Key Features
Wide input, 3.0-5.5 Vdc
Programmable output, 0.75 - 3.6 Vdc
Under voltage protection
Short circuit protection
Remote sense
Remote On/Off
Design for Environment (DfE)
European Commission Directive 2002/95/EC
(RoHs) compliant
EDatasheet
DC/DC regulator
Input 3.0 - 5.5 V
Output 16 A
PMB 4518T WP
The PMB series of SIL DC/DC regulators (POL)
are intended to be used as local distributed
power sources in distributed power architec-
ture level 4. The single in-line design makes
the PMB series suitable for applications where
boardspace is limited. The high efficiency and
high reliability of the PMB series makes them
particularly suited for the communications
equipment of today and tomorrow.
These products are manufactured using the most
advanced technologies and materials to com-
ply with environmental requirements. Designed
to meet high reliability requirements of systems
manufacturers, the PMB responds to world-class
specifications.
Ericsson Power Modules is an ISO 9001/14001
certified supplier.
Contents
Product Program ......................2
Mechanical Data ......................2
Connections .........................2
Absolute Maximum Ratings . . . . . . . . . . . . . 3
Input ...............................3
Product Qualification Specification . . . . . . . . 4
Safety Specification . . . . . . . . . . . . . . . . . . . 5
Adjusted to 1.0 V out - Data . . . . . . . . . . . . . 6
Adjusted to 1.2 V out - Data . . . . . . . . . . . . . 9
Adjusted to 1.5 V out - Data . . . . . . . . . . . . 12
Adjusted to 1.8 V out - Data . . . . . . . . . . . . 15
Adjusted to 2.5 V out - Data . . . . . . . . . . . . 18
Adjusted to 3.3 V out - Data . . . . . . . . . . . . 21
EMC Specification . . . . . . . . . . . . . . . . . . . . 24
Operating Information . . . . . . . . . . . . . . . . . 24
Thermal Considerations . . . . . . . . . . . . . . . 27
Soldering Information . . . . . . . . . . . . . . . . . 28
Delivery Package Information . . . . . . . . . . . 28
Reliability ...........................28
Compatibility with RoHS requirements . . . . 28
Sales Offices and Contact Information . . . . 29
2 EN/LZT 146 049 R4A © Ericsson Power Modules, March 2007
PMB 4518T WP Datasheet
8,80 [0.346]
7,40 [0.291]
51,80 [2.039]
48,26 [1.900]
Recommended footprint (customer board), no components within border.
Holes: Ø1,0 [0.04] through plated holes with Ø1,5 [0.06] pads on both sides.
Note 1: For other pin lengths, refer to Product program/Ordering information
1 2 3 4 5 6 7 8 9 10
Dimensions in mm [inch]
Tolerances (unless specified):
x,x +/-0,5 [0.02]
x,xx +/-0,25 [0.01]
E
7,0 [0.27]
8,5 [0.33] max
choke
35,56 [1.400]
48,26 [1.900]
2,54 [0.100] (7x) (1,27 [0.05])
13,20 [0.520]
50,8 [2.00]
pin length 3,60 [0.142]
(Note 1)
1
1
Mechanical Data
Product Program
Delivery option M.o.q. Suffix Example
Tray 100 pcs /B PMB 4xxxT WP /B
Ordering Information
* Input voltage limited to 3.8-5.5V for 3.3 Vout and for output voltages of 3.3V and 4.5-5.5 for output voltages above 3.3V.
VI
VO/IO max PO max Ordering No. Comment
Output 1
3.0-5.5 V* 0.8-3.6 V/16 A 52.8 W PMB 4518T WP Standard version
3.0-5.5 V 1.0 V/16 A 16.0 W PMB 4118NA WP On request
3.0-5.5 V 1.2 V/16 A 19.2 W PMB 4118LA WP On request
3.0-5.5 V 1.5 V/16 A 24.0 W PMB 4218H WP On request
3.0-5.5 V 1.8 V/16 A 28.8 W PMB 4218G WP On request
3.0-5.5 V 2.5 V/16 A 40.0 W PMB 4419 WP On request
3.8-5.5 V 3.3 V/16 A 52.8 W PMB 4510 WP On request
Option Suffix Example
Positive Remote Control logic P PMB 4518T WPP
3 EN/LZT 146 049 R4A © Ericsson Power Modules, March 2007
PMB 4518T WP Datasheet
Characteristics min typ max Unit
Tref Operating Reference Temperature, see pg. 27 -45 +115 ˚C
TSStorage temperature -55 +125 ˚C
VIInput voltage -0.3 +5.5 Vdc
Characteristics Conditions min typ max Unit
VIInput voltage range 3.0 5.5 Vdc
VIoff Turn-off input voltage
Ramp from higher voltage, Vout = 1.0- 2.5 V, Vin = 3.3 V 2.2
Vdc
Ramp from higher voltage, Vout = 3.3 V, Vin = 5.0 V 3.4
VIon Turn-on input voltage
Ramp from lower voltage, Vout = 1.0- 2.5 V, Vin = 3.3 V 2.7
Vdc
Ramp from lower voltage, Vout = 3.3 V, Vin = 5.0 V 3.5
CIInput capacitance 20 µF
PIi Input idling power Io = 0 A, VI = 5 V 680 mW
PRC Input stand-by power (RC active) Non operation, VI = 5 V 7.5 mW
VIac Input ripple 1) 20 Hz ... 5 MHz, Iomax, VI = 5 V 400 mV
Input
Stress in excess of Absolute Maximum Ratings may cause permanent damage.
Absolute Maximum Ratings, sometimes referred to as no destruction limits, are
normally tested with one parameter at a time exceeding the limits of Output data
or Electrical Characteristics. If exposed to stress above these limits, function and
performance may degrade in an unspecified manner.
Absolute Maximum Ratings
Tref = -30 ... +90 ˚C, VI = 3.0...5.5 V unless otherwise specified
Typ values specified at: Tref = +25 ˚C, VInom, Iomax = 16 A
1) Measured with 2 x 22 µF ceramic capacitors
Connections Weight
7.7g
Pin Designation Function
1 + Out Positive output
2 + Out Positive output
3 + Sense Positive sense
4 + Out Positive output
5 GND Ground
6 GND Ground
7 + In Positive input
8 + In Positive input
9 Vadj Output voltage adjust
10 RC Remote control
Pins
Material: Copper alloy
Plating: Matte tin over nickel
4 EN/LZT 146 049 R4A © Ericsson Power Modules, March 2007
PMB 4518T WP Datasheet
Characteristics
Random Vibration IEC 60068-2-64 Frequency
Acceleration density
5 ... 500 Hz
0.5 g2/Hz
Mechanical shock
(half sinus) IEC 60068-2-27 Peak acceleration
Duration
50 g
11 ms
Lead integrity IEC 60068-2-21 Ub Simultaneous bending All leads
Temperature cycling JESD22-A104-BG
Temperature
Number of cycles
-40 ... +125 ˚C
300
Accelerated damp heat JESD22-A101-B
Temperature
Humidity
Duration
Bias
+85 ˚C
85 % RH
1000 hours
max input voltage
Solderability
IEC 60068-2-54
(Aged according to JESD22-A101-
B, 240h no bias)
Solder immersion depth
Time for onset of wetting
Wetting force
2 mm
< 2.5 s
> 200 mN/m
Cold (in operation) IEC 60068-2-1 Temperature
Duration
-45 ˚C
72 h
High temperature storage JESD22-A103-BATemperature
Duration
+125 ˚C
1000 h
Product Qualification Specification
Fundamental Circuit Diagram
GND
GND
PWM
+IN +OUT
+SENSE
Vadj
controller
Ref
GND
Error
amplifier
RC RC
GND
Block
5 EN/LZT 146 049 R4A © Ericsson Power Modules, March 2007
PMB 4518T WP Datasheet
Ericsson Power Modules DC/DC converters and DC/DC regulators
are designed in accordance with safety standards
IEC/EN/UL 60 950, Safety of Information Technology Equipment.
IEC/EN/UL60950 contains requirements to prevent injury or
damage due to the following hazards:
Electrical shock
Energy hazards
Fire
Mechanical and heat hazards
Radiation hazards
Chemical hazards
On-board DC-DC converters are defined as component power
supplies. As components they cannot fully comply with the
provisions of any Safety requirements without “Conditions of
Acceptability”. It is the responsibility of the installer to ensure that
the final product housing these components complies with the
requirements of all applicable Safety standards and Directives for
the final product.
Component power supplies for general use should comply with
the requirements in IEC60950, EN60950 and UL60950 “Safety of
information technology equipment”.
There are other more product related standards, e.g.
IEC61204-7 “Safety standard for power supplies",
IEEE802.3af “Ethernet LAN/MAN Data terminal equipment
power”, and ETS300132-2 “Power supply interface at the input
to telecommunications equipment; part 2: DC”, but all of these
standards are based on IEC/EN/UL60950 with regards to safety.
Ericsson Power Modules DC/DC converters and DC/DC regulators
are UL 60 950 recognized and certified in accordance with EN 60
950.
The flammability rating for all construction parts of the products
meets UL 94V-0.
The products should be installed in the end-use equipment, in
accordance with the requirements of the ultimate application.
Normally the output of the DC/DC converter is considered as SELV
(Safety Extra Low Voltage) and the input source must be isolated by
minimum Double or Reinforced Insulation from the primary circuit
(AC mains) in accordance with IEC/EN/UL 60 950.
Safety Specification
Isolated DC/DC converters.
The input voltage to the DC/DC regulator is SELV (Safety Extra Low
Voltage) and the output remains SELV under normal and abnormal
operating conditions.
It is recommended that a slow blow fuse with a rating
twice the maximum input current per selected product
be used at the input of each DC/DC regulator.
Non-isolated DC/DC regulators.
24 V dc systems.
The input voltage to the DC/DC converter is SELV (Safety Extra Low
Voltage) and the output remains SELV under normal and abnormal
operating conditions.
48 and 60 V dc systems.
If the input voltage to Ericsson Power Modules DC/DC converter
is 75 V dc or less, then the output remains SELV (Safety Extra Low
Voltage) under normal and abnormal operating conditions.
Single fault testing in the input power supply circuit should be
performed with the DC/DC converter connected to demonstrate
that the input voltage does not exceed 75 V dc.
If the input power source circuit is a DC power system, the source
may be treated as a TNV2 circuit and testing has demonstrated
compliance with SELV limits and isolation requirements equivalent
to Basic Insulation in accordance with IEC/EN/UL 60 950.
It is recommended that a fast blow fuse with a rating
twice the maximum input current per selected product
be used at the input of each DC/DC converter. If an input filter is
used in the circuit the fuse should be placed in front of the input
filter.
In the rare event of a component problem in the input filter or in the
DC/DC converter that imposes a short circuit on the input source,
this fuse will provide the following functions:
• Isolate the faulty DC/DC converter from the input power source
so as not to affect the operation of other parts of the system.
• Protect the distribution wiring from excessive current and power
loss thus preventing hazardous overheating.
The galvanic isolation is verified in an electric strength test. The test
voltage (VISO) between input and output is 1500 Vdc or 2250 Vdc for
60 seconds (refer to product specification). Leakage current is less
than 1µA at nominal input voltage.
General information.
6 EN/LZT 146 049 R4A © Ericsson Power Modules, March 2007
PMB 4518T WP Datasheet
Characteristics Conditions
Output
Unit
min typ max
VOi Output voltage adjusted setting Tref = +25 °C, VInom, IOmax, Radj 80 k0.98 1.00 1.02 V
VO
Output voltage tolerance band IO = 0.01...1.0 x IOmax 0.97 1.03 V
Idling voltage IO = 0 0.98 1.02 V
Line regulation VImin ... VImax, IOmax 11 mV
Load regulation IO = 0.01...1.0 x IOmax, VInom 10 mV
Vtr Load transient
voltage deviation Load step = 0.25 ... 0.75 x IOmax,
dI/dt = 5 A/µs, CO = 150 µF,
VI = 3.3 V
100 mV
ttr Load transient recovery time 60 µs
Tcoeff Temperature coefficient Tref = -30 ... +90 °C, IOmax -0.1 0 +0.1 mV/°C
tsStart-up time From VI connected to VO = 0.9 x VOI,
IO = 0.1 ...1.0 x IOmax, VInom 8.5 ms
trRamp-up time 0.1...0.9 x VO, IO = 0.1 ...1.0 x IOmax, VInom 4 ms
trFall time, VO x 0.1 IO = IOmax, VInom 0.2 ms
trFall time, VO x 0.1 IO = 0 A, VInom 5 s
tRCoff RC shut-down time to VO x 0.1 IO = IOmax, VInom 0.2 ms
tRCon RC start-up time to VO x 0.9 IO = IOmax, VInom 8 ms
tRC RC fall time, VO x 0.1 ... 0.9 IO = 0 A, VInom 10 s
IOOutput current 0 16 A
POmax Max output power At VO = VOnom 16 W
Ilim Current limit threshold Tref < Trefmax 22 28 35 A
VOac Output ripple 20 Hz ... 5 MHz, IOmax 10 20 mVp-p
ηEfficiency - 50% load IO = 0.5 x IOmax, VI = 5 V 87.2 %
ηEfficiency - 100% load IO = IOmax, VI = 5 V 81 83.4 %
PdPower Dissipation IO = IOmax, VI = 5 V 3.1 3.8 W
Fo Switching frequency IO = 0 ... 1.0 x IOmax 250 300 350 kHz
Isense Remote sense current 8 mA
IIStatic input current VI = 3.0 V, IO = IOmax, Tref = 25 °C 6.7 A
MTBF Predicted reliability Tref = 40 °C 6 million
hours
Tref = -30 ... +90 °C, VI = 3.0 ... 5.5 V unless otherwise specified. Input filter 2 x 22 µF, Output filter 1 x 150 µF
Typ values specified at: Tref = +25 °C and VInom. IOmax = 16 A. Note: +Sense connected to +Out
Adjusted to 1.0 V out - Data
7 EN/LZT 146 049 R4A © Ericsson Power Modules, March 2007
PMB 4518T WP Datasheet
Output Current Derating at 5 V input
Start-Up
Output voltage vs. load current.
Available load current vs. ambient air temperature and
airflow at Vin = 5 V. See conditions on page 27.
Start-up at IO = 16 A resistive load at Tref = +25 °C,
Vin = 3.3 V. Start enabled by connecting Vin.
Top trace: output voltage (0.5 V/div.).
Bottom trace: input voltage (2 V/div.).
Time scale: 2 ms/div.
Efficiency Power Dissipation
Output Characteristics
Adjusted to 1.0 V out - Typical Characteristics
Efficiency vs. load current and input voltage at Tref = +25 °C
   






<">
<>
7
7
7
7
   







<">
<7>
7
7
7
7
   
<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
Tref = +25 °C
General conditions: Input filter 2 x 22 µF, Output filter 1 x 150 µF
Output Current Derating at 3.3 V input
Available load current vs. ambient air temperature and
airflow at Vin = 3.3 V. See conditions on page 27.
      




<«$>
<">
NTMGN
NTMGN
NTMGN
/BU$POW
NTMGN
NTMGN
      




<«$>
<">
NTMGN
NTMGN
NTMGN
/BU$POW
NTMGN
NTMGN
8 EN/LZT 146 049 R4A © Ericsson Power Modules, March 2007
PMB 4518T WP Datasheet
Turn Off Output Ripple
Transient with 150 µF output capacitor
Output voltage response to load current step-change
(4-12-4 A) at Tref =+25 °C, Vin = 3.3 V. dI/dt = 5A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Transient with 300 µF output capacitor
Output voltage response to load current step-change
(4-12-4 A) at Tref =+25 °C, Vin = 3.3 V. dI/dt = 5A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Output voltage ripple (20mV/div.) at Tref=+25 °C, Vin=3.3 V,
IO=16 A resistive load.
Band width=5MHz.
Time scale: 2µs / div.
Turn-off at IO=16 A resistive load at Tref=+25 °C,
Vin=3.3 V. Turn-off enabled by disconnecting Vin.
Top trace: output voltage (0.5 V/div.).
Bottom trace: input voltage (2 V/div.).
Time scale: 2 ms/div.
Adjusted to 1.0 V out - Typical Characteristics
General conditions: Input filter 2 x 22 µF, Output filter 1 x 150 µF
9 EN/LZT 146 049 R4A © Ericsson Power Modules, March 2007
PMB 4518T WP Datasheet
Tref = -30 ... +90 °C, VI = 3.0 ...5.5 V unless otherwise specified. Input filter 2 x 22 µF, Output filter 1 x 150 µF
Typ values specified at: Tref = +25 °C and VInom, IOmax = 16 A. Note: +Sense connected to +Out
Adjusted to 1.2 V out - Data
Characteristics Conditions
Output
Unit
min typ max
VOi Output voltage adjusted setting Tref = +25 °C, VInom, IOmax, Radj 42 k1.176 1.20 1.224 V
VO
Output voltage tolerance band IO = 0.01...1.0 x IOmax 1.164 1.236 V
Idling voltage IO = 0 1.18 1.22 V
Line regulation VImin ... VImax, IOmax 11 mV
Load regulation IO = 0.01...1.0 x IOmax, VInom 10 mV
Vtr Load transient
voltage deviation Load step = 0.25 ... 0.75 x IOmax,
dI/dt = 5 A/µs, CO = 150 µF,
VI = 3.3 V
120 mV
ttr Load transient recovery time 60 µs
Tcoeff Temperature coefficient Tref = -30 ... +90°C, IOmax -0.1 0 +0.1 mV/°C
tsStart-up time From VI connected to VO = 0.9 x VOI,
IO = 0.1 ...1.0 x IOmax, VInom 8.5 ms
trRamp-up time 0.1...0.9 x VO, IO = 0.1 ...1.0 x IOmax, VInom 4 ms
trFall time, VO x 0.1 IO = IOmax, VInom 0.2 ms
trFall time, VO x 0.1 IO = 0 A, VInom 5 s
tRCoff RC shut-down time to VO x 0.1 IO = IOmax, VInom 0.2 ms
tRCon RC start-up time to VO x 0.9 IO = IOmax, VInom 8 ms
tRC RC fall time, VO x 0.1 ... 0.9 IO = 0 A, VInom 5 s
IOOutput current 0 16 A
POmax Max output power At VO = VOnom 19.2 W
Ilim Current limit threshold Tref < Trefmax 22 28 35 A
VOac Output ripple 20 Hz ... 5 MHz, IOmax 10 20 mVp-p
ηEfficiency - 50% load IO = 0.5 x IOmax, VI = 5 V 89 %
ηEfficiency - 100% load IO = IOmax, VI = 5 V 82.7 85.1 %
PdPower Dissipation IO = IOmax, VI = 5 V 3.3 4.0 W
Fo Switching frequency IO = 0 ... 1.0 x IOmax 260 300 340 kHz
Isense Remote sense current 8 mA
IIStatic input current VI = 3.0 V, IO = IOmax, Tref = 25 °C 7.8 A
MTBF Predicted reliability Tref = 40 °C 6 million
hours
10 EN/LZT 146 049 R4A © Ericsson Power Modules, March 2007
PMB 4518T WP Datasheet
Output Current Derating at 5 V input
Output Characteristic Start-Up
Output voltage vs. load current.
Available load current vs. ambient air temperature and
airflow at Vin = 5 V. See conditions on page 27.
Start-up at IO = 16 A resistive load at Tref = +25 °C,
Vin = 3.3 V. Start enabled by connecting Vin.
Top trace: output voltage (0.5 V/div.).
Bottom trace: input voltage (2 V/div.).
Time scale: 2 ms/div.
Efficiency Power Dissipation
Adjusted to 1.2 V - Typical Characteristics
Efficiency vs. load current and input voltage at Tre = +25 °C
   







<">
<>
7
7
7
7
   







<">
<7>
7
7
7
7
   
<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
Tref = +25 °C
General conditions: Input filter 2 x 22 µF, Output filter 1 x 150 µF
Output Current Derating at 3.3 V input
Available load current vs. ambient air temperature and
airflow at Vin = 3.3 V. See conditions on page 27.
      




<«$>
<">
NTMGN
NTMGN
NTMGN
/BU$POW
NTMGN
NTMGN
      




<«$>
<">
NTMGN
NTMGN
NTMGN
/BU$POW
NTMGN
NTMGN
11 EN/LZT 146 049 R4A © Ericsson Power Modules, March 2007
PMB 4518T WP Datasheet
Turn Off Output Ripple
Transient with 150 µF output capacitor
Output voltage response to load current step-change
(4-12-4 A) at Tref =+25 °C, Vin = 3.3 V. dI/dt = 5A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Transient with 300 µF output capacitor
Output voltage response to load current step-change
(4-12-4 A) at Tref =+25 °C, Vin = 3.3 V. dI/dt = 5A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Output voltage ripple (20mV/div.) at Tref=+25 °C, Vin=3.3 V,
IO=16 A resistive load.
Band width=5MHz.
Time scale: 2µs / div.
Turn-off at IO=16 A resistive load at Tref=+25 °C,
Vin=3.3 V. Turn-off enabled by disconnecting Vin.
Top trace: output voltage (0.5 V/div.).
Bottom trace: input voltage (2 V/div.).
Time scale: 2 ms/div.
Adjusted to 1.2 V - Typical Characteristics
General conditions: Input filter 2 x 22 µF, Output filter 1 x 150 µF
12 EN/LZT 146 049 R4A © Ericsson Power Modules, March 2007
PMB 4518T WP Datasheet
Characteristics Conditions
Output
Unit
min typ max
VOi Output voltage adjusted setting Tref = +25 °C, VInom, IOmax, Radj 23 k1.47 1.5 1.53 V
VO
Output voltage tolerance band IO = 0.01...1.0 x IOmax 1.455 1.545 V
Idling voltage IO = 0 1.48 1.52 V
Line regulation VImin ... VImax, IOmax 11 mV
Load regulation IO = 0.01...1.0 x IOmax, VInom 10 mV
Vtr Load transient
voltage deviation Load step = 0.25 ... 0.75 x IOmax,
dI/dt = 5 A/µs, CO = 150 µF,
VI = 3.3 V
120 mV
ttr Load transient recovery time 60 µs
Tcoeff Temperature coefficient Tref = -30 ... +90 °C, IOmax -0.1 0 +0.1 mV/°C
tsStart-up time From VI connected to VO = 0.9 x VOI,
IO = 0.1 ...1.0 x IOmax, VInom 8.5 ms
trRamp-up time 0.1...0.9 x VO, IO = 0.1 ...1.0 x IOmax, VInom 4 ms
trFall time, VO x 0.1 IO = IOmax, VInom 0.2 ms
trFall time, VO x 0.1 IO = 0 A, VInom 5 s
tRCoff RC shut-down time to VO x 0.1 IO = IOmax, VInom 0.2 ms
tRCon RC start-up time to VO x 0.9 IO = IOmax, VInom 8 ms
tRC RC fall time, VO x 0.1 ... 0.9 IO = 0 A, VInom 5 s
IOOutput current 0 16 A
POmax Max output power At VO = VOnom 24 W
Ilim Current limit threshold Tref < Trefmax 22 28 35 A
VOac Output ripple 20Hz ... 5MHz, IOmax 10 20 mVp-p
ηEfficiency - 50% load IO = 0.5 x IOmax, VI = 5 V 91 %
ηEfficiency - 100% load IO = IOmax, VI = 5 V 85.5 87.7 %
PdPower Dissipation IO = IOmax, VI = 5 V 3.2 4.1 W
Fo Switching frequency IO = 0 ... 1.0 x IOmax 260 300 340 kHz
Isense Remote sense current 8 mA
IIStatic input current VI = 3.0 V, IO = IOmax, Tref = 25 °C 9.5 A
MTBF Predicted reliability Tref = 40 °C 6 million
hours
Tref = -30 ... +90 °C, VI = 3.0 ...5.5 V unless otherwise specified. Input filter 2 x 22 µF, Output filter 1 x 150 µF
Typ values specified at: Tref = +25 °C and VInom. IOmax = 16 A. Note: +Sense connected to +Out
Adjusted to 1.5 V out - Data
13 EN/LZT 146 049 R4A © Ericsson Power Modules, March 2007
PMB 4518T WP Datasheet
Output Current Derating at 5 V input
Output Characteristic Start-Up
Output voltage vs. load current.
Available load current vs. ambient air temperature and
airflow at Vin = 5 V. See conditions on page 27.
   







<">
<7>
7
7
7
7
Start-up at IO = 16 A resistive load at Tref = +25 °C,
Vin = 3.3 V. Start enabled by connecting Vin.
Top trace: output voltage (0.5 V/div.).
Bottom trace: input voltage (2 V/div.).
Time scale: 2 ms/div.
Efficiency Power Dissipation
Adjusted to 1.5V out - Typical Characteristics
Efficiency vs. load current and input voltage at Tref = +25 °C
   







<">
<>
7
7
7
7
   
<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
Tref = +25 °C
General conditions: Input filter 2 x 22 µF, Output filter 1 x 150 µF
Output Current Derating at 3.3 V input
Available load current vs. ambient air temperature and
airflow at Vin = 3.3 V. See conditions on page 27.
      




<«$>
<">
NTMGN
NTMGN
NTMGN
/BU$POW
NTMGN
NTMGN
14 EN/LZT 146 049 R4A © Ericsson Power Modules, March 2007
PMB 4518T WP Datasheet
Turn Off Output Ripple
Transient with 150 µF output capacitor
Output voltage response to load current step-change
(4-12-4 A) at Tref =+25 °C, Vin = 3.3 V. dI/dt = 5A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Transient with 300 µF output capacitor
Output voltage response to load current step-change
(4-12-4 A) at Tref =+25 °C, Vin = 3.3 V. dI/dt = 5A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Output voltage ripple (20mV/div.) at Tref=+25 °C, Vin=3.3 V,
IO=16 A resistive load.
Band width=5MHz.
Time scale: 2µs / div.
Turn-off at IO=16 A resistive load at Tref=+25 °C,
Vin=3.3 V. Turn-off enabled by disconnecting Vin.
Top trace: output voltage (0.5 V/div.).
Bottom trace: input voltage (2 V/div.).
Time scale: 2 ms/div.
Adjusted to 1.5V out - Typical Characteristics
General conditions: Input filter 2 x 22 µF, Output filter 1 x 150 µF
15 EN/LZT 146 049 R4A © Ericsson Power Modules, March 2007
PMB 4518T WP Datasheet
Tref = –30…+90 °C, VI = 3.0 ... 5.5 V unless otherwise specified. Input filter 2 x 22 µF, Output filter 1 x 150 µF
Typ values specified at: Tref = +25 °C and VInom. IOmax = 16 A. Note: +Sense connected to +Out
Adjusted to 1.8 V out - Data
Characteristics Conditions
Output
Unit
min typ max
VOi Output voltage adjusted setting Tref = +25 °C, VInom, IOmax, Radj 15 k1.764 1.80 1.836 V
VO
Output voltage tolerance band IO = 0.01...1.0 x IOmax 1.746 1.854 V
Idling voltage IO = 0 1.78 1.82 V
Line regulation VImin ... VImax, IOmax 11 mV
Load regulation IO = 0.01...1.0 x IOmax, VInom 10 mV
Vtr Load transient
voltage deviation Load step = 0.25 ... 0.75 x IOmax,
dI/dt = 5 A/µs, CO = 150 µF,
VI = 3.3 V
110 mV
ttr Load transient recovery time 60 µs
Tcoeff Temperature coefficient Tref = -30 ... +90 °C, IOmax -0.1 0 +0.1 mV/°C
tsStart-up time From VI connected to VO = 0.9 x VOI,
IO = 0.1 ...1.0 x IOmax, VInom 8.5 ms
trRamp-up time 0.1...0.9 x VO, IO = 0.1 ...1.0 x IOmax, VInom 4 ms
trFall time, VO x 0.1 IO = IOmax, VInom 0.2 ms
trFall time, VO x 0.1 IO = 0 A, VInom 5 s
tRCoff RC shut-down time to VO x 0.1 IO = IOmax, VInom 0.2 ms
tRCon RC start-up time to VO x 0.9 IO = IOmax, VInom 8 ms
tRC RC fall time, VO x 0.1 ... 0.9 IO = 0 A, VInom 5 s
IOOutput current 0 16 A
POmax Max output power At VO = VOnom 28.8 W
Ilim Current limit threshold Tref < Trefmax 22 28 35 A
VOac Output ripple 20 Hz ... 5 MHz, IOmax 14 24 mVp-p
ηEfficiency - 50% load IO = 0.5 x IOmax, VI = 5 V 92 %
ηEfficiency - 100% load IO = IOmax, VI = 5 V 88.5 89.8 %
PdPower Dissipation IO = IOmax, VI = 5 V 3.3 3.8 W
Fo Switching frequency IO = 0 ... 1.0 x IOmax 260 300 340 kHz
Isense Remote sense current 8 mA
IIStatic input current VI = 3.0 V, IO = IOmax, Tref = 25 °C 10.9 A
MTBF Predicted reliability Tref = 40 °C 6 million
hours
16 EN/LZT 146 049 R4A © Ericsson Power Modules, March 2007
PMB 4518T WP Datasheet
Efficiency
Output Current Derating at 3.3 V input Output Current Derating at 5 V input
Adjusted to 1.8 V - Typical Characteristics
Output Characteristic Start-Up
Output voltage vs. load current.
Available load current vs. ambient air temperature and
airflow at Vin = 5 V. See conditions on page 27.
Efficiency vs. load current and input voltage at Tref = +25 °C
   







<">
<>
7
7
7
7
   







<">
<7>
7
7
7
7
Start-up at IO = 16 A resistive load at Tref = +25 °C,
Vin = 3.3 V. Start enabled by connecting Vin.
Top trace: output voltage (0.5 V/div.).
Bottom trace: input voltage (2 V/div.).
Time scale: 2 ms/div.
Available load current vs. ambient air temperature and
airflow at Vin = 3.3 V. See conditions on page 27.
Power Dissipation
   
<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
Tref=+25 °C
      




<«$>
<">
NTMGN
NTMGN
NTMGN
/BU$POW
NTMGN
NTMGN
General conditions: Input filter 2 x 22 µF, Output filter 1 x 150 µF
      




<«$>
<">
NTMGN
NTMGN
NTMGN
/BU$POW
NTMGN
NTMGN
17 EN/LZT 146 049 R4A © Ericsson Power Modules, March 2007
PMB 4518T WP Datasheet
Turn Off Output Ripple
Adjusted to 1.8 V out - Typical Characteristics
Transient with 150 µF output capacitor
Output voltage response to load current step-change
(4-12-4 A) at Tref =+25 °C, Vin = 3.3 V. dI/dt = 5A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Transient with 300 µF output capacitor
Output voltage response to load current step-change
(4-12-4 A) at Tref =+25 °C, Vin = 3.3 V. dI/dt = 5A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Output voltage ripple (20mV/div.) at Tref=+25 °C, Vin=3.3 V,
IO=16 A resistive load.
Band width=5MHz.
Time scale: 2µs / div.
Turn-off at IO=16 A resistive load at Tref=+25 °C,
Vin=3.3 V. Turn-off enabled by disconnecting Vin.
Top trace: output voltage (0.5 V/div.).
Bottom trace: input voltage (2 V/div.).
Time scale: 2 ms/div.
General conditions: Input filter 2 x 22 µF, Output filter 1 x 150 µF
18 EN/LZT 146 049 R4A © Ericsson Power Modules, March 2007
PMB 4518T WP Datasheet
Characteristics Conditions
Output
Unit
min typ max
VOi Output voltage adjusted setting Tref = +25 °C, VInom, IOmax, Radj 7 k2.45 2.5 2.55 V
VO
Output voltage tolerance band IO = 0.01...1.0 x IOmax 2.425 2.575 V
Idling voltage IO = 0 2.48 2.52 V
Line regulation VImin ... VImax, IOmax 11 mV
Load regulation IO = 0.01...1.0 x IOmax, VInom 10 mV
Vtr Load transient
voltage deviation Load step = 0.25 ... 0.75 x IOmax,
dI/dt = 5 A/µs, CO = 150 µF,
VI = 3.3 V
160 mV
ttr Load transient recovery time 60 µs
Tcoeff Temperature coefficient Tref = -30 ... +90 °C, IOmax -0.1 0 +0.1 mV/°C
tsStart-up time From VI connected to VO = 0.9 x VOI,
IO = 0.1 ...1.0 x IOmax, VInom 8.5 ms
trRamp-up time 0.1...0.9 x VO, IO = 0.1 ...1.0 x IOmax, VInom 4 ms
trFall time, VO x 0.1 IO = IOmax, VInom 0.2 ms
trFall time, VO x 0.1 IO = 0 A, VInom 5 s
tRCoff RC shut-down time to VO x 0.1 IO = IOmax, VInom 0.2 ms
tRCon RC start-up time to VO x 0.9 IO = IOmax, VInom 8 ms
tRC RC fall time, VO x 0.1 ... 0.9 IO = 0 A, VInom 5 s
IOOutput current 0 16 A
POmax Max output power At VO = VOnom 40 W
Ilim Current limit threshold Tref < Trefmax 22 28 35 A
VOac Output ripple 20 Hz ... 5 MHz, IOmax 20 35 mVp-p
ηEfficiency - 50% load IO = 0.5 x IOmax, VI = 5 V 94 %
ηEfficiency - 100% load IO = IOmax, VI = 5 V 90 92 %
PdPower Dissipation IO = IOmax, VI = 5 V 3.4 4.5 W
Fo Switching frequency IO = 0 ... 1.0 x IOmax 260 300 340 kHz
Isense Remote sense current 8 mA
IIStatic input current VI = 3.0 V, IO = IOmax, Tref = 25 °C 15.1 A
MTBF Predicted reliability Tref = 40 °C 6 million
hours
Tref = -30 ... +90 °C, VI = 3.0 ...5.5 V unless otherwise specified. Input filter 2 x 22 µF, Output filter 1 x 150 µF
Typ values specified at: Tref = +25 °C and VInom. IOmax = 16 A. Note: +Sense connected to +Out
Adjusted to 2.5 V out - Data
19 EN/LZT 146 049 R4A © Ericsson Power Modules, March 2007
PMB 4518T WP Datasheet
Output Current Derating at 5 V input
Output Characteristic Start-Up
Output voltage vs. load current.
Available load current vs. ambient air temperature and
airflow at Vin = 5 V. See conditions on page 27.
   







<">
<7>
7
7
7
7
Start-up at IO = 16 A resistive load at Tref = +25 °C,
Vin = 3.3 V. Start enabled by connecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (2 V/div.).
Time scale: 2 ms/div.
Efficiency Power Dissipation
Adjusted to 2.5 V out - Typical Characteristics
Efficiency vs. load current and input voltage at Tref = +25 °C
   







<">
<>
7
7
7
7
   
<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
Tref = +25 °C
General conditions: Input filter 2 x 22 µF, Output filter 1 x 150 µF
Output Current Derating at 3.3 V input
Available load current vs. ambient air temperature and
airflow at Vin = 3.3 V. See conditions on page 27.
      




<«$>
<">
NTMGN
NTMGN
NTMGN
/BU$POW
NTMGN
NTMGN
      




<«$>
<">
NTMGN
NTMGN
NTMGN
/BU$POW
NTMGN
NTMGN
20 EN/LZT 146 049 R4A © Ericsson Power Modules, March 2007
PMB 4518T WP Datasheet
Turn Off Output Ripple
Transient with 150 µF output capacitor
Output voltage response to load current step-change
(4-12-4 A) at Tref =+25 °C, Vin = 3.3 V. dI/dt = 5A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Transient with 300 µF output capacitor
Output voltage response to load current step-change
(4-12-4 A) at Tref =+25 °C, Vin = 3.3 V. dI/dt = 5A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Output voltage ripple (20mV/div.) at Tref=+25 °C, Vin=3.3 V,
IO=16 A resistive load.
Band width=5MHz.
Time scale: 2µs / div.
Turn-off at IO=16 A resistive load at Tref=+25 °C,
Vin=3.3 V. Turn-off enabled by disconnecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (2 V/div.).
Time scale: 2 ms/div.
Adjusted to 2.5 V out - Typical Characteristics
General conditions: Input filter 2 x 22 µF, Output filter 1 x 150 µF
21 EN/LZT 146 049 R4A © Ericsson Power Modules, March 2007
PMB 4518T WP Datasheet
Tref = -30 ... +90 °C, VI = 3.8 ... 5.5 V unless otherwise specified. Input filter 2 x 22 µF, Output filter 1 x 150 µF
Typ values specified at: Tref = +25 °C and VI = 5.0 V. IOmax = 16 A. Note: +Sense connected to +Out
Adjusted to 3.3 V out - Data
Characteristics Conditions
Output
Unit
min typ max
VOi Output voltage adjusted setting Tref = +25 °C, VI > 3.8 V, IOmax, Radj 3.1 k3.234 3.3 3.366 V
VO
Output voltage tolerance band IO = 0.1...1.0 x IOmax 3.201 3.399 V
Idling voltage IO = 0 3.28 3.32 V
Line regulation VI = 5 V ... VImax, IOmax 11 mV
Load regulation IO = 0.01...1.0 x IOmax, VI = 5 V 20 mV
Vtr Load transient
voltage deviation Load step = 0.25 ... 0.75 x IOmax,
dI/dt = 5 A/µs, CO = 150 µF,
VI = 5 V
120 mV
ttr Load transient recovery time 60 µs
Tcoeff Temperature coefficient Tref = -30 ... +90 °C, IOmax -0.1 0 +0.1 mV/°C
tsStart-up time From VI connected to VO = 0.9 x VOadj,
IO = 0.1 ...1.0 x IOmax, VI = 5 V 8.5 ms
trRamp-up time 0.1...0.9 x VO, IO = 0.1 ...1.0 x IOmax,
VI = 5 V 4 ms
trFall time, VO x 0.1 IO = IOmax, VI = 5 V 0.2 ms
trFall time, VO x 0.1 IO = 0 A, VI = 5 V 5 s
tRCoff RC shut-down time to VO x 0.1 IO = IOmax, VI = 5 V 0.2 ms
tRCon RC start-up time to VO x 0.9 IO = IOmax, VI = 5 V 8 ms
tRC RC fall time, VO x 0.1 ... 0.9 IO = 0 A, VI = 5 V 5 s
IOOutput current 0 16 A
POmax Max output power At VO = VOnom 52.8 W
Ilim Current limit threshold Tref < Trefmax 22 25 35 A
VOac Output ripple 20 Hz ... 5 MHz, IOmax 25 40 mVp-p
ηEfficiency - 50% load IO = 0.5 x IOmax, VI = 5 V 95.4 %
ηEfficiency - 100% load IO = IOmax, VI = 5 V 92 94 %
PdPower Dissipation IO = IOmax, VI = 5 V 3.2 4.6 W
Fo Switching frequency IO = 0 ... 1.0 x IOmax 260 300 340 kHz
Isense Remote sense current 8 mA
IIStatic input current VI = 3.8 V, IO = IOmax, Tref = 25 °C 15.0 A
MTBF Predicted reliability Tref = 40 °C 6 million
hours
22 EN/LZT 146 049 R4A © Ericsson Power Modules, March 2007
PMB 4518T WP Datasheet
Output Current Derating at 5 V inputOutput Characteristic
Start-Up
Output voltage vs. load current. Available load current vs. ambient air temperature and
airflow at Vin = 5 V. See conditions on page 27.
   







<">
<7>
7
7
7
Start-up at IO = 16 A resistive load at Tref = +25 °C,
Vin = 5 V. Start enabled by connecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (2 V/div.).
Time scale: 2 ms/div.
Efficiency Power Dissipation
Adjusted to 3.3 V out - Typical Characteristics
Efficiency vs. load current and input voltage at Tref = +25 °C
   







<">
<>
7
7
7
   
<">
<8>
7
7
7
Dissipated power vs. load current and input voltage at
Tref = +25 °C
General conditions: Input filter 2 x 22 µF, Output filter 1 x 150 µF
      




<«$>
<">
NTMGN
NTMGN
NTMGN
/BU$POW
NTMGN
NTMGN
Turn Off
Turn-off at IO=16 A resistive load at Tref=+25 °C,
Vin = 5 V. Turn-off enabled by disconnecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (2 V/div.).
Time scale: 2 ms/div.
23 EN/LZT 146 049 R4A © Ericsson Power Modules, March 2007
PMB 4518T WP Datasheet
Output Ripple Transient with 150 µF output capacitor
Output voltage response to load current step-change
(4-12-4 A) at Tref = +25 °C, Vin = 5 V. dI/dt = 5 A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Transient with 300 µF output capacitor
Output voltage response to load current step-change
(4-12-4 A) at Tref =+25 °C, Vin = 5 V. dI/dt = 5A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Output voltage ripple (20mV/div.) at Tref= +25 °C, Vin = 5 V,
IO = 16 A resistive load.
Band width = 5 MHz.
Time scale: 2 µs / div.
Adjusted to 3.3 V out - Typical Characteristics
General conditions: Input filter 2 x 22 µF, Output filter 1 x 150 µF
24 EN/LZT 146 049 R4A © Ericsson Power Modules, March 2007
PMB 4518T WP Datasheet
RC Regulator
condition min typ max Unit
High level
referenced to GND OFF 1.7 5.5 V
Open ON
EMC Specification
Layout Recommendation
The radiated EMI performance of the DC/DC regulator will be
optimised by including a ground plane in the PCB area under
the DC/DC regulator. This approach will return switching
noise to ground as directly as possible, with improvements
to both emission and susceptibility.
Operating Information
Remote Control (RC)
The RC pin may be used to turn on or turn off the regulator
using a suitable open collector function.
Turn off is achieved by connecting the RC pin to the input
voltage.
The regulator will run in normal operation when the RC pin is
left open.
All PMB 4000 Series DC/DC regulators have a positive re-
mote sense pin that can be used to compensate for moder-
ate amounts of resistance in the distribution system and al-
low for voltage regulation at the load or other selected point.
The remote sense line will carry very little current and does
not need a large cross sectional area. However, the sense
line on the PCB should be located close to a ground trace or
ground plane. The remote sense circuitry will compensate for
up to 10% voltage drop between the sense voltage and the
voltage at the output pins from VOnom. If the remote sense is
not needed the sense pin should be left open.
Remote Sense






-FWFM < E#¬">
L L L . . . . . . .
'S FRVFOD Z < )[ >
RC
Vi
Module
Vi
GND
25 EN/LZT 146 049 R4A © Ericsson Power Modules, March 2007
PMB 4518T WP Datasheet
Input And Output Impedance
Operating Information
Output Voltage Adjust (Vadj)
The output voltage can be set by means of an external
resistor, connected to the Vadj pin. Nominal output voltage
0.75 V is set by leaving the Vadj pin open. Adjustment can
only be made to increase the output voltage setting.
To increase:
Connect a resistor between (Vadj) and (Gnd). The output
voltage increases with decreasing resistor value as shown
in the table below. Note that the maximum output voltage
3.63 V may not be exceeded.
Rext up (kohm) = (21.007 / (VO - 0.75225)) - 5.1
Circuit configuration for output voltage adjust
Increase
+Out
GND
Vadj Load
Radj
Sense
Output Voltage (V) Resistor (ohm)
0.75 Open
1.0 79.691 k
1.2 41.817 k
1.5 22.990 k
1.8 14.949 k
2.5 6.919 k
3.3 3.145 k
Current Limit Protection
The PMB 4000 Series DC/DC regulators include current
limiting circuitry that allows them to withstand continuous
overloads or short circuit conditions on the output. The cur-
rent limit is of hick-up mode type.
The regulator will resume normal operation after removal
of the overload. The load distribution system should be
designed to carry the maximum output short circuit current
specified.
Input And Output Impedance
The impedance of both the power source and the load will
interact with the impedance of the DC/DC regulator. It is
most important to have a low characteristic impedance,
both at the input and output, as the regulators have a low
energy storage capability. Use capacitors across the input if
the source inductance is greater than 4.7 µH. Suitable input
capacitors are 22 µF - 220 µF low ESR ceramics.
Maximum Capacitive Load
When powering loads with significant dynamic current
requirements, the voltage regulation at the load can be
improved by addition of decoupling capacitance at the load.
The most effective technique is to locate low ESR ceramic
capacitors as close to the load as possible, using several
capacitors to lower the total ESR. These ceramic capacitors
will handle short duration high-frequency components
of dynamic load changes. In addition, higher values of
capacitors (electrolytic capacitors) should be used to handle
the mid-frequency components. It is equally important
to use good design practice when configuring the DC
distribution system.
Low resistance and low inductance PCB layouts and
cabling should be used. Remember that when using remote
sensing, all resistance (including the ESR), inductance and
capacitance of the distribution system is within the feedback
loop of the regulator. This can affect on the regulators
compensation and the resulting stability and dynamic
response performance.
Very low ESR and high capacitance must be used with
care. A “rule of thumb” is that the total capacitance must
never exceed typically 500-700 µF if only low ESR (< 2 m)
ceramic capacitors are used. If more capacitance is needed,
a combination of low ESR type and electrolytic capacitors
should be used, otherwise the stability will be affected.
The PMB 4000 series regulator can accept up to 8 mF of
capacitive load on the output at full load. This gives <500
µF/A of IO. When using that large capacitance it is important
to consider the selection of output capacitors; the resulting
behavior is a combination of the amount of capacitance and
ESR.
Minimum Required External Capacitors
External input capacitors are required to increase the
lifetime of the internal capacitors and to further reduce the
input ripple. A minimum of 2x22 µF external input capaci-µF external input capaci-F external input capaci-
tance with low ESR should be added.
A minimum of 150 µF external output capacitance, low ESR,µF external output capacitance, low ESR,F external output capacitance, low ESR,
should be added for the converter to operate properly at full
load.
26 EN/LZT 146 049 R4A © Ericsson Power Modules, March 2007
PMB 4518T WP Datasheet
Operating Information
Parallel Operation
The PMB 4000 Series DC/DC regulators can be connected in
parallel with a common input. Paralleling is accomplished by
connecting the output voltage pins directly and using a load
sharing device on the input. Layout considerations should be
made to avoid load imbalance. For more details on parallel-
ing, please consult your local applications support.
Input Undervoltage Lockout
The PMB 4000 Series DC/DC regulators are equipped with a
lockout function for low input voltage.When the input voltage
is below the undervoltage lockout limit of the regulator it will
shut off. When the input voltage increases above the lockout
level the regulator will turn on.
A combination of low ESR and output capacitance
exceeding 8 mF can cause the regulator into over current
protection mode (hick-up) due to high start up current. The
output filter must therefore be designed without exceeding
the above stated capacitance levels if the ESR is lower than
30-40 m.
27 EN/LZT 146 049 R4A © Ericsson Power Modules, March 2007
PMB 4518T WP Datasheet
Thermal Considerations
General
The PMB 4000 Series DC/DC regulators are designed
to operate in a variety of thermal environments, however
sufficient cooling should be provided to help ensure reliable
operation. Heat is removed by conduction, convection and
radiation to the surrounding environment. Increased airflow
enhances the heat transfer via convection.
Proper cooling can be verified by measuring the
temperature at the reference point (Tref).
Calculation of ambient temperature
By using the thermal resistance the maximum allowed
ambient temperature can be calculated.
A. The powerloss is calculated by using the formula
((1/η ) - 1) × output power = power losses.
η = efficiency of regulator. Example: 95% = 0.95
B. Find the value of the thermal resistance Rth Tref-A in the dia-
gram by using the airflow speed at the module. Take the ther-
mal resistance × powerloss to get the temperature increase.
Thermal resistance vs. airspeed measured at the regulator.
C. Max allowed calculated ambient temperature is:
Max Tref of DC/DC regulator - temperature increase.
Example: 5V input, 1.8 V output at 1m/s, full load:
B. 3.2 W × 9 °C/W = 28.8 °C
C. 90 °C - 28.8 °C = max ambient temperature is 61.2 °C
The real temperature will be dependent on several factors,
like PCB size and type, direction of airflow, air turbulence
etc. It is recommended to verify the temperature by testing.
A. ((1/0.9) - 1) × 28.8 W = 3.2 W
5SFG NBY«$
The PMB 4000 thermal testing is performed with the
product mounted on an FR4 board 254 × 254 mm with 8× 254 mm with 8 254 mm with 8
layers of 35 µm copper. Airflow is perpendicular to the Tµm copper. Airflow is perpendicular to the Tm copper. Airflow is perpendicular to the Tref
side.
      


<NT>
<«$8>
7JO7PVU
7JO7PVU
7JO7PVU
7JO7PVU7JO7PVU
25 mm [1 in.]
airflow
Test board
choke
28 EN/LZT 146 049 R4A © Ericsson Power Modules, March 2007
PMB 4518T WP Datasheet
The PMB 4000 series DC/DC regulators are intended for
manual or wave soldering. The plastic body of the pin
connectors resists soldering heat for limited time up to 260
°C..
When hand soldering, care should be taken to avoid direct
contact between the hot soldering iron tip and the pins for
more than a few seconds in order to avoid melting of the
plastic.
Soldering Information
Delivery Package Information
The PMB 4000 series regulators are delivered in antistatic
trays with Jedec standard outer dimensions. Tray capacity
25 pcs.
Each box contains 4 trays.
Reliability
The Mean Time Between Failure (MTBF) of the PMB 4000
series DC/DC regulator family is calculated to be greater
than 6 million hours at full output power and a reference
temperature of +40 °C using TelCordia SR 332.
Compatibility with RoHS requirements
The products are compatible with the relevant clauses
and requirements of the RoHS directive 2002/95/EC and
have a maximum concentration value of 0.1% by weight
in homogeneous materials for lead, mercury, hexavalent
chromium, PBB and PBDE and of 0.01% by weight in
homogeneous materials for cadmium.
Exemptions in the RoHS directive utilized in Ericsson Power
Modules products include:
• Lead in high melting temperature type solder (used to
solder the die in semiconductor packages)
• Lead in glass of electronics components and in electronic
ceramic parts (e.g. fill material in chip resistors)
• Lead as an alloying element in copper alloy containing
up to 4% lead by weight (used in connection pins made of
Brass)
29 EN/LZT 146 049 R4A © Ericsson Power Modules, March 2007
PMB 4518T WP Datasheet
Sales Offices and Contact Information
Company Headquarters
Ericsson Power Modules AB
LM Ericssons väg 30
SE-126 25 Stockholm
Sweden
Phone: +46-8-568-69620
Fax: +46-8-568-69599
China
Ericsson Simtek Electronics Co.
33 Fuhua Road
Jiading District
Shanghai 201 818
China
Phone: +86-21-5990-3258
Fax: +86-21-5990-0188
North and South America
Ericsson Inc. Power Modules
6300 Legacy Dr.
Plano, TX 75024
USA
Phone: +1-972-583-5254
+1-972-583-6910
Fax: +1-972-583-7839
Hong Kong (Asia Pacific)
Ericsson Ltd.
12/F. Devon House
979 King’s Road
Quarry Bay
Hong Kong
Phone: +852-2590-2453
Fax: +852-2590-7152
Italy, Spain (Mediterranean)
Ericsson Power Modules AB
Via Cadorna 71
20090 Vimodrone (MI)
Italy
Phone: +39-02-265-946-07
Fax: +39-02-265-946-69
All other countries
Contact Company Headquarters
or visit our website:
www.ericsson.com/powermodules
Information given in this data sheet is believed to be accurate and reliable.
No responsibility is assumed for the consequences of its use nor for any infringement
of patents or other rights of third parties which may result from its use.
No license is granted by implication or otherwise under any patent or patent rights of
Ericsson Power Modules. These products are sold only according to
Ericsson Power Modules’ general conditions of sale, unless otherwise confirmed in
writing. Specifications subject to change without notice.
Germany, Austria
Ericsson Power Modules AB
Mühlhauser Weg 18
85737 Ismaning
Germany
Phone: +49-89-9500-6905
Fax: +49-89-9500-6911
Japan
Ericsson Power Modules AB
Kimura Daini Building, 3 FL.
3-29-7 Minami-Oomachi, Shinagawa-ka
Tokyo 140-0013
Japan
Phone: +81-3-5733-5107
Fax: +81-3-5753-5162