Data Sheet No. PD60207 Rev.A IR2302(S) & (PbF) HALF-BRIDGE DRIVER Packages Features * Floating channel designed for bootstrap operation * * * * * * * * * * * Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 5 to 20V Undervoltage lockout for both channels 3.3V, 5V and 15V input logic compatible Cross-conduction prevention logic Matched propagation delay for both channels High side output in phase with IN input Logic and power ground +/- 5V offset. Internal 540ns dead-time Lower di/dt gate driver for better noise immunity Shut down input turns off both channels 8-Lead SOIC also available LEAD-FREE (PbF). 8-Lead SOIC IR2302(S) (Also available LEAD-FREE (PbF)) 8-Lead PDIP IR2302 2106/2301//2108//2109/2302/2304 Feature Comparison #$%$ #$%$ 9 " * *" = =" Description 7" :;7"<7 7" ! &''! ! &''! ! &''! $' 9 The IR2302(S) are high voltage, high speed :;7"<7 power MOSFET and IGBT drivers with depen9 #$%$ " ! dent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts. Typical Connection & & & &> $ $ # ' ' &' ! % (Refer to Lead Assignments for correct configuration). This/ These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com %? IR2302 1 IR2302(S) & (PbF) Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol Definition Min. Max. Units VB High side floating absolute voltage -0.3 625 VS High side floating supply offset voltage VB - 25 VB + 0.3 VHO High side floating output voltage VS - 0.3 VB + 0.3 VCC Low side and logic fixed supply voltage -0.3 25 VLO Low side output voltage -0.3 VCC + 0.3 VIN Logic input voltage (IN & SD) COM - 0.3 VCC + 0.3 dVS/dt PD RthJA Allowable offset supply voltage transient Package power dissipation @ TA +25C Thermal resistance, junction to ambient -- 50 (8 Lead PDIP) -- 1.0 (8 Lead SOIC) -- 0.625 (8 Lead PDIP) -- 125 (8 Lead SOIC) -- 200 TJ Junction temperature -- 150 TS Storage temperature -50 150 TL Lead temperature (soldering, 10 seconds) -- 300 V V/ns W C/W C Recommended Operating Conditions The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential. Symbol Min. Max. VB High side floating supply absolute voltage Definition VS + 5 VS + 20 VS High side floating supply offset voltage Note 1 600 VS VB 5 20 VHO High side floating output voltage VCC Low side and logic fixed supply voltage VLO Low side output voltage VIN Logic input voltage (IN & SD) TA Ambient temperature 0 VCC COM VCC -40 150 Units V C Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details). 2 www.irf.com IR2302(S) & (PbF) Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, CL = 1000 pF, and TA = 25C unless otherwise specified. Symbol Definition Min. ton Turn-on propagation delay 550 750 950 VS = 0V toff Turn-off propagation delay -- 200 280 VS = 0V or 600V tsd Shut-down propagation delay -- 200 280 MT Delay matching, HS & LS turn-on/off -- 0 50 Turn-on rise time -- 130 220 tr tf DT MDT Typ. Max. Units Test Conditions Turn-off fall time -- 50 80 Deadtime: LO turn-off to HO turn-on(DTLO-HO) & HO turn-off to LO turn-on (DTHO-LO) 400 540 680 Deadtime matching = DTLO - HO - DTHO-LO -- 0 60 nsec VS = 0V VS = 0V Static Electrical Characteristics VBIAS (VCC, VBS) = 15V and TA = 25C unless otherwise specified. The VIL, VIH and IIN parameters are referenced to COM and are applicable to the respective input leads: IN and SD. The VO, IO and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO. Symbol Definition VIH Logic "1" input voltage for HO & logic "0" for LO VIL Min. Typ. Max. Units Test Conditions 2.9 -- -- VCC = 10V to 20V Logic "0" input voltage for HO & logic "1" for LO -- -- 0.8 VCC = 10V to 20V VSD,TH+ SD input positive going threshold 2.9 -- -- VCC = 10V to 20V VSD,TH- SD input negative going threshold -- -- 0.8 VOH High level output voltage, VBIAS - VO -- 0.8 1.4 VOL Low level output voltage, VO -- 0.3 0.6 IO = 20 mA ILK Offset supply leakage current -- -- 50 VB = VS = 600V IQBS Quiescent VBS supply current 20 60 100 IQCC Quiescent VCC supply current 0.4 1.0 1.6 IIN+ Logic "1" input bias current -- 5 20 IIN- Logic "0" input bias current -- -- 2 VCCUV+ VCC and VBS supply undervoltage 3.3 4.1 5 VBSUV+ positive going threshold VCCUV- VCC and VBS supply undervoltage 3 3.8 4.7 VBSUV- negative going threshold VCCUVH Hysteresis 0.1 0.3 -- IO+ Output high short circuit pulsed vurrent 120 200 -- IO- Output low short circuit pulsed current 250 350 -- V VCC = 10V to 20V IO = 20 mA A mA A VIN = 0V or 5V VIN = 0V or 5V IN = 5V, SD = 0V IN = 0V, SD = 5V V VBSUVH www.irf.com mA VO = 0V, PW 10 s VO = 15V,PW 10 s 3 IR2302(S) & (PbF) Functional Block Diagrams VB UV DETECT HO R VSS/COM LEVEL SHIFT IN HV LEVEL SHIFTER R PULSE FILTER S VS PULSE GENERATOR VCC DEADTIME UV DETECT +5V SD 4 Q VSS/COM LEVEL SHIFT DELAY LO COM www.irf.com IR2302(S) & (PbF) Lead Definitions Symbol Description IN Logic input for high and low side gate driver outputs (HO and LO), in phase with HO SD VB High side floating supply Logic input for shutdown HO High side gate drive output VS High side floating supply return VCC Low side and logic fixed supply LO Low side gate drive output COM Low side return Lead Assignments 1 VCC VB 2 IN HO 7 3 SD VS 6 COM LO 5 4 www.irf.com 8 VCC VB 8 2 IN HO 7 3 SD VS 6 4 COM LO 5 1 8 Lead PDIP 8 Lead SOIC (Also available LEAD-FREE (PbF) IR2302 IR2302S 5 IR2302(S) & (PbF) $ $_% 7] 7] ' $_# qq =] # % # % Figure 1. Input/Output Timing Diagram q =] ] ] Figure 2. Switching Time Waveform Definitions 7] 7] $ =] ' # 7] % %# ] #% =] # % Figure 3. Shutdown Waveform Definitions 6 ] =] !^ %# #% Figure 4. Deadtime Waveform Definitions www.irf.com IR2302(S) & (PbF) $ _% 7] 7] $ _# % # ] ! ! =] % # 1300 Turn-on Propagation Delay (ns) Turn-on Propagation Delay (ns) Figure 5. Delay Matching Waveform Definitions 1100 900 700 500 M ax. Typ. M in. 300 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 6A. Turn-on Propagation Delay vs. Tem perature www.irf.com 1500 1300 M ax. 1100 Typ. 900 700 M in. 500 300 5 10 15 20 Supply Voltage (V) Figure 6B. Turn-on Propagation Delay vs. Supply Voltage 7 1300 Turn-off Propagation Delay (ns) Turn-on Propagation Delay (ns) IR2302(S) & (PbF) 1100 M ax. 900 Typ. 700 M in. 500 300 3 6 9 12 500 400 300 M ax. 200 Typ. 100 15 0 -50 -25 0 700 600 M ax. 400 Typ. 300 200 100 10 15 Supply Voltage (V) Figure 7B. Turn-off Propagation Delay vs. Supply Voltage 8 75 100 125 Figure 7A. Turn-off Propagation Delay vs. Tem perature Turn-off Propagation Delay (ns) Turn-off Propagation Delay (ns) Figure 6C. Turn-on Propagation Delay vs. Input Voltage 5 50 Temperature (oC) Input Voltage (V) 500 25 20 400 350 300 M ax. 250 Typ. 200 150 100 3 6 9 12 15 Input Voltage (V) Figure 7C. Turn-off Propagation Delay vs. Input Voltage www.irf.com Shut-down Propagation Delay (ns) Shut-down Propagation Delay (ns) IR2302(S) & (PbF) 500 400 300 M ax. 200 Typ. 100 0 -50 -25 0 25 50 75 700 600 500 M ax. 400 300 Typ. 200 100 100 125 5 10 Temperature (oC) Figure 8A. Shut-dow n Propagation Delay vs. Tem perature 20 Figure 8B. Shut-dow n Propagation Delay vs. Supply Voltage 400 500 Turn-on Rise Time (ns) Shut-down Propagation Delay (ns) 15 Supply Voltage (V) 350 300 M ax. 250 Typ. 200 150 100 3 6 9 12 15 Input Voltage (V) Figure 8C. Shut-dow n Propagation Delay vs. Input Voltage www.irf.com 400 300 200 M ax. 100 Typ. 0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 9A. Turn-on Rise Tim e vs. Tem perature 9 IR2302(S) & (PbF) 200 600 500 Turn-off Fall Time (ns) Turn-on Rise Time (ns) 700 M ax. 400 300 Typ. 200 100 10 15 100 M ax. 50 Typ. 0 -50 0 5 150 20 -25 25 50 75 100 125 o Temperature ( C) Supply Voltage (V) Figure 9B. Turn-on Rise Tim e vs. Supply Voltage Figure 10A. Turn-off Fall Time vs. Tem perature 200 1000 150 Deadtime (ns) Turn-off Fall Time (ns) 0 M ax. 100 Typ. 50 0 5 10 15 20 800 M ax. 600 Typ. 400 M in. 200 -50 -25 0 25 50 75 100 125 o Supply Voltage (V) Figure 10B. Turn-off Fall Tim e vs. Supply Voltage 10 Temperature ( C) Figure 11A. Deadtim e vs. Tem perature www.irf.com IR2302(S) & (PbF) 7 1000 Deadtime ( s) Deadtime (ns) 6 M ax. 800 Typ. 600 M in. 400 200 M in. 3 2 0 5 10 15 0 20 50 100 150 Supply Voltage (V) RDT (K) Figure 11B. Deadtim e vs. Supply Voltage Figure 11C. Deadtime vs. RDT 6 200 6 Logic "1" Input Voltage (V) Logic "1" Input Voltage (V) Typ. 4 1 0 5 4 M ax. 3 2 1 0 -50 M ax. 5 5 4 M ax. 3 2 1 0 -25 0 25 50 75 100 Temperature ( oC) Figure 12A. Logic "1" Input Voltage vs. Tem perature www.irf.com 125 5 10 15 20 Supply Voltage (V) Figure 12B. Logic "1" Input Voltage vs. Supply Voltage 11 IR2302(S) & (PbF) 6 Logic "0" Input Voltage (V) Logic "0" Input Voltage (V) 6 5 4 3 2 1 M in. 0 -50 5 4 3 2 1 M in. 0 -25 0 25 50 75 100 5 125 10 Figure 13B. Logic "0" Input Voltage vs. Supply Voltage 6 5 4 M ax. 2 1 0 -25 0 25 50 75 100 125 Temperature ( oC) Figure 14A. SD Input Positive Going Threshold vs. Tem perature 12 SD Input Positive Going Threshold (V SD Input Positive Going Threshold (V Figure 13A. Logic "0" Input Voltage vs. Temperature -50 20 Supply Voltage (V) Temperature (oC) 3 15 6 5 4 M ax. 3 2 1 0 5 10 15 20 Supply Voltage (V) Figure 14B. SD Input Positive Going Threshold vs. Supply Voltage www.irf.com 6 5 4 3 2 M in. 1 0 -50 -25 0 25 50 75 100 125 Temperature (oC) 4 3 2 M ax. 1 Typ. 0 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 16A. High Level Output Voltage vs. Tem perature www.irf.com 6 5 4 3 2 1 M in. 0 5 10 15 20 Supply Voltage (V) Figure 15B. SD Input Negative Going Threshold vs. Supply Voltage High Level Output Voltage (V) High Level Output Voltage (V) Figure 15A. SD Input Negative Going Threshold vs. Tem perature SD Input Negative Going Threshold (V SD Input Negative Going Threshold (V) IR2302(S) & (PbF) 6 5 4 M ax. 3 2 Typ. 1 0 5 10 15 20 Supply Voltage (V) Figure 16B. High Level Output Voltage vs. Supply Voltage 13 2.0 Low Level Output Voltage (V) Low Level Output Voltage (V) IR2302(S) & (PbF) 1.5 1.0 0.5 M ax. Typ. 0.0 -50 -25 0 25 50 75 2.0 1.5 M ax. 1.0 0.5 Typ. 0.0 5 100 125 10 Figure 17A. Low Level Output Voltage vs. Tem perature Figure 17B. Low Level Output Voltage vs. Supply Voltage 500 400 300 200 100 M ax. 0 -50 -25 0 25 50 75 100 125 Figure 18A. Offset Supply Leakage Current vs. Tem perature Offset Supply Leakage Current (mA) Offset Supply Leakage Current ( A) 20 Supply Voltage (V) Temperature (oC) 14 15 Temperature ( C) o 500 400 300 200 100 M ax. 0 100 200 300 400 500 600 Offset Supply Voltage (V) Figure 18B. Offset Supply Leakage Current vs. Offset Supply Voltage www.irf.com 200 150 100 M ax. 50 Typ. M in. 0 -50 -25 0 25 50 75 100 125 Quiescent V BS Supply Current ( A) Quiescent VBS Supply Current ( A) IR2302(S) & (PbF) 200 150 100 M ax. 50 Typ. M in. 0 5 10 Temperature ( C) 3.0 2.5 2.0 M ax 1.5 Typ. 1.0 0.0 -50 M in. -25 0 25 50 75 100 125 Temperature (oC) Figure 20A. Quiescent V CC Supply Current vs. Tem perature www.irf.com 20 Figure 19B. Quiescent V BS Supply Current vs. V BS Supply Voltage Quiescent VCC Supply Current (mA) Quiescent VCC Supply Current (mA) Figure 19A. Quiescent V BS Supply Current vs. Tem perature 0.5 15 V BS Supply Voltage (V) o 3 2.5 2 1.5 1 M ax. Typ. 0.5 M in. 0 5 10 15 V CC Supply Voltage (V) 20 Figure 20B. Quiescent V CC Supply Current vs. V CC Supply Voltage 15 Logic "1" Input Bias Current (mA) Logic "1" Input Bias Current ( A) IR2302(S) & (PbF) 60 50 40 30 20 M ax. 10 Typ. 0 -50 -25 0 25 50 75 50 40 30 M ax. 20 10 Typ. 0 100 125 5 10 Temperature (oC) 5 4 3 M ax. 2 1 -25 0 25 50 75 100 125 Temperature ( oC) Figure 22A. Logic "0" Input Bias Current vs. Tem perature 16 20 Figure 21B. Logic "1" Input Bias Current vs. Supply Voltage Logic "0" Input Bias Current (mA) Logic "0" Input Bias Current ( A) Figure 21A. Logic "1" Input Bias Current vs. Tem perature 0 -50 15 Supply Voltage (V) 5 4 3 M ax. 2 1 0 5 10 15 Supply Voltage (V) 20 Figure 22B. Logic "0" Input Bias Current vs. Supply Voltage www.irf.com 6 M ax. 5 Typ. 4 M in. 3 2 -50 -25 0 25 50 75 100 125 o Temperature ( C) V CC and VBS Undervoltage Threshold (-) (V) V CC and VBS Undervoltage Threshold (+) (V) IR2302(S) & (PbF) 6 M in. 3 2 -50 Typ. 200 M in. 100 0 -50 0 25 50 75 100 125 o Temperature ( C) 400 300 200 100 Typ. M in. 0 -25 0 25 50 75 100 125 Temperature (oC) Figure 25A. Output Source Current vs. Tem perature www.irf.com -25 Figure 24. V CC and V BS Undervoltage Threshold (-) vs. Tem perature Output Source Current (mA) Output Source Current (mA) 300 Typ. 4 Figure 23. V CC and V BS Undervoltage Threshold (+) vs. Tem perature 400 M ax. 5 5 10 15 20 Supply Voltage (V) Figure 25B. Output Source Current vs. Supply Voltage 17 IR2302(S) & (PbF) 600 Output Sink Current (mA) Output Sink Current (mA) 600 500 Typ. 400 300 M in. 200 100 0 -50 500 400 300 200 Typ. 100 M in. 0 -25 0 25 50 Temperature 75 100 125 5 ( oC) 20 Figure 26B. Output Sink Current vs. Supply Voltage 140 0 -2 120 Temprature (oC) Maximum VS Negative Offset (V) 15 Supply Voltage (V) Figure 26A. Output Sink Current vs. Tem perature Typ. -4 -6 -8 -10 100 80 140V 70V 60 0V 40 -12 5 10 15 V BS Floating Supply Voltage (V) Figure 27. Maxim um V S Negative Offset vs. V BS Floating Supply Voltage 18 10 20 20 1 10 100 1000 Frequency (KHz) Figure 28. IR2302 vs. Frequency (IRFBC20), Rgate=33 , VCC=15V www.irf.com 140 140 120 120 100 140V 80 70V 60 0V Temperature (oC) Temperature (oC) IR2302(S) & (PbF) 100 140V 80 70V 0V 60 40 40 20 20 1 10 100 1000 1 Frequency (KHz) 140 0V 120 Temperature (oC) Temperature (oC) 1000 Figure 30. IR2302 vs. Frequency (IRFBC40), Rgate=15 , VCC=15V 140V 70V 120 100 Frequency (KHz) Figure 29. IR2302 vs. Frequency (IRFBC30), , VCC=15V Rgate=22 140 10 100 80 60 40 100 80 140V 70V 60 0V 40 20 20 1 10 100 1000 Frequency (KHz) Figure 31. IR2302 vs. Frequency (IRFPE50), Rgate=10 , V CC=15V www.irf.com 1 10 100 1000 Frequency (KHz) Figure 32. IR2302S vs. Frequency (IRFBC20), Rgate=33 , VCC=15V 19 IR2302(S) & (PbF) 140V 100 70V 0V 80 60 Temperature (oC) 120 120 Temperature (oC) 140V 70V 140 140 0V 100 80 60 40 40 20 20 1 10 100 1000 1 10 100 1000 Frequency (KHz) Frequency (KHz) Figure 33. IR2302S vs. Frequency (IRFBC30), Rgate=22 , V CC=15V Figure 34. IR2302S vs. Frequency (IRFBC40), Rgate=15 , VCC=15V 140V 70V 0V 140 Tempreture (oC) 120 100 80 60 40 20 1 10 100 1000 Frequency (KHz) Figure 35. IR2302S vs. Frequency (IRFPE50), Rgate=10 , V CC=15V 20 www.irf.com IR2302(S) & (PbF) Case Outlines 01-6014 01-3003 01 (MS-001AB) 8 Lead PDIP D DIM B 5 A FOOTPRINT 8 6 7 6 5 H E 1 6X 2 3 0.25 [.010] 4 e A 6.46 [.255] 3X 1.27 [.050] e1 0.25 [.010] A1 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 .1574 3.80 4.00 E .1497 e .050 BASIC e1 MAX 1.27 BASIC .025 BASIC 0.635 BASIC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0 8 0 8 y 0.10 [.004] 8X L 8X c 7 C A B NOTES: 1. DIMENSIONING & TOLERANC ING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INC HES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA. 8 Lead SOIC www.irf.com MIN .0532 K x 45 A C 8X b 8X 1.78 [.070] MILLIMETERS MAX A 8X 0.72 [.028] INCHES MIN 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. 01-6027 01-0021 11 (MS-012AA) 21 IR2302(S) & (PbF) LEADFREE PART MARKING INFORMATION IRxxxxxx Part number YWW? Date code Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released IR logo ?XXXX Lot Code (Prod mode - 4 digit SPN code) Assembly site code Per SCOP 200-002 ORDER INFORMATION Basic Part (Non-Lead Free) 8-Lead PDIP IR2302 order IR2302 8-Lead SOIC IR2302S order IR2302S Leadfree Part 8-Lead PDIP R2302 not available 8-Lead SOIC IR2302S order IR2302SPbF Thisproduct has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web Site http://www.irf.com Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 8/16/2004 22 www.irf.com