HALF-BRIDGE DRIVER
Features
Floating channel designed for bootstrap operation
Fully operational to +600V
Tolerant to negative transient voltage
dV/dt immune
Gate drive supply range from 5 to 20V
Undervoltage lockout for both channels
3.3V, 5V and 15V input logic compatible
Cross-conduction prevention logic
Matched propagation delay for both channels
High side output in phase with IN input
Logic and power ground +/- 5V offset.
Internal 540ns dead-time
Lower di/dt gate driver for better noise
immunity
Shut down input turns off both channels
8-Lead SOIC also available LEAD-FREE (PbF).
IR2302(S) & (PbF)
Data Sheet No. PD60207 Rev.A
www.irf.com 1
Packages
 





 
 
    
  
   
µ
  
   
µ
2106/2301//2108//2109/2302/2304 Feature Comparison
    
Description
The IR2302(S) are high voltage, high speed
power MOSFET and IGBT drivers with depen-
dent high and low side referenced output
channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction.
The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers
feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can
be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to
600 volts.
8-Lead PDIP
IR2302
8-Lead SOIC
IR2302(S)
(Also available LEAD-FREE (PbF))
Typical Connection
IR2302











(Refer to Lead Assignments for
correct configuration). This/
These diagram(s) show elec-
trical connections only. Please refer to our Application Notes
and DesignTips for proper circuit board layout.
IR2302(S) & (PbF)
2www.irf.com
Recommended Operating Conditions
The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the
recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential.
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).
VB High side floating supply absolute voltage VS + 5 VS + 20
VSHigh side floating supply offset voltage Note 1 600
VHO High side floating output voltage VSVB
VCC Low side and logic fixed supply voltage 5 20
VLO Low side output voltage 0 VCC
VIN Logic input voltage (IN & SD) COM VCC
TAAmbient temperature -40 150 °C
Symbol Definition Min. Max. Units
V
Symbol Definition Min. Max. Units
VBHigh side floating absolute voltage -0.3 625
VSHigh side floating supply offset voltage VB - 25 VB + 0.3
VHO High side floating output voltage VS - 0.3 VB + 0.3
VCC Low side and logic fixed supply voltage -0.3 25
VLO Low side output voltage -0.3 VCC + 0.3
VIN Logic input voltage (IN & SD) COM - 0.3 VCC + 0.3
dVS/dt Allowable offset supply voltage transient 50 V/ns
PDPackage power dissipation @ TA +25°C (8 Lead PDIP) 1.0
(8 Lead SOIC) 0.625
RthJA Thermal resistance, junction to ambient (8 Lead PDIP) 125
(8 Lead SOIC) 200
TJJunction temperature 150
TSStorage temperature -50 150
TLLead temperature (soldering, 10 seconds) 300
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param-
eters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions.
V
°C/W
W
°C
IR2302(S) & (PbF)
www.irf.com 3
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, CL = 1000 pF, and TA = 25°C unless otherwise specified.
Symbol Definition Min. Typ. Max. Units Test Conditions
ton Turn-on propagation delay 550 750 950 VS = 0V
toff Turn-off propagation delay 200 280 VS = 0V or 600V
tsd Shut-down propagation delay 200 280
MT Delay matching, HS & LS turn-on/off 0 50
trTurn-on rise time 130 220 VS = 0V
tfTurn-off fall time 50 80 VS = 0V
DT Deadtime: LO turn-off to HO turn-on(DTLO-HO) & 400 540 680
HO turn-off to LO turn-on (DTHO-LO)
MDT Deadtime matching = DTLO - HO - DTHO-LO —0 60
nsec
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15V and TA = 25°C unless otherwise specified. The VIL, VIH and IIN parameters are referenced to
COM and are applicable to the respective input leads: IN and SD. The VO, IO and Ron parameters are referenced to COM
and are applicable to the respective output leads: HO and LO.
Symbol Definition Min. Typ. Max. Units Test Conditions
VIH Logic “1” input voltage for HO & logic “0” for LO 2.9 VCC = 10V to 20V
VIL Logic “0” input voltage for HO & logic “1” for LO 0.8 VCC = 10V to 20V
VSD,TH+ SD input positive going threshold 2.9 —— V
CC = 10V to 20V
VSD,TH- SD input negative going threshold ——
0.8 VCC = 10V to 20V
VOH High level output voltage, VBIAS - VO 0.8 1.4 IO = 20 mA
VOL Low level output voltage, VO 0.3 0.6 IO = 20 mA
ILK Offset supply leakage current 50 VB = VS = 600V
IQBS Quiescent VBS supply current 20 60 100 VIN = 0V or 5V
IQCC Quiescent VCC supply current 0.4 1.0 1.6 mA VIN = 0V or 5V
IIN+ Logic “1” input bias current 5 20 IN = 5V, SD = 0V
IIN- Logic “0” input bias current 2 IN = 0V, SD = 5V
VCCUV+ VCC and VBS supply undervoltage 3.3 4.1 5
VBSUV+ positive going threshold
VCCUV- VCC and VBS supply undervoltage 3 3.8 4.7
VBSUV- negative going threshold
VCCUVH Hysteresis 0.1 0.3
VBSUVH
IO+ Output high short circuit pulsed vurrent 120 200 VO = 0V, PW10 µs
IO- Output low short circuit pulsed current 250 350 VO = 15V,PW10 µs
V
µA
µA
V
mA
IR2302(S) & (PbF)
4www.irf.com
Functional Block Diagrams
SD
UV
DETECT
DELAY COM
LO
VCC
IN VS
HO
VB
PULSE
FILTER
HV
LEVEL
SHIFTER
R
R
S
Q
UV
DETECT
PULSE
GENERATOR
VSS/COM
LEVEL
SHIFT
VSS/COM
LEVEL
SHIFT
+5V
DEADTIME
IR2302(S) & (PbF)
www.irf.com 5
Lead Assignments
8 Lead PDIP 8 Lead SOIC
(Also available LEAD-FREE (PbF)
1
2
3
4
8
7
6
5
VCC
IN
SD
COM
VB
HO
VS
LO
1
2
3
4
8
7
6
5
VCC
IN
SD
COM
VB
HO
VS
LO
IR2302 IR2302S
Lead Definitions
Symbol Description
IN Logic input for high and low side gate driver outputs (HO and LO), in phase with HO
SD Logic input for shutdown
VBHigh side floating supply
HO High side gate drive output
VSHigh side floating supply return
VCC Low side and logic fixed supply
LO Low side gate drive output
COM Low side return
IR2302(S) & (PbF)
6www.irf.com
Figure 4. Deadtime Waveform Definitions


 


 



 

Figure 3. Shutdown Waveform Definitions






Figure 1. Input/Output Timing Diagram




Figure 2. Switching Time Waveform Definitions





 
 
 

IR2302(S) & (PbF)
www.irf.com 7
300
500
700
900
1100
1300
-50-250 255075100125
Temperature (oC)
Turn-on Propagation Delay (ns
)
Typ.
M ax.
Figure 6A. Turn-on Propagation Delay
v s. Temperature
Min.
300
500
700
900
1100
1300
1500
5101520
Supply Voltage (V)
Turn-on Propagation Delay (ns
)
Fi gure 6B. Turn-on P ropa gation Del ay
vs. Supply Vol tage
Typ.
M ax.
Min.
Figure 5. Delay Matching Waveform Definitions

 






 
 
IR2302(S) & (PbF)
8www.irf.com
300
500
700
900
1100
1300
3691215
Input Voltag e (V)
Turn-on Propagation Delay (ns)
Figure 6C . Turn-on Propagation Delay
vs. Input Voltage
Typ.
M ax.
Min.
0
100
200
300
400
500
-50-25 0 25 50 75100125
Tempera ture (oC)
Turn-off Propagation Delay (ns)
Typ.
M ax.
Figure 7A . Turn-off Propagation Delay
vs. Temperature
100
150
200
250
300
350
400
3691215
Input Voltage (V)
Turn-off Propagation Delay (ns)
Figure 7C. Turn-off Propagation Delay
vs. Input Voltage
Typ.
M ax.
100
200
300
400
500
600
700
5101520
Supply Voltage (V)
Turn-off Propagation Delay (ns)
Figure 7B. Turn-off Propa gation Delay
vs. Supply Voltage
Typ.
M ax.
IR2302(S) & (PbF)
www.irf.com 9
100
200
300
400
500
600
700
5101520
Supply Voltage (V)
Shut-down Propagation Delay (ns)
Typ.
M ax.
Figure 8B. Shut-down Propagation Delay
vs. Supply Voltage
0
100
200
300
400
500
-50-25 0 25 50 75100125
Temperature (oC)
Shut-down Propagation Delay (ns)
Typ.
M ax.
Figure 8A. Shut-down Propagation Dela y
v s. Temperature
100
150
200
250
300
350
400
3 6 9 12 15
Input Voltage (V)
Shut-down Propagation Delay (ns)
Figure 8C. Shut-down Propagation Dela y
vs. Input Voltage
Typ.
M ax.
0
100
200
300
400
500
-50-25 0 25 50 75100125
Tempera ture (oC)
Turn-on Rise Time (ns
)
Typ.
M ax.
Figure 9A. Turn-on Rise Ti me
vs. Temperature
IR2302(S) & (PbF)
10 www.irf.com
0
100
200
300
400
500
600
700
5101520
Supply Voltage (V)
Turn-on Rise Time (ns
)
Figure 9B. Turn-on Rise Time
vs. Supply Voltage
Typ.
M ax.
0
50
100
150
200
-50 -25 0 25 50 75 100 125
Tempera ture (oC)
Turn-off Fall Time (ns)
Typ.
M ax.
Figure 10A. Turn-off Fall Time
vs. Temperature
0
50
100
150
200
5101520
Supply Voltage (V)
Turn-off Fall Time (ns)
Figure 10B. Turn-off Fall Time
vs. Supply Voltage
Typ.
M ax.
200
400
600
800
1000
-50 -25 0 25 50 75 100 125
Tempera ture (oC)
Deadtime (ns)
Figure 11A. Deadtime
vs. Temperature
Min.
M ax.
Typ.
IR2302(S) & (PbF)
www.irf.com 11
0
200
400
600
800
1000
5101520
Supply Voltage (V)
Deadtime (ns)
Figure 11B. Deadtime
vs. Supply Voltage
Typ.
M ax.
Min.
0
1
2
3
4
5
6
7
0 50 100 150 200
RDT (K)
Deadtime ( s)
Figure 11C. Deadtime vs. RDT
Typ.
M ax.
Min.
0
1
2
3
4
5
6
-50 -25 0 25 50 75 100 125
Temperature (oC)
Logic "1" Input Voltage (V)
M ax.
Figure 12A. Logic "1" Input Voltage
vs. Temperature
0
1
2
3
4
5
6
5 101520
Supply Voltage (V)
Logic "1" Input Voltage (V)
Figure 12B. L ogic "1" Input Voltage
vs. Supply Voltage
M ax.
IR2302(S) & (PbF)
12 www.irf.com
0
1
2
3
4
5
6
-50 -25 0 25 50 75 100 125
Tempera ture (oC)
Logic "0" Input Voltage (V)
Min.
Figure 13A. Logic "0" Input Voltage
vs. Temperature
0
1
2
3
4
5
6
-50 -25 0 25 50 75 100 125
Temperature (oC)
SD Input Positive Going Threshold (
V
M ax.
Figure 14A. SD Input Positive Going Threshold
vs. Temperature
0
1
2
3
4
5
6
5 101520
Supply Voltage (V)
SD Input Positive Going Threshold (V
Figure 14B. SD Inp ut Positive Going Threshold
vs. Supply Vol tage
M ax.
0
1
2
3
4
5
6
5 101520
Supply Voltage (V)
Logic "0" Input Voltage (V)
Figure 13B. L ogic "0" Input Voltage
vs. Supply Voltage
Min.
IR2302(S) & (PbF)
www.irf.com 13
0
1
2
3
4
5
6
-50-25 0 25 50 75100125
Tempera ture (oC)
SD Input Negative Going Threshold (V
)
Min.
Figure 15A. SD Input Nega tive Going Threshold
vs. Temperature
0
1
2
3
4
5
6
5101520
Supply Voltage (V)
SD Input Negative Going Threshold (V
Figure 15B. SD In put Nega tiv e Going Threshol d
vs. Supply Voltage
Min.
0
1
2
3
4
-50 -25 0 25 50 75 100 125
Tempera ture (oC)
High Level Output Voltage (V)
M ax.
Figure 16A. High Level Output Voltage
vs. Temperature
Typ.
0
1
2
3
4
5
6
5 101520
Supply Voltage (V)
High Level Output Voltage (V)
Figure 16B. High Level Output Voltage
vs. Supply Voltage
Typ.
M ax.
IR2302(S) & (PbF)
14 www.irf.com
0.0
0.5
1.0
1.5
2.0
-50 -25 0 25 50 75 100 125
Tempera ture (oC)
Low Level Output Voltage (V)
M ax.
Figure 17A. Low Level Output Voltage
vs. Temperature
Typ. 0.0
0.5
1.0
1.5
2.0
5101520
Supply Voltage (V)
Low Level Output Voltage (V)
Figure 17B. Low Level Output Voltage
vs. Supply Vol tage
Typ.
M ax.
0
100
200
300
400
500
-50-25 0 25 50 75100125
Tempera ture (oC)
Offset Supply Leakage Current ( A)
M ax.
Figure 18A. Offset Supply Leakage Current
vs. Temperature
0
100
200
300
400
500
100 200 300 400 500 600
O ffset Supply Voltage (V)
Offset Supply Leakage Current (mA)
Figure 18B. Offset Supply Leakage Current
vs. Offset S upply Voltage
M ax.
IR2302(S) & (PbF)
www.irf.com 15
0
50
100
150
200
-50-25 0 25 50 75100125
Tempera ture (oC)
Quiescent VBS Supply Current ( A)
Min.
Figure 19A. Quiescen t VBS Supply Current
vs. Temperature
Typ.
M ax.
0
50
100
150
200
5101520
VBS Supply Voltage (V)
Quiescent VBS Supply Current ( A)
Figure 19B. Quiescent VBS Supply Current
vs. VBS Supply Voltage
Typ.
M ax.
Min.
0.0
0.5
1.0
1.5
2.0
2.5
3.0
-50 -25 0 25 50 75 100 125
Tempera ture (oC)
Quiescent VCC Supply Current (mA)
Min.
Figure 20A. Quiescen t VCC Supply Current
vs. Temperature
Typ.
Max
0
0.5
1
1.5
2
2.5
3
5 101520
VCC Supply Voltage (V)
Quiescent VCC Supply Current (mA)
Fig ure 20B. Quiescen t VCC Supply C urrent
vs. VCC Supply Voltage
Typ.
M ax.
Min.
IR2302(S) & (PbF)
16 www.irf.com
0
10
20
30
40
50
60
-50 -25 0 25 50 75 100 125
Tempera ture (oC)
Logic "1" Input Bias Current ( A)
Figure 21A. Logi c " 1" Input Bias Current
vs. Temperature
Typ.
M ax.
0
10
20
30
40
50
5101520
Supply Voltage (V)
Logic "1" Input Bias Current (mA
)
Figure 21B. Logic "1" Input Bias Current
vs. Supply Voltage
Typ.
M ax.
0
1
2
3
4
5
-50 -25 0 25 50 75 100 125
Temperature (oC)
Logic "0" Input Bias Current ( A)
Figure 22A. Logic "0" Input Bias Current
vs. Temperature
M ax.
0
1
2
3
4
5
5101520
Supply Voltage (V)
Logic "0" Input Bias Current (mA
)
Figure 22B. Logic "0" Input Bias Current
vs. Supply Vol tage
M ax.
IR2302(S) & (PbF)
www.irf.com 17
2
3
4
5
6
-50 -25 0 25 50 75 100 125
Tempera ture (oC)
VCC and VBS Undervoltage Threshold (+)
(V)
Min.
Figure 23. VCC and VBS Undervoltage
Threshol d (+) vs. Temperature
Typ.
M ax.
2
3
4
5
6
-50 -25 0 25 50 75 100 125
Tempera ture (oC)
VCC and VBS Undervoltage Threshold (-)
(V)
Min.
Figure 24. VCC and VBS Undervoltage
Threshol d (-) vs. Temperature
Typ.
M ax.
0
100
200
300
400
5 101520
Supply Voltage (V)
Output Source Current (mA)
Figure 25B. Output Source Current
vs. Supply Voltage
Typ.
Min.
0
100
200
300
400
-50 -25 0 25 50 75 100 125
Temperature (oC)
Output Source Current (mA)
Min.
Figure 25A. Output Source Current
v s. Temperature
Typ.
IR2302(S) & (PbF)
18 www.irf.com
0
100
200
300
400
500
600
-50 -25 0 25 50 75 100 125
Temperature (oC)
Output Sink Current (mA
)
Min.
Figure 26A. Output Sink Current
vs. Temperature
Typ.
-12
-10
-8
-6
-4
-2
0
5101520
VBS Floating Supply Vol tage (V)
Maximum V
S Negative Offset (V)
Figure 27. Maximum VS Negative Offset
vs. VBS Floating Supply Voltage
Typ.
0
100
200
300
400
500
600
5 101520
Supply Voltage (V)
Output Sink Current (mA
)
Figure 26B. Output Sink Current
vs. Supply Voltage
Typ.
Min.
20
40
60
80
100
120
140
1 10 100 1000
F requency (KHz)
Temprature (oC)
70V
Figure 28. I R23 02 vs. Frequenc y (IRFBC2 0),
Rgate=33, VCC=15V
140V
0V
IR2302(S) & (PbF)
www.irf.com 19
20
40
60
80
100
120
140
1 10 100 1000
F requency (KHz)
Temperature (oC)
140V
70V
0V
Figure 30. I R2302 vs. Frequency (IRFBC4 0),
Rgate=15, VCC=15V
20
40
60
80
100
120
140
1 10 100 1000
Frequency (KHz)
Temperature (oC)
Figure 31. IR230 2 v s. Frequency (IRFPE50),
Rgate=10, VCC=15V
0V
140V 70V
20
40
60
80
100
120
140
1 10 100 1000
F requency (KHz)
Temperature (oC)
Figure 32. I R2302S vs. Frequency (IRFBC20),
Rgate=33, VCC=15V
0V
70V
140V
Figure 29. IR2302 vs. Frequency (IRFBC30),
Rgate=22
, VCC=15V
20
40
60
80
100
120
140
1 10 100 1000
Frequency (KHz)
Temperature (oC)
140V
0V
70V
IR2302(S) & (PbF)
20 www.irf.com
20
40
60
80
100
120
140
1 10 100 1000
Frequency (KHz)
Temperature (oC)
140V
70V
0V
Figure 33. IR2302S vs. Frequency (IRF BC30),
Rgate=22, VCC=15V
20
40
60
80
100
120
140
1 10 100 1000
F requency (KHz)
Temperature (oC)
0V
F igure 34. IR2302S vs. Frequency (IRFBC40),
Rgate=15, VCC=15V
140V 70V
20
40
60
80
100
120
140
1 10 100 1000
Frequency (KHz)
Tempreture (oC)
Figure 35. IR2 302S vs. Frequency
(I RFPE5 0), Rgate=10, VCC=15V
140V 70V 0V
IR2302(S) & (PbF)
www.irf.com 21
Case Outlines
01-6027
01-0021 11 (MS-012AA)
8 Lead SOIC
87
5
65
D B
E
A
e
6X
H
0. 25 [. 010 ] A
6
4312
4 . OU TLINE CONFOR MS TO JEDEC OUTL INE MS-01 2A A.
NOTES:
1. DI MENSI ONING & TOLERANCING PER ASME Y14.5M-1994.
2 . CONT ROLL ING D IMENSION: MILLIMET ER
3 . D IMENSIONS A RE SHOW N IN MILLIMETE RS [INCHES].
7
K x 45°
8X L 8X c
y
FOOTPRINT
8X 0.72 [ . 02 8]
6. 46 [ . 2 55]
3X 1.27 [ . 05 0] 8X 1.78 [ . 07 0]
5 D IMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
6 D IMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROT RUSIONS NOT TO EXCEED 0.25 [.010].
7 D IMENSION IS THE LENGTH OF LEAD FOR SOL DERING TO
A SUBSTRATE.
MOLD PROT RUSIONS NOT TO EXCEED 0.15 [.006].
0. 25 [. 010 ] CAB
e1 A
A1
8X b
C
0. 10 [. 004 ]
e1
D
E
y
b
A
A1
H
K
L
.189
.1497
.013
.050 BASIC
.0532
.0040
.2284
.0099
.016
.1968
.1574
.020
.0688
.0098
.2440
.0196
.050
4.80
3.80
0.33
1.35
0.10
5.80
0.25
0.40
1.27 BASIC
5.00
4.00
0.51
1.75
0.25
6.20
0.50
1.27
MIN MAX MILLIMETERSINC HES MIN MAX
DIM
e
c .0075 .0098 0.19 0.25
.025 BASI C 0.635 BASIC
01-6014
01-3003 01 (MS-001AB)
8 Lead PDIP
IR2302(S) & (PbF)
22 www.irf.com
Basic Part (Non-Lead Free)
8-Lead PDIP IR2302 order IR2302
8-Lead SOIC IR2302S order IR2302S
Leadfree Part
8-Lead PDIP R2302 not available
8-Lead SOIC IR2302S order IR2302SPbF
ORDER INFORMATION
LEADFREE PART MARKING INFORMATION
Lead Free Released
Non-Lead Free
Released
Part number
Date code
IRxxxxxx
YWW?
?XXXX
Pin 1
Identifier
IR logo
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
P
?MARKING CODE
Thisproduct has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web Site http://www.irf.com
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
8/16/2004