.034
(0.686 – 0.864)
0.110 – 0.160
(2.794 – 4.064)
INSULATING
STANDOFF
45°TYP
H8(TO-5) 0.200 PCD 0595
LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE 
AND 0.045" BELOW THE REFERENCE PLANE
FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS 0.016 – 0.024
(0.406 – 0.610)
*
**
T
jmax
150°Cθ
ja
150°C/W θ
jc
45°C/W
N8 0695
0.009 – 0.015
(0.229 – 0.381)
0.300 – 0.325
(7.620 – 8.255)
0.325 +0.025
–0.015
+0.635
–0.381
8.255
()
12 34
8765
0.255 ± 0.015*
(6.477 ± 0.381)
0.400*
(10.160)
MAX
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)
0.005
(0.127)
MIN
0.100 ± 0.010
(2.540 ± 0.254)
0.065
(1.651)
TYP
0.045 – 0.065
(1.143 – 1.651)
0.130 ± 0.005
(3.302 ± 0.127)
0.015
(0.380)
MIN
0.018 ± 0.003
(0.457 ± 0.076)
0.125
(3.175)
MIN
J8 0694
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS.
0.045 – 0.068
(1.143 – 1.727)
FULL LEAD
OPTION
0.023 – 0.045
(0.584 – 1.143)
HALF LEAD
OPTION
CORNER LEADS OPTION 
(4 PLCS)
0.300 BSC
(0.762 BSC)
0.008 – 0.018
(0.203 – 0.457) 0° – 15°
0.385 ± 0.025
(9.779 ± 0.635)
0.005
(0.127)
MIN
0.405
(10.287)
MAX
0.220 – 0.310
(5.588 – 7.874)
1234
8765
0.025
(0.635)
RAD TYP
0.014 – 0.026
(0.360 – 0.660)
0.200
(5.080)
MAX
0.015 – 0.060
(0.381 – 1.524)
0.125
3.175
MIN
0.100 ± 0.010
(2.540 ± 0.254)
0.045 – 0.068
(1.143 – 1.727)
H Package
8-Lead TO-5 Metal Can (0.200 PCD)
(LTC DWG # 05-08-1320)