Step-Down DC/DC Controller TLE 6389 Target Datasheet Features * * * * * * * * * * * * Operation from 5V to 60V Input Voltage 100% Maximum Duty Cycle Efficiency >90% Output Current up to 3A Less than 100A Quiescent Current 2A Max Shutdown Current Up to 350kHz Switching Frequency Adjustable and Fixed 5V and VIN 3.3V Output Voltage versions 3% output voltage accuracy (PWM Mode) Current-Mode Control Scheme On Chip Low Battery Detector Ambient operation range -40C to 125C R = P-DSO-14-3, -4, -9, -11 RSENSE= 0.05 L1 = 47 H M1 VOUT IOUT CIN1 = 100 F CBDS= COUT = D1 100 F 220 nF 11 13 CIN2 = 220nF SI1 400k 14 BDS 12 2 GDRV CS VS 7 RSI2= TLE6389G50-1 SI SI_GND SI_ENABLE 100k 1 6 ON SYNC GND 5 OFF 3 FB VOUT 9 SO 10 RO M1: Infineon SPD09P06PL D1: Motorola MBRD360 L1: Coilcraft DO3340P-473 Cin1: TBD Cout: Low ESR Tantalum RD 4 8 CRD =100nF Type Ordering Code Package Description TLE 6389 GV on request P-DSO-14 adjustable TLE 6389 G50 on request P-DSO-14 5V, Device Enable TLE 6389 G50-1 on request P-DSO-14 5V, SI GND, SI Enable TLE 6389 G33 on request P-DSO-14 3.3V, Device Enable TLE 6389 G33-1 on request P-DSO-14 3.3V, SI GND, SI Enable Functional description The TLE6389 step-down DC-DC switching controllers provide high efficiency over loads ranging from 1mA up to 3A. A unique PWM/PFM control scheme operates with up to a 100% duty cycle, resulting in very low dropout voltage. This control scheme eliminates minimum load requirements and reduces the supply current under light loads to 100A. These step-down controllers drive an external P-channel MOSFET, allowing design flexibility for applications up to 3A. A high switching frequency (up to 350kHz) and Target Datasheet Rev. 1.7 1 2001-09-17 TLE 6389 operation in continuous-conduction mode allow the use of tiny surface-mount inductors. Output capacitor requirements are also reduced, minimizing PC board area and system costs. The output voltage is preset at 5V (TLE6389-50) or 3.3V (TLE6389-33) and adjustable for the TLE6389. Input voltages can be up to 60V. Pin Configuration (top view) ENABLE / 1 SI_EN 14 CS FB 2 13 VS 12 GDRV VOUT 3 GND 4 P-D-SO-14 11 BDS SYNC 5 10 RO SI_GND 6 9 SO SI 7 8 RD Pin Definitions and Functions Pin No SO-14 Symbol Function 2 FB Feedback Input. 1. For adjustable-output operation connect to an external voltage divider between the output and GND (see the Setting the Output Voltage section). 2. Sense input for fixed 5V or 3.3V output operation. FB is internally connected to an on-chip voltage divider. 3 VOUT VOUT Input. Input for internal supply. Connect to output if variable version is used. For fixed voltage version connect FB and VOUT. 1 ENABLE Active-Low Enable Input. Device is placed in shutdown when Enable is driven low. In shutdown mode, the reference, output, and external MOSFET are turned off. Connect to logic high for normal operation. (TLE6389G50, TLE6389G33, TLE6389GV only) Target Datasheet Rev. 1.7 2 2001-09-17 TLE 6389 Pin No SO-14 Symbol Function 1 SI_ENA BLE SI Enable Input. SI_GND is switched to high impedance when SI_Enable is low. High level at SI_Enable connects SI_GND to GND via a low impedance path. SO is undefined when SI_Enable is low. (TLE6389G501, TLE6389G33-1 only) 13 VS Supply Input. Bypass with 0.47F. 4 GND Ground. Analog signal ground. 6 SI_GND SI Ground. Ground connection for SI comparator resistor devider. 11 BDS Buck Driver Supply Input. Connect ceramic capacitor between BDS and VS to generate clamped gate-source voltage to drive the PMOS power stage. 14 CS Current-Sense Input. Connect current-sense resistor between VS and CS. External MOSFET is turned off when the voltage across the resistor equals the current-limit trip level. 12 GDRV Gate Drive Output for External P-Channel MOSFET. GDRV swings between VS and BDS. 10 RO Reset Output. Open drain output from reset comparator with an internal pull up resistor. 8 RD Reset Delay. Connect a capacitor to ground for delay time adjustment. 9 SO Sense Output Comparator. Open drain output from SI comparator with an internal pull up resistor. 7 SI Sense Input Comparator. Input to the Low-Battery Comparator. This input is compared to an internal 1.25V reference. 5 SYNC Input for external synchronization. An external clock signal connected to this pin allows for GDRV switching synchronization. Target Datasheet Rev. 1.7 3 2001-09-17 TLE 6389 1 Item Absolute Maximum Ratings Parameter Symbol Limit Values Unit min. max. Remarks Supply Input 1.0.1 Voltage VS -0.3 60 V 1.0.2 Current IS - - - - Current Sense Input 1.0.3 Voltage VCS -0.3 60 V 1.0.4 Current ICS - - - - Gate Drive Output 1.0.5 Voltage VGDRV - 0.3 6.8 V |VS - VGDRV|<6.8V 1.0.6 Current IGDRV - - - Internally limited |VS - VBDS|<6.8V Buck Drive Supply Input 1.0.7 Voltage VBDS - 0.3 55 V 1.0.8 Current IBDS - - - Feedback Input 1.0.9 Voltage VFB - 0.3 6.8 V 1.0.10 Current IFB - - - 6.8 V - - SI_Enable Input 1.0.11 Voltage VSI_ENAB - 0.3 LE 1.0.12 Current ISI_ENABL - (TLE6389G50-1, TLE6389G33-1 only) E SI_GND Input 1.0.13 Voltage VSI_GND - 0.3 60 V 1.0.14 Current ISI_GND - - - (TLE6389G50-1, TLE6389G33-1 only) Enable Input Target Datasheet Rev. 1.7 4 2001-09-17 TLE 6389 1 Item Absolute Maximum Ratings (cont'd) Parameter Symbol Limit Values Unit min. max. 1.0.15 Voltage VENABLE - 0.3 60 V 1.0.16 Current IENABLE - - - Remarks (TLE6389G50, TLE6389G33, TLE6389GV only) Sense Input 1.0.17 Voltage VSI - 0.3 60 V 1.0.18 Current ISI - - - Sense Output 1.0.19 Voltage VSO - 0.3 6.8 V 1.0.20 Current ISO - - - VOUT Input 1.0.21 Voltage VOUT - 0.3 15 V 1.0.22 Current IOUT - - - Reset Delay Adjust Input 1.0.23 Voltage VRD - 0.3 6.8 V 1.0.24 Current IRD TBD TBD mA Reset Output 1.0.25 Voltage VRO - 0.3 6.8 V 1.0.26 Current IRO -2 2 mA Synchronization Input 1.0.27 Voltage VSYNC - 0.3 6.8 V 1.0.28 Current ISYNC TBD TBD mA ESD-Protection (Human Body Model; R=1,5k; C=100pF) 1.0.29 all pins to GND Target Datasheet Rev. 1.7 VHBM -2 5 2 kV 2001-09-17 TLE 6389 1 Item Absolute Maximum Ratings (cont'd) Parameter Symbol Limit Values Unit Remarks min. max. - 40 150 C - - 50 150 C - Temperatures 1.0.30 Junction temperature 1.0.31 Storage temperature Tj Tstg Note: Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to the integrated circuit. Target Datasheet Rev. 1.7 6 2001-09-17 TLE 6389 2 Item Operating Range Parameter Symbol Limit Values min. max. Unit Remarks 2.0.1 Supply voltage range VS 5 48 V 2.0.2 Junction temperature Tj - 40 150 C 180 K/W - TBD K/W - Thermal Resistance 2.0.3 Junction ambient 2.0.4 Junction pin 3 Rthj-a Rthj-p Electrical Characteristics 5V< VS <48V; - 40C< Tj <150C; all voltages with respect to ground; positive current defined flowing into the pin; unless otherwise specified Item Parameter Symbol Limit Values Unit Test Condition min. typ. max. Current Consumption1) TLE6389 (variable) 3.0.1 Supply current into VS IS 80 A VS = 13.5 V; VENABLE = 5 V; IOUT = 0 mA; TJ = 25 C; 3.0.2 110 A VS = 42 V; VENABLE = 5 V; IOUT = 0 mA; TJ = 25 C; 3.0.3 3.0.4 FB current IFB 2 A VENABLE=0V 4 A VENABLE = 5 V; TJ = 25 C; Target Datasheet Rev. 1.7 7 2001-09-17 TLE 6389 3 Electrical Characteristics (cont'd) 5V< VS <48V; - 40C< Tj <150C; all voltages with respect to ground; positive current defined flowing into the pin; unless otherwise specified Item Parameter Symbol Limit Values min. typ. Unit Test Condition max. Current Consumption TLE6389-50 3.0.5 Supply current into VS IS 50 A VS = 13.5 V; VENABLE = 5 V; IOUT = 0 mA; TJ = 25 C; 3.0.6 80 A VS = 42 V; VENABLE = 5 V; IOUT = 0 mA; TJ = 25 C; 3.0.7 3.0.8 FB current IFB 2 A VENABLE=0V 50 A VENABLE = 5 V; VOUT = 5 V; TJ = 25 C; Current Consumption TLE6389-33 3.0.9 Supply current into VS 80 IS A VS = 13.5 V; VENABLE = 5 V; IOUT = 0 mA; TJ = 25 C; 3.0.10 110 A VS = 42 V; VENABLE = 5 V; IOUT = 0 mA; TJ = 25 C; 3.0.11 2 A VENABLE=0V Current Consumption TLE6389-50-1 Target Datasheet Rev. 1.7 8 2001-09-17 TLE 6389 3 Electrical Characteristics (cont'd) 5V< VS <48V; - 40C< Tj <150C; all voltages with respect to ground; positive current defined flowing into the pin; unless otherwise specified Item Parameter Symbol Limit Values Unit Test Condition min. typ. max. 3.0.12 Supply current into VS IS 50 A VS = 13.5 V; IOUT = 0 mA; TJ = 25 C; 3.0.13 80 A VS = 42 V; IOUT = 0 mA; TJ = 25 C; 3.0.14 FB current IFB 50 A VOUT = 5 V; TJ = 25 C; Current Consumption TLE6389-33-1 3.0.15 Supply current into VS 80 IS A VS = 13.5 V; IOUT = 0 mA; TJ = 25 C; 3.0.16 110 A VS = 42 V; IOUT = 0 mA; TJ = 25 C; 3.0.17 FB current 15 IFB A VOUT = 3.3 V; TJ = 25 C; Buck-Controller 3.0.18 Output voltage Target Datasheet Rev. 1.7 VOUT 4.85 5 9 5.15 V 5V Versions; VS = 5.8 V to 48V; IOUT = TBDmA to 2A (PWM Mode); RSENSE = 0.05; RM1 = 0.25;RL1 = 0.1; 2001-09-17 TLE 6389 3 Electrical Characteristics (cont'd) 5V< VS <48V; - 40C< Tj <150C; all voltages with respect to ground; positive current defined flowing into the pin; unless otherwise specified Item Parameter 3.0.19 Output voltage Symbol VOUT 3.0.20 3.0.21 Output voltage 3.0.24 Output adjust range min. typ. max. 4.75 5 5.25 3.8 VOUT 3.0.22 3.0.23 FB threshold voltage Limit Values VFB,th Unit Test Condition V 5V Versions; VS = 5.8 V to 48V; IOUT = 0mA to TBDA (PFM Mode); RSENSE = 0.05; RM1 = 0.25;RL1 = 0.1; V 5V Versions; VS = 4.2 V to 5.8V; IOUT = 0mA to 500mA; RSENSE = 0.1; RM1 = 0.4;RL1 = 0.1; -3% 3.3 +3% V 3.3V Versions; VS = 5 V to 48V; IOUT = TBD to 2A (PWM Mode); -5% 3.3 +5% V 3.3V Versions; VS = 5 V to 48V; IOUT = 0mA to TBD (PFM Mode); 1.22 1.25 1.27 5 5 V TLE6389GV 5 15 V TLE6389GV 3.0.25 Line regulation 0.7 1 mV/ V TBD 3.0.26 Load regulation 20 30 mV/ A IOUT = 5mA to 2A; 0.2 V VENABLE = 5 V CBDS = 220 nF CGDRV = 5nF 3.0.27 Gate driver, P-gate to source voltage (off) Target Datasheet Rev. 1.7 VGDRV - 0 VS 10 2001-09-17 TLE 6389 3 Electrical Characteristics (cont'd) 5V< VS <48V; - 40C< Tj <150C; all voltages with respect to ground; positive current defined flowing into the pin; unless otherwise specified Item Parameter Symbol Limit Values Unit Test Condition min. typ. max. 3.0.28 Gate driver, P-gate to source voltage (on) VGDRV - TBD VS 3.0.29 Gate driver, peak charging current IGDRV TBD A 3.0.30 Gate driver, peak discharging current IGDRV TBD A 3.0.31 Gate driver, rise time tr 70 ns 3.0.32 Gate driver, fall time tf 100 ns 3.0.33 Gate driver, gate charge QGDRV 50 3.0.34 Current Limit Threshold Voltage VLIM = VVS - VCS 70 3.0.35 PWM to PFM Threshold Current 3.0.36 PFM to PWM Threshold Timing toff_PFM 3.0.37 Oscillator frequency fOSC 270 3.0.38 Maximum duty cycle dMAX 100 6.5 Target Datasheet Rev. 1.7 270 11 VENABLE = 5 V CBDS = 220 nF CGDRV = 5nF VENABLE = 5 V CBDS = 220 nF CGDRV = 5nF VENABLE = 5 V CBDS = 220 nF CGDRV = 5nF nC 100 130 mV 0.1* ILIM mA TBD s 360 3.0.39 Minimum duty cycle dMIN 3.0.40 SYNC capture range V 360 450 ILIM = VLIM / RSENSE kHz PWM mode only % PWM mode only TBD % PWM mode only 450 PWM mode only kHz 2001-09-17 TLE 6389 3 Electrical Characteristics (cont'd) 5V< VS <48V; - 40C< Tj <150C; all voltages with respect to ground; positive current defined flowing into the pin; unless otherwise specified Item Parameter Symbol Limit Values min. typ. Unit Test Condition max. Reset Generator 3.0.41 Reset threshold VRT 0.9* 1.25 V TLE6389GV only; VOUT decreasing 3.0.42 Reset threshold hysteresis VRT,hys 100 mV TLE6389GV only 3.0.43 Reset threshold VRT 3.5 3.65 3.8 V 5V Versions; VOUT decreasing 4.5 4.65 4.8 V 5V Versions; VOUT increasing 2.8 2.95 3.1 V 3.3V Versions; VOUT decreasing 2.9 3.05 3.2 V 3.3V Versions; VOUT increasing 10 20 k 3.3V and 5V Versions; Internally connected to 3.0.44 3.0.45 Reset threshold VRT 3.0.46 3.0.47 Reset pull up RRO 40 VOUT 3.0.48 Reset output High voltage VROH 3.0.49 Reset output Low voltage VROL 0.8* V 3.3V and 5V Versions;IROH=0 mA V IROL=1mA; 2.5V < VOUT < VOUT 0.2 0.4 VRT 3.0.50 3.0.51 Reset delay charging current Target Datasheet Rev. 1.7 0.2 4 Id 12 0.4 V IROL=0.2mA; 1V < VOUT < 2.5V A VD = 1V 2001-09-17 TLE 6389 3 Electrical Characteristics (cont'd) 5V< VS <48V; - 40C< Tj <150C; all voltages with respect to ground; positive current defined flowing into the pin; unless otherwise specified Item Parameter Symbol Limit Values Unit Test Condition min. typ. max. 3.0.52 Upper reset timing threshold VRDO tbd V -- 3.0.53 Lower timing threshold VRDL tbd V -- 3.0.54 Reset delay time td 70 ms CRD = 100nF 3.0.55 Reset reaction time trr 10 s 3.0.56 Reset Output delay tROd 1 s CRD = 100nF CRD = 100nF 35 50 ENABLE Input 3.0.57 Enable ONthreshold VENABLE, 2 3.0.58 Enable OFFthreshold VENABLE, V ON 0.8 V 5 A 2 A OFF 3.0.59 H-level input current IENABLE,O N 3.0.60 L-level input current IENABLE,O FF SI_ENABLE Input 3.0.61 Enable ONthreshold 3.0.62 Enable OFFthreshold VENABLE, 2 V ON VENABLE, 0.8 V 5 A OFF 3.0.63 H-level input current IENABLE,O N Target Datasheet Rev. 1.7 13 2001-09-17 TLE 6389 3 Electrical Characteristics (cont'd) 5V< VS <48V; - 40C< Tj <150C; all voltages with respect to ground; positive current defined flowing into the pin; unless otherwise specified Item Parameter Symbol Limit Values min. typ. 3.0.64 L-level input current IENABLE,O Unit Test Condition max. 2 A FF SI_GND Input 3.0.65 Switch ON resistance RSW 100 Tj=25C; ISI_GND = TBDuA Battery Voltage Sense 3.0.66 Sense threshold high to low Vsi, high 1.13 1.25 1.37 V 3.0.67 Sense threshold hysteresis Vsi, hys - 100 - mV - 3.0.68 S ense out pull up RSO 10 20 40 k 3.3V and 5V Versions; Internally connected to VOUT 3.0.69 Sense out output High voltage VSOH 3.0.70 Sense out output Low voltage VSOL 0.8* ISOH =0mA VOUT 3.0.71 3.0.72 Sense input current V ISI -1 0.2 0.4 V ISOL=1mA; 2.5V < VOUT; VSI < 1.13 V 0.2 0.4 V ISOL=0.2mA; 1V 10F suggested) to the input. Select this bulk capacitor to meet the input ripple requirements and voltage rating, rather than capacitor size. Use the following equation to calculate the maximum RMS input current: IRMS = IOUT[VOUT (VIN - VOUT)]1/2 * VIN When selecting an output capacitor, consider the output- ripple voltage and approximate it as the product of the ripple current and the ESR of the output capacitor. VRIPPLE = [VOUT (VIN - VOUT)] / [2 * fOSC(L) (VIN)] * ESRCOUT where ESRCOUT is the equivalent-series resistance of the output capacitor. Higher values of COUT provide improved output ripple and transient response. Lower oscillator frequencies require a larger-value output capacitor. Verify capacitor selection with light loads during PFM operation, since output ripple is higher under these conditions. LowESR capacitors are recommended. Capacitor ESR is a major contributor to output ripple (usually more than 60%). Ordinary aluminum-electrolytic capacitors have high ESR and should be avoided. Low-ESR aluminum-electrolytic capacitors are acceptable and relatively inexpensive. Low-ESR tantalum capacitors are better and provide a compact Target Datasheet Rev. 1.7 20 2001-09-17 TLE 6389 solution for space-constrained surface-mount designs. Do not exceed the ripple-current ratings of tantalum capacitors. Ceramic capacitors have the lowest ESR overall. Target Datasheet Rev. 1.7 21 2001-09-17 TLE 6389 6 Package Outlines Dimensions in mm Target Datasheet Rev. 1.7 22 2001-09-17 TLE 6389 Published by Infineon Technologies AG, St.-Martin-Strasse 53 D-81541 Munchen (c) Infineon Technologies AG2000 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologiesis an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Target Datasheet Rev. 1.7 23 2001-09-17