May 2012 i
© 2012 Microsemi Corporation
40MX and 42MX FPGA Families
Features
High Capacity
Single-Chip ASIC Alternative
3,000 to 54,000 System Gates
Up to 2.5 kbits Configurable Dual-Port SRAM
Fast Wide-Decode Circuitry
Up to 202 User-Programmable I/O Pins
High Performance
5.6 ns Clock-to-Out
250 MHz Performance
5 ns Dual-Port SRAM Access
100 MHz FIFOs
7.5 ns 35-Bit Address Decode
HiRel Features
Commercial, Industrial, Automotive, and Military
Temperature Plastic Packages
Commercial, Military Temperature, and MIL-STD-883
Ceramic Packages
QML Certification
Ceramic Devices Available to DSCC SMD
Ease of Integration
Mixed-Voltage Operation (5.0V or 3.3V for core and
I/Os), with PCI-Compliant I/Os
Up to 100% Resource Utilization and 100% Pin Locking
Deterministic, User-Controllable T iming
Unique In-System Diagnosti c and Verification Capability
with Silicon Explorer II
Low Power Consumption
IEEE Standard 1149.1 (JTAG) Boundary Scan Testing
Product Profile
Device A40MX02 A40MX04 A42MX09 A42MX16 A42MX24 A42MX36
Capacity
System Gates
SRAM Bits 3,000
6,000
14,000
24,000
36,000
54,000
2,560
Logic Modules
Sequential
Combinatorial
Decode
295
547
348
336
624
608
954
912
24
1,230
1,184
24
Clock-to-Out 9.5 ns 9.5 ns 5.6 ns 6.1 ns 6.1 ns 6.3 ns
SRAM Modules
(64x4 or 32x8) ––– 10
Dedicated Flip-F lo ps 348 624 954 1,230
Maximum Flip-Flops 147 273 516 928 1,410 1,822
Clocks 112 226
User I/O (maximum) 57 69 104 140 176 202
PCI ––– YesYes
Boundary Scan Test (BST) ––– YesYes
Packages (by pin count)
PLCC
PQFP
VQFP
TQFP
CQFP
PBGA
44, 68
100
80
44, 68, 84
100
80
84
100, 160
100
176
84
100, 160, 208
100
176
84
160, 208
176
208, 240
208, 256
272
Revision 11
40MX and 42MX FPGA Families
ii Revision 11
Ordering Information
Plastic Device Resources
User I/Os
Device PLCC
44-Pin PLCC
68-Pin PLCC
84-Pin PQFP
100-Pin PQFP
160-Pin PQFP
208-Pin PQFP
240-Pin VQFP
80-Pin VQFP
100-Pin TQFP
176-Pin PBGA
272-Pin
A40MX02 34 57 57 57
A40MX04 34 57 69 69 69
A42MX09 72 83 101 83 104
A42MX16 72 83 125 140 83 140
A42MX24 72 125 176 150
A42MX36–––––176202–––202
Note: Package Definitions
PLCC = Plastic Leaded Chip C arrier, PQFP = Plastic Quad Fl at Pack, TQFP = Thin Quad Flat Pack, VQFP = Very Thi n Quad
Flat Pack, PBGA = Plastic Ball Grid Array
_
Part Number
Speed Grade
Package Type
Package Lead Count
Lead-Free Packaging
Blank = Standard Packaging
G = RoHS Compliant Packaging
Blank = Commercial (0 to +70°C)
Application (Temperature Range)
PL = Plastic Leaded Chip Carrier
CQ =Ceramic Quad Flat Pack
BG = Plastic Ball Grid Array
VQ = Very Thin (1.0 mm) Quad Flat Pack
TQ = Thin (1.4 mm) Quad Flat Pack
PQ = Plastic Quad Flat Pack
Blank = Standard Speed
–1 = Approximately 15% Faster than Standard
–2 = Approximately 25% Faster than Standard
–3 = Approximately 35% Faster than Standard
–F = Approximately 40% Slower than Standard
A40MX02 = 3,000 System Gates
A40MX04 = 6,000 System Gates
A42MX09 = 14,000 System Gates
A42MX16 = 24,000 System Gates
A42MX24 = 36,000 System Gates
A42MX36 = 54,000 System Gates
A42MX16 1PQ 100
GES
I = Industrial (–40 to +85°C)
M = Military (–55 to +125°C)
A = Automotive (–40 to +125°C)
B = MIL-STD-883
40MX and 42MX FPGA Families
Revision 11 iii
Ceramic Device Resources
Temperature Grade Offerings
Speed Grade Offerings
Contact your local Microsemi SoC Products Group representative for device availability.
User I/Os
Device CQFP 208-Pin CQFP 256-Pin
A42MX36 176 202
Note: Package Definitions CQFP = Ceramic Quad Flat Pack
Package A40MX02 A40MX04 A42MX09 A42MX16 A42MX24 A42MX36
PLCC 44 C, I, M C, I, M
PLCC 68 C, I, A, M C, I, M
PLCC 84 C, I, A, M C, I, A, M C, I, M C, I, M
PQFP 100 C, I, A, M C, I, A, M C, I, A, M C, I, M
PQFP 160 C, I, A, M C, I, M C, I, A, M
PQFP 208 C, I, A, M C, I, A, M C, I, A, M
PQFP 240 C, I, A, M
VQFP 80 C, I, A, M C, I, A, M
VQFP 100 C, I, A, M C, I, A, M
TQFP 176 C, I, A, M C, I, A, M C, I, A, M
PBGA 272 C, I, M
CQFP 208 C, M, B
CQFP 256 C, M, B
Note: C = Commercial
I = Industrial
A = Automotive
M = Military
B = MIL-STD-883 Class B
F Std1–2–3
C✓✓✓✓✓
I✓✓✓✓
A
M✓✓
B✓✓
Note: Refer to the 40MX and 42MX Automotive Family FPGAs datashee t for details o n automotive-grade MX offerings.
40MX and 42MX FPGA Families
Revision 11 iv
Table of Content s
40MX and 42MX FPGA Families
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
MX Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Other Architectural Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10
Development Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16
5.0 V Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16
3.3 V Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-19
Mixed 5.0 V / 3.3 V Operating Conditions (for 42MX Devices Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-21
Timing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-27
Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-35
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-83
Package Pin Assignments
PL44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
PL68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
PL84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
PQ100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
PQ160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
PQ208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19
PQ240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26
VQ80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-30
VQ100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-32
TQ176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34
CQ208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-40
CQ256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-43
BG272 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-47
Datasheet Information
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Revision 11 1-1
1 – 40MX and 42MX FPGA Families
General Description
Microsemi's 40MX and 42MX families offer a cost-effective design solution at 5V. The MX devices are
single-chip solutions and provide high performance while shortening the system design and development
cycle. MX devices can integrate and consolidate logic implemented in multiple PALs, CPLDs, and
FPGAs. Example applications include high-speed controllers and address decoding, peripheral bus
interfaces, DSP, and co-processor functions.
The MX device architecture is based on Microsemi’s patented antifuse technology implemented in a
0.45µm triple-metal CMOS process. With capacities ranging from 3,000 to 54 ,0 00 system g ates, the MX
devices provide performance up to 250 MHz, are live on po wer-up a nd have one -fifth the standby power
consumption of comparable FPGAs. MX FPGAs provide up to 202 user I/Os a nd are avai lable in a wi de
variety of packages and speed grades.
A42MX24 and A42MX36 devices also feature MultiPlex I/Os, which support mixed-voltage systems,
enable programmable PCI, deliver high-performance operation at both 5.0V and 3.3V, and provide a low-
power mode. The devices are fully compliant with the PCI Local Bus Specification (version 2.1). They
deliver 200 MHz on-chip operation and 6.1 ns clock-to-output performance .
The 42MX24 and 4 2MX36 devices include system-l evel features such as IEEE Standard 1149.1 (JTAG)
Boundary Scan Testing and fast wide-decode modules. In addition, the A42MX36 device offers dual-port
SRAM for implementing fast FIFOs, LIFOs, and temporary data storage. The storage elements can
efficiently address applications requiring wide datapath manipulation and can perform transformation
functions such as those required for telecommunications, networking , and DSP.
All MX devices are fully te sted over automotive and military temperature ranges. In additi on, the largest
member of the family, the A42MX36, is available in both CQ208 and CQ256 ceramic packages screened
to MIL-STD-883 levels. For easy prototyping and conversion from plastic to ceramic, the CQ208 and
PQ208 devices are pin-compatible.
MX Architectural Overview
The MX devices are composed of fine-grained building blocks that enable fast, efficient logic designs. All
devices within these families are composed of logic modules, I/O mod ules, routing resources and clock
networks, which are the building blocks for fast logic designs. In addition, the A42MX36 device contains
embedded dual-port SRAM modules, which are optimized for high-speed datapath functions such as
FIFOs, LIFOs and scratchpad memory. A42MX24 and A42MX36 also contain wide-decod e modules.
Logic Modules
The 40MX logic module is an eight-i nput, one-ou tput logic circuit designed to impleme nt a wide ra nge of
logic functions with efficient use of interconnect routing resources (Figure 1-1 on page 1-2).
The logic module can implement the four basic logic functions (NAND, AND, OR and NOR) in gates of
two, three, or four inputs. The logic module can also implement a variety of D-latches, exclusivity
functions, AND-ORs and OR-ANDs. No dedicated hard-wired latches or flip-flops are required in the
array; latches and flip-flops can be constructed from logic modules whenever required in the
application.
40MX and 42MX FPGA Families
1-2 Revision 11
The 42MX devices contain three types of logic modules: combinatorial (C-modules), sequential (S-
modules) and decode (D-modules). Figure 1-2 il lustrates the combinato rial logic module. The S-module,
shown in Figure 1-3, implements the same combinatoria l logic function as the C-module while add ing a
sequential element. The sequential element can be configured as either a D-flip-flop or a transparent
latch. The S-module register can be bypassed so that it implements purely combinatorial logic.
Figure 1- 1 • 40MX Logic Module
Figure 1- 2 • 42MX C-Module Implementation
D00
D01
D10
D11
S0
S1
Y
A0
B0
A1
B1
40MX and 42MX FPGA Families
Revision 11 1-3
A42MX24 and A42MX36 devices contain D-modules, which are arranged around the periphery of the
device. D-modules contain wide-decode circuitry, providing a fast, wide-input AND function similar to that
found in CPLD architectures (Figure 1-4). The D-module allows A42MX24 and A42MX36 devices to
perform wide-decode functions at speeds comparable to CPLD s and PALs. The output of the D-module
has a programmable inverter for active HIGH or LOW assertion. The D-module output is hardwired to an
output pin, and can also be fed back into the array to be incorporated into other logic.
Dual-Port SRAM Modules
The A42MX36 device contains dual-port SRAM modules that have been optimized for synchronous or
asynchronous applications. The SRAM modules are arranged in 256-bit blocks that can be configured as
32x8 or 64x4. SRAM modules can be cascaded together to form memory spaces of user-definable width
and depth. A block diagram of the A42MX36 dual-port SRAM block is shown in Figure 1-5.
The A42MX36 SRAM modules are true dual-port structures containing independent read and write ports.
Each SRAM module contains six bits of read and write addressing (RDAD[5:0] and WRAD[5:0],
respectively) for 64x4-bit blocks. Whe n configured i n byte mode, the hig hest order addres s bits (RDAD5
and WRAD5) are not used. The read and write ports of the SRAM block contain independent clocks
(RCLK and WCLK) with programmable polarities offering active HIGH or LOW implementation. The
SRAM block contains eight data inputs (WD[7:0]), and eight outputs (RD[7:0]), which are connected to
segmented vertical routing tracks.
The A42MX36 dual-port SRAM blocks provide an optimal solution for high-speed buffered applications
requiring FIFO and LIFO queues. The ACTgen Macro Builder within Microsemi's Designer software
Figure 1- 3 • 42MX S-Module Implementation
CLR
Up to 7-Input Function Plus D-Type Flip-Flop with Clear
Up to 4-Input Function Plus Latch with Clear
D0
D1 S
YDQ
GATE
CLR
OUT
Up to 8-Input Function (Same as C-Module)
D00
D01
D10
D11
S1 S0
YOUT
Up to 7-Input Function Plus Latch
D00
D01
D10
D11
S1 S0
YOUT
GATE
DQ
D00
D01
D10
D11
S1 S0
YDQ OUT
40MX and 42MX FPGA Families
1-4 Revision 11
provides capability to quickly design memory functions with the SRAM blocks. Unused SRA M blocks can
be used to implement registers for other user logic within the design.
Routing Structure
The MX architecture uses vertical and horizontal routing tracks to interconnect the various logic and I/O
modules. These routing tracks are metal interconnects that may be continuous or split into segments.
Varying segment lengths allow the interconnect of over 90% of design tracks to occur with only two
antifuse connections. Segments can be joined together at the ends using antifuses to increase their
lengths up to the full length of the track. All interconnects can be accomplishe d with a maximum of four
antifuses.
Horizontal Routing
Horizontal routing tracks sp an the whole row length or are divided into multiple segments and are located
in between the rows of modules. Any segment that spans more than one-third of the row length is
considered a long horizontal segment. A typical channel is shown in Figure 1-6. Within horizontal routing,
dedicated routing tracks are used for global clock networks and for power and ground tie-off tracks. Non-
dedicated tracks are used for signal nets.
Vertical Routing
Another set of routing tracks run vertically th rough the module. There are three types of vertic al tracks:
input, output, and long. Long tracks span the column length of the module, and can be divided into
multiple segments. Each segment in an input track is d edicated to the input of a particular module; each
segment in an output track is dedicated to the output of a particular module. Long segments are
Figure 1- 4 • A42MX24 and A42MX36 D-Module Implementa tion
Figure 1- 5 • A42MX36 Dual-Port SRAM Block
7 Inputs
Hard-Wire to I/O
Feedback to Array
Programmable
Inverter
SRAM Module
32 x 8 or 64 x 4
(256 Bits)
Read
Port
Logic
Write
Port
Logic
RD[7: 0]
Routing Tracks
Latches
Read
Logic
[5:0] RDAD[5:0]
REN
RCLK
Latches
WD[7: 0]
Latches
WRAD[5:0]
Write
Logic
MOD E
BLKEN
WEN
WCLK
[5:0]
[7:0]
40MX and 42MX FPGA Families
Revision 11 1-5
uncommitted and can be assigned during routing. Each output segment spans four channels (two above
and two below), except near the top and bottom of the array, where edge effects occur. Long vertical
tracks contain either one or two segments. An example of vertical routing tracks and segments is shown
in Figure 1-6.
Antifuse Structures
An antifuse is a "normally open" structure. The use of antifuses to implement a programmable logic
device results in highly testable structures as well as efficient programming algorithms. There are no pre-
existing connections; temporary connections can be made using pass transistors. These temporary
connections can isolate individual antifuses to be programmed and individual circuit structures to be
tested, which can be done before and after programming. For instance, all metal tracks can be tested for
continuity and shorts between adjacent tracks, and the function ality of all logic modules can be verified.
Clock Networks
The 40MX devices have one global clock distribution network (CLK). A signal can be put on the CLK
network by being routed through the CLKBUF buffer.
In 42MX devices, there are two low-skew, high-fanout clock distribution networks, referred to as CLKA
and CLKB. Each network has a clock module (CLKMOD) that can select the source of the clock signal
from any of the following (Figure 1-7 on page 1-6):
Externally from the CLKA pad, using CLKBUF buffer
Externally from the CLKB pad, using CLKBUF buffer
Internally from the CLKINTA input, using CLKINT buffer
Internally from the CLKINTB input, using CLKINT buffer
The clock modules are located in the top row of I/O modules. Clock drivers and a dedicated horizontal
clock track are located in each horizontal routing channel.
Clock input pads in both 40MX and 42MX devices can also be used as normal I/Os, bypassing the clock
networks.
The A42MX36 device has four additional register control resources, called quadrant clock networks
(Figure 1-8 on page 1-6). Each quadrant clo ck provides a local, high-fanout resource to the contiguous
logic modules within its quadrant of the device. Quadrant clock signals can originate from specific I/O
Figure 1- 6 • MX Routing Structure
Segmented
Horizontal
Routing Logic
Modules
Antifuses
Vertical Routing Tracks
40MX and 42MX FPGA Families
1-6 Revision 11
pins or from the internal array and can be used as a secondary register clock, register clear, or output
enable.
Figure 1- 7 • Clock Networks of 42MX Devices
Note: *QCLK1IN, QCLK2IN, QCLK3IN, and QCLK4IN are internal ly-generated signal s.
Figure 1- 8 • Quadrant Clock Network of A42MX36 Devices
CLKB
CLKA
From
Pads
Clock
Drivers
CLKMOD
CLKINB
CLKINA
S0
S1 Internal
Signal
CLKO(17)
CLKO(16)
CLKO(15)
CLKO(2)
CLKO(1)
Clock Tracks
Quad
Clock
Modul
QCLKA
QCLKB
*QCLK1IN
S0 S1
QCLK1
Quad
Clock
Modul
*QCLK2IN
S0 S1
QCLK2
Quad
Clock
Modul
QCLKC
QCLKD
*QCLK3IN
S0S1
QCLK3
Quad
Clock
Modul
*QCLK4IN
S0S1
QCLK4
40MX and 42MX FPGA Families
Revision 11 1-7
MultiPlex I/O Modules
42MX devices feature Multiplex I/Os and support 5.0V, 3.3V, and mixed 3.3V/5.0V operations.
The MultiPlex I/O modules provide the interface between the device pi ns and the logic array. Figure 1-9
is a block diagram of the 42MX I/O module. A variety of user functions, determined by a library macro
selection, can be implemented in the module. (Refer to the Antifuse Macro Library Guide for more
information.) All 42MX I/O modules contain tristate buffers, with input and output latches that can be
configured for input, output, or bidirectional operation.
All 42MX devices contain flexible I/O structures, where each output pin has a dedicated output-enable
control (Figure 1-9). The I/O module can be used to latch input or output data, or both, providing fast set-
up time. In addition, the Desi gner software tools can build a D-type flip-flo p using a C-mod ule combined
with an I/O module to register input and output signals. Refer to the Antifuse Macro Library Guide for
more details.
A42MX24 and A42MX36 devices also offer selectable PCI output drives, enabling 100% compliance with
version 2.1 of the PCI specification. For low-power systems, all inputs and outputs are turned off to
reduce current consumption to below 500μA.
To achieve 5.0V or 3.3V PCI-compliant output drives on A42MX24 and A42MX36 devices, a chip-wide
PCI fuse is programmed via the Device Selection Wizard in the Designer software (Figure 1-10). When
the PCI fuse is not programmed, the output drive is standard.
Designer software development tools provide a de si gn library of I/O macro functions that can i mplement
all I/O configurations supported by the MX FPGAs.
Note: *Can be configured as a Latch or D Flip-Flop (Using
C-Module)
Figure 1- 9 • 42MX I/O Module
Figure 1- 10 PCI Output Structure of A42MX24 and A42MX36 Devices
QD
From Array
To Array
G/CLK*
G/CLK*
QD
PAD
EN
Signal
PCI Enable
PCI
Fuse
Drive
STD
Output
40MX and 42MX FPGA Families
1-8 Revision 11
Other Architectural Features
Performance
MX devices can operate with in ternal clock frequencies of 250 MHz, ena bling fast execution of co mplex
logic functions. MX devices are live on power-up and do not require auxiliary configuratio n devices and
thus are an optimal platform to integrate the functionality contained in multiple programmable logic
devices. In addition, de signs that previously woul d have required a gate array to meet performance can
be integrated into an MX device with improvements in cost and time-to-market. Using timing-driven
place-and-route (TDPR) tools, designers can achieve highly deterministic device performance.
User Security
Microsemi FuseLock provides robust security against design theft. Special security fuses are hidden in
the fabric of the device and protect against unauthorized users attempting to access the programming
and/or probe inte rfaces. It is virtually impossible to identify or bypass these fuses without damaging the
device, making Microsemi antifuse FPGAs protected with the highest level of security available from both
invasive and noninvasive attacks.
Specia l security fuses in 40MX devices include th e Probe Fuse and Pro gram Fuse. The former disab les
the probing circu itry while the latter prohi bits further programming of all fuses, includi ng the Prob e Fuse.
In 42MX devices, there is the Security Fuse which, when programmed, both disables the probing circuitry
and prohibits further programming of the device.
Programming
Device programming i s supported through the Silicon Sculp to r series of programmers. Silicon Sculptor II
is a compact, robust, single-site and multi-site device programmer for the PC. With standalone so ftware,
Silicon Sculptor II is designed to allow concurrent programming of multiple units from the same PC.
Silicon Sculptor II programs devices independently to achieve the fastest programming times possible.
After being programmed, each fuse is verified to insure that it has been programmed correctly.
Furthermore, at the end of programming, there are integrity tests that are run to ensure no extra fuses
have been programmed. Not only does it test fuses (both programmed and nonprogrammed), Silicon
Sculptor II also allows self-test to verify its own hardware extensively.
The procedure for programming an MX device using Silicon Sculptor II is as follows:
1. Load the *.AFM file
2. Select the device to be programmed
3. Begin programming
When the design is ready to go to production, Microsemi offers device volume-programming services
either through distribution partners or via In-House Programming from the factory.
For more details on programming MX devices, please refer to the Programming Antifuse Devices and the
Silicon Sculptor II user's guides.
40MX and 42MX FPGA Families
Revision 11 1-9
Power Supply
MX devices are designed to operate in both 5.0V and 3.3V environments. In particular, 42MX devices
can operate in mixed 5.0V/3.3V systems. Table 1-1 describes the voltage support of MX devices.
Power-Up/Down in Mixed-Voltage Mode
When powering up 42MX in mixed voltage mode (VCCA = 5.0 V and VCCI = 3.3 V), VCCA must be
greater than or equal to VCCI throughout the power-up seque nce. If VCCI exceeds VCCA during power-
up, one of two things will happen:
The input protection diode on the I/Os will be forward biased
The I/Os will be at logical High
In either case, ICC rises to high levels.
For power-down, any sequence with VCCA and VCCI can be implemented.
Transient Current
Due to the simultaneous random logic switching activity during power-up, a transient current may appear
on the core supply (VCC). Customers must use a regulator for the VCC supply that can source a
minimum of 100 mA for transient current during power-up. Failure to provide enoug h power can prevent
the system from powering up properly and result in functional failure. However, there are no reliability
concerns, since transient current is distributed across the die instead of confined to a localized spot.
Since the transient current is not due to I/O switching, its value and duration are independent of the
VCCI.
Low Power Mode
42MX devices have been designed with a Low Power Mode. This feature, activated with setting the
special LP pin to HIGH for a period longer than 800 ns, is particularly useful for battery-operated systems
where battery life is a primary concern. In this mode, the core of the d evice is turned off and the device
consumes minimal power with low standby current. In addition, all input buffers are turned off, and all
outputs and bidirectional buffers are tristated. Since the core of the device is turned off, the states of the
registers are lost. The device must be re-initialized when exiting Low Power Mode. I/Os can be driven
during LP mode, and clock pins should be driven HIGH or LOW and should not float to avoid drawing
current. To exit LP mode, the LP pin must be pulled LOW for ove r 200 µs to allow for charge pumps to
power up, and device initialization will begin.
Table 1-1 • Voltage Support of MX Devices
Device VCC VCCA VCCI Maximum Input Tolerance Nominal Output Voltage
40MX 5.0 V 5.5 V 5.0V
3.3 V 3.6 V 3.3V
42MX 5.0 V 5.0 V 5.5 V 5.0V
3.3 V 3.3 V 3.6 V 3.3V
5.0 V 3.3 V 5.5 V 3.3V
40MX and 42MX FPGA Families
1-10 Revision 11
Power Dissipation
The general power consumption of MX devices is made up of static and dynamic power and can be
expressed with the following equation:
General Power Equation
P = [ICCstandby + ICCactive] * VCCI + IOL* VOL* N + IOH * (VCCI – VOH) * M
where:
ICCstandby is the current flowing when no inputs or outputs are changing.
ICCactive is the current flowing due to CMOS switching.
IOL, IOH are TTL sink/source currents.
VOL, VOH are TTL level output voltages.
N equals the number of outputs driving TTL loads to VOL.
M equals the number of outputs driving TTL loads to VOH.
Accurate values for N and M are difficult to determine because they depend on the family type, on design
details, and on the system I/O. The power can be divided into two components: static and active.
Static Power Component
The static power due to standby current is typically a small component of the overall power consumption.
Standby power is calcula ted for commercial, worst-case conditions. The static power dissipation by TTL
loads depends on the numbe r of outputs driving, and o n the DC load current. For in stance, a 32-bit bus
sinking 4mA at 0.33V will generate 42mW with all outputs driving LOW, and 140mW with all outputs
driving HIGH. The actual dissipation will average somewhere in between, as I/Os switch states with time.
Active Power Component
Power dissipation in CMOS devices is usually dominated by the dynamic power dissipation. Dynamic
power consumption is frequency-dependent and is a function of the logic and the external I/O. Active
power dissipation results from charging internal chip capacitances of the interconnect, unprogrammed
antifuses, module inputs, and module outputs, plus external capacitances due to PC board traces and
load device inputs. An additi onal component of the active power dissipation is the totem pole current in
the CMOS transistor pairs. The net effect can be associated with an equivalent capacitance that can be
combined with frequency and voltage to represent active power dissipation.
The power dissipated by a CMOS circuit can be expressed by the equation:
Power (µW) = CEQ * VCCA2 * F(1)
where:
CEQ = Equivalent capacitance expressed in picofarads (pF)
VCCA = Power supply in volts (V)
F = Switching frequency in megahertz (MHz)
Equivalent Capacitance
Equivalent capacitance is calculated by measuring ICCactive at a specified frequency and voltage for
each circuit component of interest. Measurements have been made over a range of frequencies at a
fixed value of VCC. Equivalent capacitance is frequency-independent, so the results can be used over a
wide range of operating conditions. Equivalent capacitance values are shown below.
40MX and 42MX FPGA Families
Revision 11 1-11
CEQ Values for Microsemi MX FPGAs
Modules (CEQM)3.5
Input Buffers (CEQI)6.9
Output Buffers (CEQO)18.2
Routed Array Clock Buffer Loads (CEQCR)1.4
To calculate the active power dissipated from the complete design, the switching freq uency of each part
of the logic must be known. The equation below shows a piece-wise linear summation over all
components.
Power = VCCA2 * [(m x CEQM * fm)Modules +
(n * CEQI * fn)Inputs + (p * (CEQO + CL) * fp)outputs +
0.5 * (q1 * CEQCR * fq1)routed_Clk1 + (r1 * fq1)routed_Clk1 +
0.5 * (q2 * CEQCR * fq2)routed_Clk2 + (r2 * fq2)routed_Clk2 (2)
where:
Fixed Capacitance Values for MX FPGAs (pF)
m = Number of logic modules switching at frequency fm
n = Number of input buffers switching at frequency fn
p = Number of output buffers switching at frequency fp
q1= Number of clock loads on the first routed array clock
q2= Number of clock loads on the second routed array clock
r1= Fixed capacitance due to first routed array clock
r2= Fixed capacitance due to second routed array clock
CEQM = Equivalent capacitance of logic modules in pF
CEQI = Equivalent capacitance of input buffers in pF
CEQO = Equivalent capacitance of output buffers in pF
CEQC
R
= Equivalent capacitance of routed arr ay clock in pF
CL= Output load capacitance in pF
fm= Average logic module switching rate in MHz
fn= Average input buffer switching rate in MHz
fp= A verage output buf fer switching rate in MHz
fq1 = Average first routed array clock rate in MHz
fq2 = Average second routed array clock rate in MHz
Device Type r1
routed_Clk1 r2
routed_Clk2
A40MX02 41.4 N/A
A40MX04 68.6 N/A
A42MX09 118 118
A42MX16 165 165
A42MX24 185 185
A42MX36 220 220
40MX and 42MX FPGA Families
1-12 Revision 11
Test Circuitry and Silicon Explorer II Probe
MX devices contain probing circuitry that provides built-in access to every node in a design, via the use of
Silicon Explorer II. Silicon Explorer II is an integrated hardware and software solution that, in conjunction
with the Designer software, allow users to examine any of the internal nets of the device while it is
operating in a prototyping or a production system. The user can probe into an MX device without
changing the placement and routing of the design and without using any additional resources. Silicon
Explorer II's noninvasive method does not alter timing or loading effects, thus shortening the debug cycle
and providing a true representation of the device under actual functional situations.
Silicon Explorer II samples data at 100 MHz (asynchronous) or 66 MHz (synchronous). Silicon Explorer II
attaches to a PC's standard COM port, turning the PC into a fully functional 18-channel logic analyzer.
Silicon Explorer II allows designers to complete the design verification process at their desks and
reduces verification time from several hours per cycle to a few seconds.
Silicon Explorer II is used to control the MODE, DCLK, SDI and SDO pins in MX devices to select the
desired nets for debugging. The user simply assigns the selected internal nets in the Silicon Explorer II
software to the PRA/PRB output pins for observation. Probing functionality is a ctivated when the MODE
pin is held HIGH.
Figure 1-11 illustrates the interconnection between Silicon Explorer II and 40MX devices, while Figure 1-
12 on page 1-12 illustrates the interconnection between Silicon Explorer II and 42MX devices
To allow for probing capabilities, the security fuses must not be programmed. (Refer to "User Security"
section on page 1-8 for the security fuses of 40MX and 42MX devices). Table 1-2 on page 1-13
summarizes the possible device configurations for probing.
PRA and PRB pins are dual-purpose pins. When the "Reserve Probe Pin" is checked in the
Designer software, PRA and PRB pins are reserved as dedicated outputs for probing. If PRA and PRB
pins are required as user I/Os to achieve successful layout and "Reserve Probe Pin" is checked, the
layout tool will override the option and place user I/Os on PRA and PRB pins.
Figure 1- 11 Silicon Explorer II Setup with 40MX
Figure 1- 12 Silicon Explorer II Setup with 42MX
40MX
Silicon
Explorer II
PRA
PRB
SDO
DCLK
SDI
MODE
Serial Connection
to Windows PC
16 Logic Analyzer Channels
42MX
Silicon
Explorer II
PRA
PRB
SDO
DCLK
SDI
MODE
Serial Connection
to Windows PC
16 Logic Analyzer Channels
40MX and 42MX FPGA Families
Revision 11 1-13
Design Consideration
It is recommended to use a series 70Ω termination resistor on every probe connector (SDI, SDO, MODE,
DCLK, PRA and PRB). The 70Ω series termination is used to prevent data transmission corruption
during probing and reading back the checksum.
IEEE Standard 1149.1 Boundary Scan Test (BST) Circuitry
42MX24 and 42MX36 devices are compatible with IEEE Standard 1149.1 (informally known as Joint
Testing Action Group Standard or JTAG), which defines a set of hardware architecture and mech anisms
for cost-effective board-level testing. The basic MX boundary-scan logic circuit is composed of the TA P
(test access port), TAP controller, test data registers and instruction register (Fi gure 1-13 on page 1-14 ).
This circuit supports all mandatory IEEE 1149.1 instructions (EXTEST, SAMPLE/PRELOAD and
BYPASS) and some optional instructions. Table 1-3 on page 1-14 describes the ports that control JTAG
testing, while Table 1-4 on page 1-14 describes the test instructions supported by these MX devices.
Each test section is accessed through the TAP, which has four associated pins: TCK (test clock input),
TDI and TDO (test data input and output), and TMS (test mode selector).
The TAP controller is a four-bit state machine. The '1's and '0's represent the values that must be
present at TMS at a rising edge of TCK for the given state transition to occur. IR and DR indicate that the
instruction register or the data register is operating in that state.
The TAP controller receives two control i nputs (TMS and TCK) and generates control and clock sign als
for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset
state. To guarantee a reset of the controller from any of the possible states, TMS must remain high for
five TCK cycles.
42MX24 and 42MX36 devices support three types of test data registers: bypass, device identification,
and boundary scan. The bypass register is selected when no other register needs to be accessed in a
device. This speeds up test data transfer to other devices in a test data path. The 32-bit device
identification register is a shift register with four fields (lowest significant byte (LSB), ID number, part
number and version). The boundary-scan register ob serves and controls the state of each I/O pin.
Each I/O cell has three boundary-scan register cells, each with a serial-in, serial-out, parallel-in, and
parallel-out pin. The serial pins are used to serially connect all the boundary-scan register cells in a
device into a boundary-scan register chain, which starts at the TDI pin and ends at the TDO pin. The
Table 1-2 • Device Configuration Options for Probe Capabili ty
Security Fuse(s)
Programmed Mode PRA, PRB1SDI, SDO, DCLK1
No LOW User I/Os2User I/Os2
No HIGH Probe Circuit Outputs Probe Circuit Inputs
Yes Probe Circuit Secured Probe Circuit Secured
Notes:
1. Avoid using SDI, SDO, DCLK, PRA and PRB pins as input or bidirectional ports. Since these pins are
active during probing, input signals will not pass through these pins and may cause contention.
2. If no user signal is assigned to these pins, they will behave as unused I/Os in this mode. See the "Pin
Descriptions" section on page 1-83 for information on unused I/O pins.
40MX and 42MX FPGA Families
1-14 Revision 11
parallel ports are connected to the internal core lo gic tile an d the input, output and control po rts of an I/O
buffer to capture and load data into the register to control or observe the logic state of each I/O.
Figure 1-13 • 42MX IEEE 1149.1 Boundary Scan Circuitry
Table 1-3 • Test Access Port Descriptions
Port Description
TMS
(Test Mode Select) Serial input for the test logic control bits. Data is captured on the rising edge of the test logic
clock (TCK).
TCK
(Test Clock Input) Dedicated test logic clock used serially to shift test instruction, test data, and control inputs
on the rising edge of the clock, a nd serially to shift the ou tput data on the fa lling e dge of the
clock. The maximum clock frequency for TCK is 20 MHz.
TDI
(Test Data Input) Serial input for instruction and te st data. Data is captured on the risi ng edge of the test logic
clock.
TDO
(Test Data Output) Serial output for test instruction and data from the te st logic. TD O is set to an Inactive Drive
state (high impedance) when data scanning is not in progress.
Table 1-4 • Supported BST Public Instructions
Instruction IR Code
(IR2.IR0) Instruction
Type Description
EXTEST 000 Mandatory Allows the external circuitry and board-level interconnections to be
tested by forcing a test pattern at the output pins and capturing test
results at the input pins.
SAMPLE/PRELOAD 001 Mandatory Allows a snapshot of the signals at the device pins to be captured
and examined during operation
HIGH Z 101 Optional Trist ates all I/Os to allow external signals to drive pins. Please refer to
the IEEE Standard 1149.1 specification.
CLAMP 110 Optional Allows state of signals driven from component pins to be determined
from the Boundary-Scan Registe r. Ple ase refer to the IEEE Standard
1149.1 specification for details.
BYPASS 111 Mandatory Enables the bypass register between the TDI and TDO pins. The test
data passes through the selected device to adjacent devices in the
test chain.
Boundary Scan Register
Instruction
Decode
Control Logic
TAP Controller
Instruction
Register
Bypass
Register
TMS
TCK
TDI
Output
MUX TDO
JTAG
JTAG
40MX and 42MX FPGA Families
Revision 11 1-15
JTAG Mode Activation
The JTAG test logic circuit is activated in the Designer software by selecting Tools -> Device Selection.
This brings up the Device Selection dialog box as sho wn in Figure 1-14. The JTAG test logic circuit can
be enabled by clicking the "Reserve JTAG Pins" check box. Table 1-5 explains the pins' behavior in
either mode.
TRST Pin and TAP Controller Reset
An active reset (TRST) pin is not supported; howeve r, MX d evices contain power-on circu itry that rese ts
the boundary scan circuitry upon power-up. Also, the TMS pin is equipped with an internal pull-up
resistor. This allows th e TAP controller to remain in or return to the Test-Logic-R eset state when there is
no input or when a logical 1 is on the TMS pin. To reset the controller , TMS must be HIGH for at least five
TCK cycles.
Boundary Scan Description Language (BSDL) File
Conforming to the IEEE S tandard 1149.1 requires that the operation of the various JTAG components be
documented. The BSDL file provides the standard format to describe th e JTAG components that can be
used by automatic test equipment software. The file includes the instructions that are supported,
instruction bit pattern, and the boundary-scan chain order. For an in-depth discussion on BSDL files,
please refer to Actel BSDL Files Format Description application note.
BSDL files are grouped into two categories - generic and device-specific. The generic files assign all user
I/Os as inouts. Device-specific files assign user I/Os as inputs, outputs or inouts.
Generic files for MX devices are available on the Microsemi SoC Product Group' s website:
http://www.microsemi.com/soc/techdocs/models/bsdl.html.
Figure 1- 14 Device Selection Wizard
Table 1-5 • Boundary Scan Pin Configuration and Functi onality
Reserve JTAG Checked Unchecked
TCK BST input; must be terminated to logical HIGH or LOW to avoid floating User I/O
TDI, TMS BST input; may float or be tied to HIGH User I/O
TDO BST output; may float or be connected to TDI of another device User I/O
40MX and 42MX FPGA Families
1-16 Revision 11
Development Tool Support
The MX family of FPGAs is fully suppo rted by Libero® Integrated Design Environment (IDE). Libero IDE
is a design management environment, seamlessly integrating design tools while guiding the user through
the design flow, managing all design and log files, and passing necessary design data among tools.
Libero IDE allows users to integrat e both schematic and HDL synthes is into a single flo w and verify the
entire design in a single environment. Libero IDE includes SynplifyPro from Synopsys, ModelSim® HDL
Simulator from Mentor Graphics, ® an d Viewdraw.
Libero IDE includes place-and-route and provides a comprehensive suite of backend support tools for
FPGA development, including timing-driven place-and-route, and a world-class integrated static timing
analyzer and constraints editor.
Additionally, the back-annotation flow is compatible with all the major simulators and the simulation
results can be cross-probed with Silicon Explorer II, Microsemi’s integrated verification and logic analysis
tool. Another tool included in the Libero software is the SmartGen macro builder, which easily creates
popular and commonly used lo gic functions for implementation into your schematic or HDL design.
Microsemi’s Libero software is compatible with the most popular FPGA design entry and verification tools
from companies such as Mentor Graphics, Synopsys, and Cadence Design Systems.
Refer to the Libero IDE web content at www.microsemi.com/soc/products/software/libero/default.aspx for
further information on licensing and current operating system support.
Related Documents
Application Notes
Actel BSDL Files Format Description
www.microsemi.com/soc/documents/BSDLformat_AN.pdf
Programming Antifuse Devices
http://www.microsemi.com/soc/documents/AntifuseProgram_AN.pdf
Actel's Implementation of Securi ty in Actel Antifuse FPGAs
www.microsemi.com/documents/Antifuse_Security_AN.pdf
Users Guides and Manuals
Antifuse Macro Library Guide
www.microsemicom/soc/documents/libguide_UG.pdf
Silicon Sculptor II
www.microsemi.com/soc/techdocs/manuals/default.asp#programmers
Miscellaneous
Libero IDE Flow Diagram
www.microsemi.com/soc/products/tools/libero/flow.html
5.0 V Operating Conditions
Table 1-6 • Absolute Maximum Ratings for 40MX Dev ic es*
Symbol Parameter Limits Units
VCC DC Supply Voltage –0.5 to +7.0 V
VI Input Voltage –0.5 to VCC+0.5 V
VO Output V oltage –0.5 to VCC+0.5 V
40MX and 42MX FPGA Families
Revision 11 1-17
tSTG Storage Temperature –65 to +150 °C
Note: *Stresses beyond those l isted under "Abso lute Maximum Ratings" may ca use permanent d amage to the device .
Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices
should not be operated outside the Reco mmended Operatin g Conditions.
Table 1-7 • Absolute Maximum Ratings for 42MX Dev ic es*
Symbol Parameter Limits Units
VCCI DC Supply Voltage for I/Os –0.5 to +7.0 V
VCCA DC Supply Voltage for Array –0.5 to +7.0 V
VI Input Voltage –0.5 to VCCI+0.5 V
VO Output Voltage –0.5 to VCCI+0.5 V
tSTG Sto rage Temperature –65 to +150 °C
Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permane nt damage to the device.
Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices
should not be operated outside the Reco mmended Operatin g Conditions.
Table 1-8 • Recommended Operating Cond itions
Parameter Commercial Industrial Military Units
Temperature Range* 0 to +70 –40 to +85 –55 to +125 °C
VCC (40MX) 4.75 to 5.25 4.5 to 5.5 4.5 to 5.5 V
VCCA (42MX) 4.75 to 5.25 4.5 to 5.5 4.5 to 5.5 V
VCCI (42MX) 4.75 to 5.25 4.5 to 5.5 4.5 to 5.5 V
Note: *Ambient temperature (TA) is used for commercial and industrial grades; case temperature (TC) is used for
military grades.
Table 1-6 • Absolute Maximum Ratings for 40MX Dev ic es*
Symbol Parameter Limits Units
40MX and 42MX FPGA Families
1-18 Revision 11
5 V TTL Electrical Specifications
Table 1-9 • 5V TTL Electrical Specifications
Symbol Parameter
Commercial Commercial -F Industrial Military
UnitsMin. Max. Min. Max. Min. Max. Min. Max.
VOH1IOH = –10 mA 2.4 2.4 V
IOH = –4 mA 3.7 3.7 V
VOL1IOL = 10 mA 0.5 0.5 V
IOL = 6 mA 0.4 0.4 V
VIL –0.3 0.8 –0.3 0.8 –0.3 0.8 –0.3 0.8 V
VIH (40MX) 2.0 VCC + 0.3 2.0 VCC + 0.3 2.0 VCC + 0.3 2.0 VCC + 0.3 V
VIH (42MX) 2.0 VCCI + 0.3 2.0 VCCI + 0.3 2.0 VCCI + 0.3 2.0 VCCI + 0.3 V
IIL VIN = 0.5 V –10 –10 –10 –10 µA
IIH VIN = 2.7 V –10 –10 10 –10 µA
Input T ransition
Time, TR and TF
500 500 500 500 ns
CIO I/O
Capacitance 10 10 10 10 pF
Standby Current,
ICC2A40MX02,
A40MX04 3251025mA
A42MX09 5 25 25 25 mA
A42MX16 6 25 25 25 mA
A42MX24,
A42MX36 20 25 25 25 mA
Low power mode
Standby Current 42MX devices
only 0.5 ICC – 5.0 ICC – 5.0 ICC – 5.0 mA
IIO, I/O source
sink current Can be derived from the IBIS model (http://www.microsemi.com/soc/techdocs/models/ibis.html)
Notes:
1. Only one output test ed at a time. VCC/VCCI = min.
2. All outputs unloade d. All inputs = VCC/VCCI or GND.
40MX and 42MX FPGA Families
Revision 11 1-19
3.3 V Operating Conditions
Table 1-10 • Absolute Maximum Ratings for 40MX Dev ic es*
Symbol Parameter Limits Units
VCC DC Supply Voltage –0.5 to +7.0 V
VI Input Voltage –0.5 to VCC + 0.5 V
VO Output Voltage –0.5 to VCC + 0.5 V
tSTG St orage Temperature –65 to + 150 °C
Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permane nt damage to the device.
Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices
should not be operated outside the Reco mmended Operatin g Conditions.
Table 1-11 • Absolute Maximum Ratings for 42MX Dev ic es*
Symbol Parameter Limits Units
VCCI DC Supply Voltage for I/Os –0.5 to +7.0 V
VCCA DC Supply Voltage for Array –0.5 to +7.0 V
VI Input Voltage –0.5 to VCCI+0.5 V
VO Output Voltage –0.5 to VCCI+0.5 V
tSTG Storage Temperature –65 to +150 °C
Note: *Stresses beyond those l isted under "Abso lute Maximum Ratings" may ca use permanent d amage to the device .
Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices
should not be operated outside the Reco mmended Operatin g Conditions.
Table 1-12 • Recommended Operating Cond itions
Parameter Commercial Industrial Military Units
Temperature Range* 0 to +70 –40 to +85 –55 to +125 °C
VCC (40MX) 3.0 to 3.6 3.0 to 3.6 3.0 to 3.6 V
VCCA (42MX) 3.0 to 3.6 3.0 to 3.6 3.0 to 3.6 V
VCCI (42MX) 3.0 to 3.6 3.0 to 3.6 3.0 to 3.6 V
Note: *Ambient temperature (TA) is used for commercial and industrial grades; case temperature (TC) is used for
military grades.
40MX and 42MX FPGA Families
1-20 Revision 11
3.3 V LVTTL Electrical Specifications
Table 1-13 • 3.3V LVTTL Electrical Specifications
Symbol Parameter
Commercial Commercial -F Industrial Military
UnitsMin. Max. Min. Max. Min. Max. Min. Max.
VOH1IOH = –4 mA 2.15 2.15 2.4 2.4 V
VOL1IOL = 6 mA 0.4 0.4 0.48 0.48 V
VIL –0.3 0.8 –0.3 0.8 –0.3 0.8 –0.3 0.8 V
VIH (40MX) 2.0 VCC + 0.3 2.0 VCC + 0.3 2.0 VCC + 0.3 2.0 VCC + 0.3 V
VIH (42MX) 2.0 VCCI + 0.3 2.0 VCCI + 0.3 2.0 VCCI + 0.3 2.0 VCCI + 0.3 V
IIL –10 –10 –10 –10 µA
IIH –10 –10 –10 –10 µA
Input Transition
Time, TR and TF
500 500 500 500 ns
CIO I/O
Capacitance 10 10 10 10 pF
Standby
Current, ICC2A40MX02,
A40MX04 3251025mA
A42MX09 5 25 25 25 mA
A42MX16 6 25 25 25 mA
A42MX24,
A42MX36 15 25 25 25 mA
Low-Power
Mode Standby
Current
42MX
devices only 0.5 ICC - 5.0 ICC - 5.0 ICC - 5.0 mA
IIO, I/O source
sink current Can be derived from the IBIS model (http://www.microsemi.com/soc/techdocs/models/ibis.html)
Notes:
1. Only one output tested at a time. VCC/VCCI = min.
2. All outputs unloaded. All inputs = VCC/VCCI or GND.
40MX and 42MX FPGA Families
Revision 11 1-21
Mixed 5.0 V / 3.3 V Operating Conditions (for 42MX Devices
Only)
Table 1-14 • Absolute Maximum Ratings*
Symbol Parameter Limits Units
VCCI DC Supply Voltage for I/Os –0.5 to +7.0 V
VCCA DC Supply Voltage for Array –0.5 to +7.0 V
VI Input Voltage –0.5 to VCCA +0.5 V
VO Output Voltage –0.5 to VCCI + 0.5 V
tSTG Storage Temperature –65 to +150 °C
Note: *Stresses beyond those li sted under "Absolute Maximum Ratings" may ca use permanent dama ge to the device.
Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices
should not be operated outside the Reco mmended Operatin g Conditions.
Table 1-15 • Recommended Operating Cond itions
Parameter Commercial Industrial Military Units
Temperature Range* 0 to +70 –40 to +85 –55 to +125 °C
VCCA 4.75 to 5.25 4.5 to 5.5 4.5 to 5.5 V
VCCI 3.14 to 3.47 3.0 to 3.6 3.0 to 3.6 V
Note: *Ambient temperature (TA) is used for commercial and industrial grades; case temperature (TC) is used for
military grades.
40MX and 42MX FPGA Families
1-22 Revision 11
Mixed 5.0V/3.3V Electrical Specifications
Table 1-16 • Mixed 5.0V/3.3V Electrical Specifications
Symbol Parameter
Commercial Commercial –F Industrial Military
UnitsMin. Max. Min. Max. Min. Max. Min. Max.
VOH1IOH = –10 mA 2.4 2.4 V
IOH = –4 mA 2.4 2.4 V
VOL1IOL = 10 mA 0.5 0.5 V
IOL = 6 mA 0.4 0.4 V
VIL –0.3 0.8 –0.3 0.8 –0.3 0.8 –0.3 0.8 V
VIH 2.0 VCCA + 0.3 2.0 VCCA + 0.3 2.0 VCCA + 0.3 2.0 VCCA + 0.3 V
IL VIN = 0.5 V –10 –10 –10 –10 µA
IH VIN = 2.7 V –10 –10 –10 –10 µA
Input Transition
Time, TR and TF
500 500 500 500 ns
CIO I/O Capacitance 10 10 10 10 pF
Standby Current,
ICC2A42MX09 5 25 25 25 mA
A42MX16 6 25 25 25 mA
A42MX24,
A42MX36 20 25 25 25 mA
Low Power Mode
Standby Current 0.5 ICC – 5.0 ICC – 5.0 ICC – 5.0 mA
IIO I/O source sink
current Can be derived from the IBIS model (http://www.microsemi.com/soc/techdocs/models/ibis.html)
Notes:
1. Only one output tested at a time. VCCI = min.
2. All outputs unloaded. All inputs = VCCI or GND.
40MX and 42MX FPGA Families
Revision 11 1-23
Output Drive Characteristics for 5.0 V PCI Signaling
MX PCI device I/O drivers were designed specifically for high-performance PC I systems. F igure 1-15 on
page 1-25 shows the typical output drive characteristics of the MX devices. MX output drivers are
compliant with the PCI Local Bus S pecification.
Table 1-17 • DC Specification (5.0 V PCI Signaling)1
PCI MX
Symbol Parameter Condition Min. Max. Min. Max. Units
VCCI Supply Voltage for I/Os 4.75 5.25 4.75 5.252V
VIH Input High Voltage 2.0 VCC + 0.5 2.0 VCCI + 0.3 V
VIL Input Low Voltage –0.5 0.8 –0.3 0.8 V
IIH Input High Leakage Current VIN = 2.7 V 70 10 µA
IIL Input Low Leakage Curre nt V IN=0.5 V –70 –10 µA
VOH Output High Voltage IOUT = –2 mA
IOUT = –6 mA 2.4 3.84 V
VOL Output Low V o ltage IOUT = 3 mA, 6 mA 0.55 0.33 V
CIN Input Pin Capacitance 10 10 pF
CCLK CLK Pin Capacitance 5 12 10 pF
LPIN Pin Inductance 20 < 8 nH3nH
Notes:
1. PCI Local Bus Specification, Version 2.1, Section 4.2.1.1.
2. Maximum rating for VCCI –0.5 V to 7.0V.
3. Dependent upon the chosen package. PCI recommends QFP and BGA packaging to reduce pin inductance and
capacitance.
Table 1-18 • AC Specifications (5.0V PCI Signaling)*
PCI MX
Symbol Parameter Condition Min. Max. Min. Max. Units
ICL Low Clamp Current –5 < VIN –1 –25 + (VIN +1) /0.015 –60 –10 mA
Slew (r) Output Rise Slew Rate 0.4 V to 2.4 V load 1 5 1.8 2.8 V/ns
Slew (f) Output Fall Slew Rate 2.4 V to 0.4 V load 1 5 2.8 4.3 V/ns
Note: *PCI Local Bus Specification, Version 2.1, Section 4.2.1.2.
40MX and 42MX FPGA Families
1-24 Revision 11
Output Drive Characteristics for 3.3 V PCI Signaling
Table 1-19 • DC Specification (3.3 V PCI Signaling)1
PCI MX
Symbol Parameter Condition Min. Max. Min. Max. Units
VCCI Supply Voltage for I/Os 3.0 3.6 3.0 3.6 V
VIH Input High Voltage 0.5 VCC + 0.5 0.5 VCCI + 0.3 V
VIL Input Low Voltage –0.5 0.8 –0.3 0.8 V
IIH Input High Leakage Current VIN = 2.7V 70 10 µA
IIL Input Leakage Current –70 –10 µA
VOH Output High Voltage IOUT = –2 mA 0.9 3.3 V
VOL Output Low Voltage IOUT = 3 m A, 6 mA 0.1 0.1 VCCI V
CIN Input Pin Capacitance 10 10 pF
CCLK CLK Pin Capacitance 5 12 10 pF
LPIN Pin Inductance 20 < 8 nH3nH
Notes:
1. PCI Local Bus Specification, Version 2.1, Section 4.2.2.1.
2. Maximum rating for VCCI –0.5V to 7.0V.
3. Dependent upon the chosen package. PCI recommends QFP and BGA packaging to reduce pin inductance and
capacitance.
Table 1-20 • AC Specifications for (3.3 V PCI Signaling)*
PCI MX
Symbol Parameter Condition Min. Max. Min. Max. Units
ICL Low Clamp Current 5 < VIN –1 –25 + (VIN +1) /0.015 –60 –10 mA
Slew (r) Output Rise Slew Rate 0.2 V to 0.6 V load 1 4 1.8 2.8 V/ns
Slew (f) Output Fall Slew Rate 0.6 V to 0.2 V load 1 4 2.8 4.0 V/ns
Note: *PCI Local Bus Specification, Version 2.1, Section 4.2.2.2.
40MX and 42MX FPGA Families
Revision 11 1-25
Junction Temperature (TJ)
The temperature variable in the Designer software refers to the junction temperature, not the ambient
temperature. This is an important distinction because the heat generated from dynamic power
consumption is usually hotter than the ambient temperature. EQ , shown below, can be used to calculate
junction temperature.
Junction Temperature = ΔT + Ta (1) EQ 1
Where:
Ta = Ambient Temperature
ΔT = Temperature gradient between junction (silicon) and ambient
ΔT = θja * P (2)
P = Power
θja = Junction to ambient of package. θja numbers are located in Table 1-21 on page 1-26.
Figure 1-15 • Typical Output Drive Characteristics (Based Upon Measured Data)
0123456
MX PCI IOL
MX PCI IOH
PCI IOL Maximum
PCI IOL Minimum
PCI IOH Minimum
PCI IOH Maximum
Voltage Out (V)
–0.20
–0.15
–0.10
–0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
Current (A)
40MX and 42MX FPGA Families
1-26 Revision 11
Package Thermal Characteristics
The device junction-to-case thermal characteristic is θjc, and the junction-to-ambient air characteristic is
θja. The thermal characteristics for θja are shown with two different air flow rates.
The maximum junction temperature is 150°C.
Maximum power dissipation for commercial- and industrial-grade devices is a function of θja.
A sample calculation of the absolute maximum power dissipation allowed for a TQ176 package at
commercial temperature and still air is given in EQ 2.
EQ 2
The maximum power dissipation for military-grade devices is a function of
θ
jc. A sample calculation of the
absolute maximum power dissipation allowed for CQFP 208-pin package at military temperature and still
air is given in EQ 3.
EQ 3
Maximum Power Allowed Max. junction temp. (°C) Max. ambient temp. (°C)
θja(°C/W)
------------------------------------------------------------------------------------------------------------------------------------------ 150°C70°C
28°C/W
------------------------------------- 2.86 W===
Maximum Power Allowed Max. junction temp. (°C) Max. ambient temp. (°C)
θjc(°C/W)
------------------------------------------------------------------------------------------------------------------------------------------ 150°C125°C
6.3°C/W
---------------------------------------- 3.97 W===
Table 1-21 • Package Thermal Characteristics
Plastic Packages Pin Count θjc
θja
UnitsStill Air 1.0 m/s
200 ft/min. 2.5 m/s
500 ft/min.
Plastic Quad Flat Pack 100 12.0 27.8 23.4 21.2 °C/W
Plastic Quad Flat Pack 160 10.0 26.2 22.8 21.1 °C/W
Plastic Quad Flat Pack 208 8.0 26.1 22.5 20.8 °C/W
Plastic Quad Flat Pack 240 8.5 25.6 22.3 20.8 °C/W
Plastic Leaded Chip Carrier 44 16.0 20.0 24.5 22.0 °C/W
Plastic Leaded Chip Carrier 68 13.0 25.0 21.0 19.4 °C/W
Plastic Leaded Chip Carrier 84 12.0 22.5 18.9 17.6 °C/W
Thin Plastic Quad Flat Pack 176 11.0 24.7 19.9 18.0 °C/W
Very Thin Plastic Quad Flat Pack 80 12.0 38.2 31.9 29.4 °C/W
Very Thin Plastic Quad Flat Pack 100 10.0 35.3 29.4 27.1 °C/W
Plastic Ball Grid Array 272 3.0 18.3 14.9 13.9 °C/W
Ceramic Packages
Ceramic Quad Flat Pack 208 2.0 22.0 19.8 18.0 °C/W
Ceramic Quad Flat Pack 256 2.0 20.0 16.5 15.0 °C/W
40MX and 42MX FPGA Families
Revision 11 1-27
Timing Models
Note: Values are shown for 40MX –3 speed devices at 5.0 V worst-case commercial condi tions.
Figure 1-16 • 40MX Timing Model*
Notes:
1. Input module predict ed routing delay
2. Values are shown for A42MX09 –3 at 5.0 V worst-case commercial conditions.
Figure 1-17 • 42MX Timing Model
Array
Clocks
Comb.
Logic
Include
DQ
FO = 3 2
Ou tp ut Del aysIn tern al Del aysI np ut Del ays
I /O Module
DQ
Combinatorial
Logic Module
Sequential
Logic Module
I /O Module
I /O Module
DQ
Predicted
Routing
Delays
G
G
t
RD1
= 0.7 ns
t
RD2
= 1.9 ns
t
RD4
= 1.4 ns
t
RD8
= 2.3 ns
t
OUTH
= 0.00 ns
t
OUTSU
= 0.3 ns
t
GLH
= 2.6 ns
t
DLH
= 2.5 ns
t
DLH
= 2.5 ns
t
ENHZ
= 4.9 ns
t
RD1
= 0.70 ns
t
LCO
= 5.2 ns (light loads, pad-to-pad)
tCO = 1.3 ns
t
SUD
= 0.3 ns
t
HD
= 0.00 ns
t
PD
=1.2 ns
t
IRD1
= 2.0 ns
1
t
INYL
= 0.8 ns
tI
NH
= 0.0 ns
t
INSU
= 0.3 ns
t
INGL
= 1.3 ns
F
MAX
= 296 MHz
t
CKH
= 2.70 ns
40MX and 42MX FPGA Families
1-28 Revision 11
Notes:
1. Load-dependent
2. Values are shown for A42MX36 –3 at 5.0 V worst-case commercial conditions.
Figure 1-18 • 42MX Timing Model (Logi c Functions Using Quadrant Clocks)
t
SUD
= 3.0 ns
t
HD
= 0.0 ns
FMAX=180 MHz
t
CKH
=3.03 ns
1
Quadrant
Clocks
t
CO
= 1.3 ns
t
RD1
= 0.9 ns
Sequential
Logic Module
t
LH
= 0.00 ns
t
LSU
= 0.5 ns
t
GHL
= 2.9 ns
t
ENHZ
= 5.3 ns
t
DLH
= 2.6 ns
t
RDD
= 0.3 ns
t
PDD
= 1.6 ns
t
INH
= 0.0 ns
t
INSU
= 0.5 ns
t
INGO
= 1.4 ns
t
RD1
= 0.9 ns
t
RD2
= 1.3 ns
t
RD4
= 2.0 ns
t
DLH
= 2.6 ns
t
PD
=1.3 ns
t
INPY
= 1.0 ns t
IRD1
= 2.0 ns
I/O Module
Combinatorial
Module
I/O Module
Decode
Module
Comb.
Logic
Include
DQDQ
G
G
DQ
I/O Module
Input Delays Internal Delays Output Delays
Predicted
Routing
Delays
40MX and 42MX FPGA Families
Revision 11 1-29
Note: Values are shown for A42MX36 –3 at 5.0 V worst-case commercial conditions.
Figure 1-19 • 42MX Timing Model (SRAM Functions)
t
INPY
= 1 .0 ns
I np ut Delays
I /O Module
DQ
Array
Clocks
GI /O Module
DQ
G
WD [7:0]
WRAD [5:0]
BLKEN
WEN
WCLK
RD [7:0]
RDAD [5:0]
REN
RCLK
Predicted
Routing
Delays
t
GHL
= 2.9 ns
t
LSU
= 0.5 ns
t
LH
= 0.0 ns
t
DLH
= 2.6 ns
t
ADSU
= 1.6 ns
t
ADH
= 0.0 ns
t
RENSU
= 0.6 ns
t
RCO
= 3.4 ns
t
ADSU
= 1.6 ns
t
ADH
= 0.0 ns
t
WENSU
= 2.7 ns
t
BENS
= 2.8 ns
t
RD1
= 0.9 ns
F
MAX
= 167 MHz
t
IRD1
= 2.0 ns
t
INSU
= 0.5 ns
t
INH
= 0.0 ns
t
INGO
= 1.4 ns
40MX and 42MX FPGA Families
1-30 Revision 11
Parameter Measurement
Figure 1- 20 Output Buffer Delays
Figure 1- 21 AC Te st Loads
Figure 1- 22 Input Buffer Delays
To AC tes t loads (show n below )
PAD
D
E
TRIBUFF
In 50%
PAD 1.5 V
50%
1.5 V
E50%
PAD 1.5 V
50%
10%
E50%
PAD
GND 1.5 V
50%
90%
t
ENZL
t
ENLZ
t
ENZH
t
ENHZ
t
DLH
t
DHL
VOL
VOH VCCI
VOL
VOH
35 pF
Lo ad 1
(U sed to measur e p ro pagati on d elay)
To the output under tes t
T o the output under test
Loa d 2
(U sed to measur e r isi ng/fal li ng ed ges)
VCCI GND
35 pF
R to VCCI for t
PLZ / tPZL
R to GND for tPHZ / tPZH
R =1 kΩ
PAD Y
INBUF
PAD 3 V 0 V
1.5 V
Y
GND 50%
1.5 V
50%
t
INYL
t
INYH
VCCI
40MX and 42MX FPGA Families
Revision 11 1-31
Sequential Module Timing Characteristics
Figure 1- 23 Module Delays
Note: *D represents all data functions involving A, B, and S for multiplexed flip-flo ps.
Figure 1- 24 Flip-Flops and Latches
S
A
B
Y
S, A or B
Y
50%
t
PLH
Y
50%
50% 50%
50% 50%
t
PHL
PHL
t
PLH
t
WCLKA
t
WASYN
t
HD
t
SUENA
t
SUD
t
RS
t
A
t
WCLK1
t
CO
t
HENA
D*
G, CLK
E
Q
PRE, CLR
(Positive Edge-Triggered)
D
E
CLK CLR
PRE Y
40MX and 42MX FPGA Families
1-32 Revision 11
Sequential Timing Characteristics
Figure 1- 25 Input Buffer Latches
Figure 1- 26 Output Buffer Latches
G
PAD
PAD
CLK
DATA
G
CLK
t
INH
t
INSU
INSU
t
SU EXT
t
HEXT
IBDL
DATA
D
G
tOUTSU
tOUTH
PAD
OBDLHS
D
G
40MX and 42MX FPGA Families
Revision 11 1-33
Decode Module Timing
SRAM Timing Characteristics
Dual-Port SRAM Timing Waveforms
Figure 1- 27 Decode Module Timing
Figure 1- 28 SRAM Timing Characteristics
Note: Identical timing for falling edge cl ock.
Figure 1- 29 42MX SRAM Write Operation
A–G, H
Y
tPLH
50%
tPHL
Y
A
B
C
D
E
F
GH
WRAD [5:0]
BLKEN
WEN
WCLK
RDA D [5 :0 ]
LEW
REN
RCLK
RD [7:0]
WD [7:0]
Write Port Read Port
RAM Array
3 2x8 or 64x4
(2 56 Bits)
WCLK
WD[7:0]
WRAD[5:0]
WEN
BLKEN Valid
Valid
t
RCKHL
t
RCKHL
t
WENSU
t
BENSU
t
WENH
t
BENH
t
ADSU
t
ADH
40MX and 42MX FPGA Families
1-34 Revision 11
Note: Identical timing for fa llin g edge clock.
Figure 1- 30 42MX SRAM Synchronous Read Operation
Figure 1- 31 42MX SRAM Asynchronous Read Operation—Type 1 (Read Address Controlled)
Figure 1- 32 42MX SRAM Asynchronous Read Operation—Type 2 (Write Address Controlled)
RCLK
REN
RDAD[5:0]
RD[7:0] Old Data
Valid
tRCKHL
tCKHL
tRENH
tRCO
tADH
tDOH
tADSU
New Data
tRENSU
RDAD[5:0]
RD[7:0] Data 1
tRDADV
tDOH
ADDR2ADDR1
Data 2
tRPD
WEN
WD[7:0]
WCLK
RD[7:0] Old Data
Valid
tWENH
tRPD
tWENSU
New Data
tDOH
tADSU
WRAD[5:0]
BLKEN
tADH
40MX and 42MX FPGA Families
Revision 11 1-35
Predictable Performance: Tight Delay Distributions
Propagation delay between logic modules depends on the resistive and capacitive loading of the routing
tracks, the interconnect elements, and the module inputs being driven. Propagation delay increases as
the length of routing tracks, the number of interconnect elements, or the number of inputs increases.
From a design perspective, the propagation delay can be statistically correlated or modeled by the fanout
(number of loads) driven by a mod ule. H igher fanou t us ually requires some paths to have longer routing
tracks.
The MX FPGAs deliver a tight fanout delay distribution, which is achieved in two ways: by decreasing the
delay of the interconnect elements and by decreasing the number of interconnect elements per path.
Microsemi’s patented antifuse offers a very low resistive/capacitive interconnect. The antifuses,
fabricated in 0.45 µm lithography, offer nominal levels of 100Ω resistance and 7.0 fF capacitance per
antifuse.
MX fanout distribution is also tight due to the low number of antifuses required for each interconnect
path. The proprietary architecture limits the number of antifuses per path to a maximum of four, with
90 percent of interconnects using only two antifuses.
Timing Characteristics
Device timing characteristics fall into three categories: family-depende nt, device-dependent, and design-
dependent. The input and output buffer characteristics are common to all MX devices. Internal routing
delays are device-dependent; actual delays are not determined until after place-and-route of the user's
design is complete. Delay values may then be determined by using the Designer software utility or by
performing simulation with post-layout delays.
Critical Nets and Typical Nets
Propagation delays are expressed only for typical nets, which are used for initial design performance
evaluation. Critical net delays can then be applied to the most timing critical paths. Critical nets are
determined by net property assignment in Microsemi's Designer software prior to placement and routing.
Up to 6% of the nets in a design may be designated as critical.
Long Tracks
Some nets in the design use long tracks, which are special routing resources that span multiple rows,
columns, or modules. Long tracks employ three and sometimes four antifuse connections, which
increase capacitance and resistance, resulting in longer net delays for macros connected to long tracks.
Typically, up to 6 percent of nets in a fully utilized device require long tracks. Long tracks add
approximately a 3 ns to a 6 ns delay, which is represented statistically in higher fanout (FO=8) routing
delays in the data sheet specifications section, shown in Tabl e 1-28 on page 1-40.
Timing Derating
MX devices are manufactured with a CMOS process. Therefore, device performance varies according to
temperature, voltage, and process changes. Minimum timing parameters reflect maximum operating
voltage, minimum operating temperature a nd best-case processing. Maximum timing parameters reflect
minimum operating voltage, maximum operating temperature and worst-case processing.
40MX and 42MX FPGA Families
1-36 Revision 11
Temperature and Voltage Derating Factors
Table 1-22 • 42MX Temperature and Voltage Derating Factors
(Normalized to TJ = 25°C, VCCA = 5.0 V)
42MX
Voltage
Temperature
–55°C –40°C 0°C 25°C 70°C 85°C 125°C
4.50 0.93 0.95 1.05 1.09 1.25 1.29 1.41
4.75 0.88 0.90 1.00 1.03 1.18 1.22 1.34
5.00 0.85 0.87 0.96 1.00 1.15 1.18 1.29
5.25 0.84 0.86 0.95 0.97 1.12 1.14 1.28
5.50 0.83 0.85 0.94 0.96 1.10 1.13 1.26
Note: This derating factor applies to all routing and propagation d elays.
Figure 1- 33 42MX Junction Temperature and Vo ltage Derating Curves
(Normalized to TJ = 25°C, VCCA = 5.0 V)
Table 1-23 • 40MX Temperature and Voltage Derating Factors
(Normalized to TJ = 25°C, VCC = 5.0 V)
40MX
Voltage
Temperature
–55°C –40°C 0°C 25°C 70°C 85°C 125°C
4.50 0.89 0.93 1.02 1.09 1.25 1.31 1.45
4.75 0.84 0.88 0.97 1.03 1.18 1.24 1.37
5.00 0.82 0.85 0.94 1.00 1.15 1.20 1.33
5.25 0.80 0.82 0.91 0.97 1.12 1.16 1.29
5.50 0.79 0.82 0.90 0.96 1.10 1.15 1.28
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
4.50 4.75 5.00 5.25 5.50
Voltage (V)
Derating Factor
–55°C
–40°C
0°C
25°C
70°C
85°C
125°C
40MX and 42MX FPGA Families
Revision 11 1-37
Note: This derating factor applies to all routing and propagation d elays
Figure 1- 34 40MX Junction Temperature and Vo ltage Derating Curves
(Normalized to TJ = 25°C, VCC = 5.0 V)
Table 1-24 • 42MX Temperature and Voltage Derating Factors
(Normalized to TJ = 25°C, VCCA = 3.3 V)
42MX Voltage
Temperature
–55°C –40°C 0°C 25°C 70°C 85°C 125°C
3.00 0.97 1.00 1.10 1.15 1.32 1.36 1.45
3.30 0.84 0.87 0.96 1.00 1.15 1.18 1.26
3.60 0.81 0.84 0.92 0.96 1.10 1.13 1.21
Note: This derating factor applies to all routing and propagation d elays.
Figure 1- 35 42MX Junction Temperature and Vo ltage Derating Curves
(Normalized to TJ = 25°C, VCCA = 3.3 V)
Factor
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
4.50 4.75 5.00 5.25 5.50
Voltage (V)
Derating
–55°C
–40°C
0°C
25°C
70°C
85°C
125°C
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
Voltage (V)
Derating Factor
3.00 3.30 3.60
55°C
40°C
0°C
25°C
70°C
85°C
125°C
40MX and 42MX FPGA Families
1-38 Revision 11
Table 1-25 • 40MX Temperature and Voltage Derating Factors
(Normalized to TJ = 25°C, VCC = 3.3 V)
40MX Voltage
Temperature
–55°C –40°C 0°C 25°C 70°C 85°C 125°C
3.00 1.08 1.12 1.21 1.26 1.50 1.64 2.00
3.30 0.86 0.89 0.96 1.00 1.19 1.30 1.59
3.60 0.83 0.85 0.92 0.96 1.14 1.25 1.53
Note: This derating factor applies to all routing and propagation d elays.
Figure 1- 36 40MX Junction Temperature and Vo ltage Derating Curves
(Normalized to TJ = 25°C, VCC = 3.3 V)
3.00 3.30 3.60
Voltage (V)
g
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2.20
55˚C
40˚C
0˚C
25˚C
70˚C
85˚C
125˚C
40MX and 42MX FPGA Families
Revision 11 1-39
PCI System Timing Specification
Table 1-26 and Table 1-27 list the critical PCI timing parameters and the corresponding timing
parameters for the MX PCI-compliant devices.
PCI Models
Microsemi provides synthesizable VHDL and Verilog-HDL models for a PCI Target interface, a PCI
Target and Target+DMA Master interface. Contact your Microsemi sales representative for more
details.
Table 1-26 • Clock Specification for 33 MHz PCI
Symbol Parameter
PCI A42MX24 A42MX36
UnitsMin. Max. Min. Max. Min. Max.
tCYC CLK Cycle Time 30–4.0–4.0–ns
tHIGH CLK High Time 11–1.9–1.9–ns
tLOW CLK Low Time 11–1.9–1.9–ns
Table 1-27 • Timing Parameters for 33 MHz PCI
PCI A42MX24 A42MX36
Symbol Parameter Min. Max. Min. Max. Min. Max. Units
tVAL CLK to Signal Valid—Bused Sig nals 2 11 2.0 9 .0 2.0 9.0 ns
tVAL(PTP) CLK to Signal Valid—Point-to-Point 2 212 2.0 9.0 2.0 9.0 ns
tON Float to Active 2 2.0 4.0 2.0 4.0 ns
tOFF Active to Float 28 8.31–8.3
1ns
tSU Input Set-Up Time to CLK—Bused Signals 7 1.5 1.5 ns
tSU(PTP) Input Set-Up Time to CLK—Point-to-Point 10, 122 1.5 1.5 ns
tHInput Hold to CLK 0 0 0 ns
Notes:
1. TOFF is system dependent. MX PCI devices have 7.4 ns turn-off time, reflection is typically an additional
10 ns.
2. REQ# and GNT# are point-to-point signals and have different output valid delay and input setup times
than do bussed signals. GNT# has a setup of 10; REW# has a setup of 12.
40MX and 42MX FPGA Families
1-40 Revision 11
Timing Characteristics
Table 1-28 • A40MX02 Timing Characteristics (Nominal 5.0 V Operation)
(Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed Std Speed –F Speed
UnitsParameter / Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
Logic Module Propagation Delays
tPD1 Single Module 1.2 1.4 1.6 1.9 2.7 ns
tPD2 Dual-Module Macros 2.7 3.1 3.5 4.1 5.7 ns
tCO Sequential Clock-to-Q 1.2 1.4 1.6 1.9 2.7 ns
tGO Latch G-to-Q 1.2 1.4 1.6 1.9 2.7 ns
tRS Flip-Flop (Latch) Reset-to-Q 1.2 1.4 1.6 1.9 2.7 ns
Logic Module Predicted Routing Delays1
tRD1 FO = 1 Routing Delay 1.3 1.5 1.7 2.0 2.8 ns
tRD2 FO = 2 Routing Delay 1.8 2.1 2.4 2.8 3.9 ns
tRD3 FO = 3 Routing Delay 2.3 2.7 3.0 3.6 5.0 ns
tRD4 FO = 4 Routing Delay 2.9 3.3 3.7 4.4 6.1 ns
tRD8 FO = 8 Routing Delay 4.9 5.7 6.5 7.6 10.6 ns
Logic Module Sequential Timing2
tSUD Flip-Flop (Latch)
Data Input Set-Up 3.1 3.5 4.0 4.7 6.6 ns
tHD3Flip-Flop (Latch)
Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns
tSUENA Flip-Flop (Latch)
Enable Set-Up 3.1 3.5 4.0 4.7 6.6 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns
tWCLKA Flip-Flop (Latch)
Clock Active Pulse Width 3.3 3.8 4.3 5.0 7.0 ns
tWASYN Flip-Flop (Latch)
Asynchronous Pulse Width 3.3 3.8 4.3 5.0 7.0 ns
tAFlip-Flop Clock Input Period 4.8 5 .6 6.3 7.5 10.4 ns
fMAX Flip-Flop (Latch) Clock
Frequency (FO = 128) 181 168 154 134 80 MHz
Input Module Propagation Delays
tINYH Pad-to-Y HIGH 0.7 0.8 0.9 1.1 1.5 ns
tINYL Pad-to-Y LOW 0.6 0.7 0.8 1.0 1.3 ns
Notes:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility.
3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check
the hold time for th is ma cro.
4. Delays based on 35pF loading.
40MX and 42MX FPGA Families
Revision 11 1-41
Input Module Predicted Routing Delays 1
tIRD1 FO = 1 Routing Delay 2.1 2.4 2.2 3.2 4.5 ns
tIRD2 FO = 2 Routing Delay 2.6 3.0 3.4 4.0 5.6 ns
tIRD3 FO = 3 Routing Delay 3.1 3.6 4.1 4.8 6.7 ns
tIRD4 FO = 4 Routing Delay 3.6 4.2 4.8 5.6 7.8 ns
tIRD8 FO = 8 Routing Delay 5.7 6.6 7.5 8.8 12.4 ns
Global Clock Network
tCKH Input Low to HIGH FO = 16
FO = 128 4.6
4.6 5.3
5.3 6.0
6.0 7.0
7.0 9.8
9.8 ns
tCKL Input High to LOW FO = 16
FO = 128 4.8
4.8 5.6
5.6 6.3
6.3 7.4
7.4 10.4
10.4 ns
tPWH Minimum Pulse
Width HIGH FO = 16
FO = 128 2.2
2.4 2.6
2.7 2.9
3.1 3.4
3.6 4.8
5.1 ns
tPWL Minimum Pulse
Width LOW FO = 16
FO = 128 2.2
2.4 2.6
2.7 2.9
3.01 3.4
3.6 4.8
5.1 ns
tCKSW Maximum Skew FO = 16
FO = 128 0.4
0.5 0.5
0.6 0.5
0.7 0.6
0.8 0.8
1.2 ns
tPMinimum Period FO = 16
FO = 128 4.7
4.8 5.4
5.6 6.1
6.3 7.2
7.5 10.0
10.4 ns
fMAX Maximum
Frequency FO = 16
FO = 128 188
181 175
168 160
154 139
134 83
80 MHz
Table 1-28 • A40MX02 Timing Characteristics (Nominal 5.0 V Operation) (continued)
(Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed Std Speed –F Speed
UnitsParameter / Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
Notes:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility.
3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check
the hold time for th is ma cro.
4. Delays based on 35pF loading.
40MX and 42MX FPGA Families
1-42 Revision 11
TTL Output Module Timing4
tDLH Data-to-Pad HIGH 3.3 3.8 4.3 5.1 7.2 ns
tDHL Data-to-Pad LOW 4.0 4.6 5.2 6.1 8.6 ns
tENZH Enable Pad Z to HIGH 3.7 4.3 4.9 5.8 8.0 ns
tENZL Enable Pad Z to LOW 4.7 5.4 6.1 7.2 10.1 ns
tENHZ Enable Pad HIGH to Z 7.9 9.1 10.4 12.2 17.1 ns
tENLZ Enable Pad LOW to Z 5.9 6.8 7.7 9.0 12.6 ns
dTLH Delta LOW to HIGH 0.02 0.02 0.03 0.03 0.04 ns/pF
dTHL Delta HIGH to LOW 0.03 0.03 0.03 0.04 0.06 ns/pF
CMOS Output Mo dule Timing 4
tDLH Data-to-Pad HIGH 3.9 4.5 5.1 6.05 8.5 ns
tDHL Data-to-Pad LOW 3.4 3.9 4.4 5.2 7.3 ns
tENZH Enable Pad Z to HIGH 3.4 3.9 4.4 5.2 7.3 ns
tENZL Enable Pad Z to LOW 4.9 5.6 6.4 7.5 10.5 ns
tENHZ Enable Pad HIGH to Z 7.9 9.1 10.4 12.2 17.0 ns
tENLZ Enable Pad LOW to Z 5.9 6.8 7.7 9.0 12.6 ns
dTLH Delta LOW to HIGH 0.03 0.04 0.04 0.05 0.07 ns/pF
dTHL Delta HIGH to LOW 0.02 0.02 0.03 0.03 0.04 ns/pF
Table 1-28 • A40MX02 Timing Characteristics (Nominal 5.0 V Operation) (continued)
(Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed Std Speed –F Speed
UnitsParameter / Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
Notes:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility.
3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check
the hold time for th is ma cro.
4. Delays based on 35pF loading.
40MX and 42MX FPGA Families
Revision 11 1-43
Table 1-29 • A40MX02 Timing Characteristics (Nominal 3.3 V Operation)
(Worst-Case Commercial Conditions, VCC = 3.0 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed Std Speed –F Speed
Parameter / Description Min. Max. Min. Max. M in. Max. Min. Max. Min. Max. Units
Logic Module Propagation Delays
tPD1 Single Module 1.7 2.0 2.3 2.7 3.7 ns
tPD2 Dual-Module Macros 3.7 4.3 4.9 5.7 8.0 ns
tCO Sequential Clock-to-Q 1.7 2.0 2.3 2.7 3.7 ns
tGO Latch G-to-Q 1.7 2.0 2.3 2.7 3.7 ns
tRS Flip-Flop (Latch) Reset-to-Q 1.7 2.0 2.3 2.7 3.7 ns
Logic Module Predicted Routing Delays1
tRD1 FO = 1 Routing Delay 2.0 2.2 2.5 3.0 4.2 ns
tRD2 FO = 2 Routing Delay 2.7 3.1 3.5 4.1 5.7 ns
tRD3 FO = 3 Routing Delay 3.4 3.9 4.4 5.2 7.3 ns
tRD4 FO = 4 Routing Delay 4.2 4.8 5.4 6.3 8.9 ns
tRD8 FO = 8 Routi ng Delay 7.1 8.2 9.2 10.9 15.2 ns
Logic Module Sequential Timing2
tSUD Flip-Flop (Latch)
Data Input Set-Up 4.3 4.9 5.6 6.6 9.2 ns
tHD3Flip-Flop (Latch)
Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns
tSUENA Flip-Flop (Latch) Enable Set-Up 4.3 4.9 5.6 6.6 9.2 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns
tWCLKA Flip-Flop (Latch)
Clock Active Pulse Width 4.6 5.3 6.0 7.0 9.8 ns
tWASYN Flip-Flop (Latch)
Asynchronous Pulse Width 4.6 5.3 6.0 7.0 9.8 ns
tAFlip-Flop Clock Input Period 6.8 7.8 8.9 10.4 14.6 ns
fMAX Flip-Flop (Latch) Clock
Frequency (FO = 128) 109 101 92 80 48 MHz
Input Module Propagation Delays
tINYH Pad-to-Y HIGH 1. 0 1.1 1.3 1.5 2.1 ns
tINYL Pad-to-Y LOW 0.9 1.0 1.1 1.3 1.9 ns
Notes:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility.
3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check
the hold time for th is ma cro.
4. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
1-44 Revision 11
Input Module Predicted Rout ing Delays1
tIRD1 FO = 1 Routing Delay 2.9 3.4 3.8 4.5 6.3 ns
tIRD2 FO = 2 Routing Delay 3.6 4.2 4.8 5.6 7.8 ns
tIRD3 FO = 3 Routing Delay 4.4 5.0 5.7 6.7 9.4 ns
tIRD4 FO = 4 Routing Delay 5.1 5.9 6.7 7.8 11.0 ns
tIRD8 FO = 8 Routing Delay 8.0 9.26 10.5 12.6 17.3 ns
Global Clock Network
tCKH Input LOW to HIGH F O = 16
FO = 128 6.4
6.4 7.4
7.4 8.3
8.3 9.8
9.8 13.7
13.7 ns
tCKL Input HIGH to LOW FO = 16
FO = 128 6.7
6.7 7.8
7.8 8.8
8.8 10.4
10.4 14.5
14.5 ns
tPWH Minimum Pulse
Width HIGH FO = 16
FO = 128 3.1
3.3 3.6
3.8 4.1
4.3 4.8
5.1 6.7
7.1 ns
tPWL Minimum Pulse
Width LOW FO = 16
FO = 128 3.1
3.3 3.6
3.8 4.1
4.3 4.8
5.1 6.7
7.1 ns
tCKSW Maximum Skew FO = 16
FO = 128 0.6
0.8 0.6
0.9 0.7
1.0 0.8
1.2 1.2
1.6 ns
tPMinimum Period FO = 16
FO = 128 6.5
6.8 7.5
7.8 8.5
8.9 10.1
10.4 14.1
14.6 ns
fMAX Maximum
Frequency FO = 16
FO = 128 113
109 105
101 96
92 83
80 50
48 MHz
TTL Output Module Timing4
tDLH Data-to-Pad HIGH 4.7 5.4 6.1 7.2 10.0 ns
tDHL Data-to-Pad LOW 5.6 6.4 7.3 8.6 12.0 ns
tENZH Enable Pad Z to HIGH 5.2 6.0 6.8 8.1 11.3 ns
tENZL Enable Pad Z to LOW 6.6 7.6 8.6 10.1 14.1 ns
tENHZ Enable Pad HIGH to Z 11.1 12.8 14.5 17.1 23.9 ns
tENLZ Enable Pad LOW to Z 8.2 9.5 10.7 12.6 17.7 ns
dTLH Delta LOW to HIGH 0.03 0.03 0.04 0.04 0.06 ns/pF
dTHL Delta HIGH to LOW 0. 04 0.04 0.05 0.06 0.08 ns/pF
Table 1-29 • A40MX02 Timing Characteristics (Nominal 3.3 V Operation) (continued)
(Worst-Case Commercial Conditions, VCC = 3.0 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed Std Speed –F Speed
Parameter / Description Min. Max. Min. Max. M in. Max. Min. Max. Min. Max. Units
Notes:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility.
3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check
the hold time for th is ma cro.
4. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
Revision 11 1-45
CMOS Output Mo dule Timing 4
tDLH Data-to-Pad HIGH 5.5 6.4 7.2 8.5 11.9 ns
tDHL Data-to-Pad LOW 4.8 5.5 6.2 7.3 10.2 ns
tENZH Enable Pad Z to HIGH 4.7 5.5 6.2 7.3 10.2 ns
tENZL Enable Pad Z to LOW 6.8 7.9 8.9 10.5 14.7 ns
tENHZ Enable Pad HIGH to Z 11.1 12.8 14.5 17.1 23.9 ns
tENLZ Enable Pad LOW to Z 8.2 9.5 10.7 12.6 17.7 ns
dTLH Delta LOW to HIGH 0.05 0.05 0.06 0.07 0.10 ns/pF
dTHL Delta HIGH to LOW 0. 03 0.03 0.04 0.04 0.06 ns/pF
Table 1-29 • A40MX02 Timing Characteristics (Nominal 3.3 V Operation) (continued)
(Worst-Case Commercial Conditions, VCC = 3.0 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed Std Speed –F Speed
Parameter / Description Min. Max. Min. Max. M in. Max. Min. Max. Min. Max. Units
Notes:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility.
3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check
the hold time for th is ma cro.
4. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
1-46 Revision 11
Table 1-30 • A40MX04 Timing Characteristics (Nominal 5.0 V Operation)
(Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed Std Speed –F Speed
UnitsParameter / Description Min . Max. Min. Max. Min . Max. Min. Max. Min. Max.
Logic Module Propagation Delays
tPD1 Single Module 1.2 1.4 1.6 1.9 2.7 ns
tPD2 Dual-Module Macros 2.3 3.1 3.5 4.1 5.7 ns
tCO Sequential Clock-to-Q 1.2 1.4 1.6 1.9 2.7 ns
tGO Latch G-to-Q 1.2 1.4 1.6 1.9 2.7 ns
tRS Flip-Flop (Latch) Reset-to-Q 1.2 1.4 1.6 1.9 2.7 ns
Logic Module Predicted Routing Delays1
tRD1 FO = 1 Routing Delay 1.2 1.6 1.8 2.1 3.0 ns
tRD2 FO = 2 Routing Delay 1.9 2.2 2.5 2.9 4.1 ns
tRD3 FO = 3 Routing Delay 2.4 2.8 3.2 3.7 5.2 ns
tRD4 FO = 4 Routing Delay 2.9 3.4 3.9 4.5 6.3 ns
tRD8 FO = 8 Routing Delay 5.0 5.8 6.6 7.8 10.9 ns
Logic Module Sequential Timing2
tSUD Flip-Flop (Latch)
Data Input Set-Up 3.1 3.5 4.0 4.7 6.6 ns
tHD3Flip-Flop (Latch)
Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns
tSUENA Flip-Flop (Latch)
Enable Set-Up 3.1 3.5 4.0 4.7 6.6 ns
tHENA Flip-Flop (Latch)
Enable Hold 0.0 0.0 0.0 0.0 0.0 ns
tWCLKA Flip-Flop (Latch)
Clock Active Pulse Width 3.3 3.8 4.3 5.0 7.0 ns
tWASYN Flip-Flop (Latch)
Asynchronous Pulse Width 3.3 3.8 4.3 5.0 7.0 ns
tAFlip-Flo p C lock In pu t Pe riod 4.8 5.6 6.3 7.5 10.4 ns
fMAX Flip-Flop (Latch)
Clock Frequency
(FO = 128)
181 167 154 134 80 MHz
Input Modul e Pr opagation Del ays
tINYH Pad-to-Y HIGH 0.7 0.8 0.9 1.1 1.5 ns
tINYL Pad-to-Y LOW 0.6 0.7 0.8 1.0 1.3 ns
Notes:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to dete rmine actual performance.
2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility.
3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer utility from the Designer software to
check the hold time for this macro.
4. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
Revision 11 1-47
Input Module Predicted Routing Delays1
tIRD1 FO = 1 Routing Dela y 2.1 2.4 2 .2 3.2 4.5 ns
tIRD2 FO = 2 Routing Dela y 2.6 3.0 3 .4 4.0 5.6 ns
tIRD3 FO = 3 Routing Dela y 3.1 3.6 4 .1 4.8 6.7 ns
tIRD4 FO = 4 Routing Dela y 3.6 4.2 4 .8 5.6 7.8 ns
tIRD8 FO = 8 Routing Delay 5.7 6.6 7.5 8.8 12.4 ns
Global Clock Network
tCKH Input Low to HIGH FO = 16
FO = 128 4.6
4.6 5.3
5.3 6.0
6.0 7.0
7.0 9.8
9.8 ns
tCKL Input High to LOW FO = 16
FO = 128 4.8
4.8 5.6
5.6 6.3
6.3 7.4
7.4 10.4
10.4 ns
tPWH Minimum Pulse
Width HIGH FO = 16
FO = 128 2.2
2.4 2.6
2.7 2.9
3.1 3.4
3.6 4.8
5.1 ns
tPWL Minimum Pulse
Width LOW FO = 16
FO = 128 2.2
2.4 2.6
2.7 2.9
3.01 3.4
3.6 4.8
5.1 ns
tCKSW Maximum Skew FO = 16
FO = 128 0.4
0.5 0.5
0.6 0.5
0.7 0.6
0.8 0.8
1.2 ns
tPMinimum Period FO = 16
FO = 128 4.7
4.8 5.4
5.6 6.1
6.3 7.2
7.5 10.0
10.4 ns
fMAX Maximum
Frequency FO = 16
FO = 128 188
181 175
168 160
154 139
134 83
80 MHz
TTL Output Mo dule Timing4
tDLH Data-to-Pad HIGH 3.3 3.8 4.3 5.1 7.2 ns
tDHL Data-to-Pad LOW 4 .0 4.6 5.2 6.1 8.6 ns
tENZH Enable Pad Z to HIGH 3.7 4.3 4.9 5.8 8.0 ns
tENZL Enable Pad Z to LOW 4.7 5.4 6.1 7.2 10.1 ns
tENHZ Enable Pad HIGH to Z 7.9 9.1 10.4 12.2 17.1 ns
tENLZ Enable Pad LOW to Z 5.9 6.8 7.7 9.0 12.6 ns
dTLH Delta LOW to HIGH 0.02 0.02 0.03 0.03 0.04 ns/pF
dTHL Delta HIGH to LOW 0.03 0.03 0.03 0.04 0.06 ns/pF
Table 1-30 • A40MX04 Timing Characteristics (Nominal 5.0 V Operation) (continued)
(Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed Std Speed –F Speed
UnitsParameter / Description Min . Max. Min. Max. Min . Max. Min. Max. Min. Max.
Notes:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to dete rmine actual performance.
2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility.
3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer utility from the Designer software to
check the hold time for this macro.
4. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
1-48 Revision 11
CMOS Output Module Timing1
tDLH Data-to-Pad HIGH 3.9 4.5 5.1 6.05 8.5 ns
tDHL Data-to-Pad LOW 3 .4 3.9 4.4 5.2 7.3 ns
tENZH Enable Pad Z to HIGH 3.4 3.9 4.4 5.2 7.3 ns
tENZL Enable Pad Z to LOW 4.9 5.6 6.4 7.5 10.5 ns
tENHZ Enable Pad HIGH to Z 7.9 9.1 10.4 12.2 17.0 ns
tENLZ Enable Pad LOW to Z 5.9 6.8 7.7 9.0 12.6 ns
dTLH Delta LOW to HIGH 0.03 0.04 0.04 0.05 0.07 ns/pF
dTHL Delta HIGH to LOW 0.02 0.02 0.03 0.03 0.04 ns/pF
Table 1-30 • A40MX04 Timing Characteristics (Nominal 5.0 V Operation) (continued)
(Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed Std Speed –F Speed
UnitsParameter / Description Min . Max. Min. Max. Min . Max. Min. Max. Min. Max.
Notes:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to dete rmine actual performance.
2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility.
3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer utility from the Designer software to
check the hold time for this macro.
4. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
Revision 11 1-49
Table 1-31 • A40MX04 Timing Characteristics (Nominal 3.3 V Operation)
(Worst-Case Commercial Conditions, VCC = 3.0 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed Std Speed –F Speed
UnitsParame ter / Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
Logic Module Propagation Delays
tPD1 Single Module 1.7 2.0 2.3 2.7 3.7 ns
tPD2 Dual-Module Macros 3.7 4.3 4.9 5.7 8.0 ns
tCO Sequential Clock-to-Q 1.7 2.0 2.3 2.7 3.7 ns
tGO Latch G-to-Q 1.7 2.0 2.3 2.7 3.7 ns
tRS Flip-Flop (Latch) Reset-to-Q 1.7 2.0 2.3 2.7 3.7 ns
Logic Module Predicted Routing Delays1
tRD1 FO = 1 Routing Delay 1.9 2.2 2.5 3.0 4.2 ns
tRD2 FO = 2 Routing Delay 2.7 3.1 3.5 4.1 5.7 ns
tRD3 FO = 3 Routing Delay 3.4 3.9 4.4 5.2 7.3 ns
tRD4 FO = 4 Routing Delay 4.1 4.8 5.4 6.3 8.9 ns
tRD8 FO = 8 Routing Delay 7.1 8.1 9.2 10.9 15.2 ns
Logic Module Sequential Timing2
tSUD Flip-Flop (Latch)
Data Input Set-Up 4.3 5.0 5.6 6.6 9.2 ns
tHD3Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns
tSUENA Flip-Flop (Latch) Enable Set-Up 4.3 5.0 5.6 6.6 9.2 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns
tWCLKA Flip-Flop (Latch)
Clock Active Pulse Width 4.6 5.3 5.6 7.0 9.8 ns
tWASYN Flip-Flop (Latch)
Asynchronous Pulse Width 4.6 5.3 5.6 7.0 9.8 ns
tAFlip-Flop Clock Input Period 6.8 7.8 8.9 10.4 14.6 ns
fMAX Flip-Flop (Latch) Clock Frequency
(FO = 128) 109 101 92 80 48 MHz
Input Module Propagation Delays
tINYH Pad-to-Y HIGH 1.0 1.1 1.3 1.5 2.1 n s
tINYL Pad-to-Y LOW 0.9 1.0 1.1 1.3 1.9 ns
Notes:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility.
3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check
the hold time for th is ma cro.
4. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
1-50 Revision 11
Input Module Predicted Rout ing Delays1
tIRD1 FO = 1 Routing Delay 2.9 3.3 3.8 4.5 6.3 ns
tIRD2 FO = 2 Routing Delay 3.6 4.2 4.8 5.6 7.8 ns
tIRD3 FO = 3 Routing Delay 4.4 5.0 5.7 6.7 9.4 ns
tIRD4 FO = 4 Routing Delay 5.1 5.9 6.7 7.8 11.0 ns
tIRD8 FO = 8 Routing Delay 8.0 9.3 10.5 12.4 17.2 ns
Global Clock Network
tCKH Input LOW to HIGH FO = 16
FO = 128 6.4
6.4 7.4
7.4 8.4
8.4 9.9
9.9 13.8
13.8 ns
tCKL Input HIGH to LOW FO = 16
FO = 128 6.8
6.8 7.8
7.8 8.9
8.9 10.4
10.4 14.6
14.6 ns
tPWH Minimum Pulse
Width HIGH FO = 16
FO = 128 3.1
3.3 3.6
3.8 4.1
4.3 4.8
5.1 6.7
7.1 ns
tPWL Minimum Pulse
Width LOW FO = 16
FO = 128 3.1
3.3 3.6
3.8 4.1
4.3 4.8
5.1 6.7
7.1 ns
tCKSW Maximum Skew FO = 16
FO = 128 0.6
0.8 0.6
0.9 0.7
1.0 0.8
1.2 1.2
1.6 ns
tPMinimum Period FO = 16
FO = 128 6.5
6.8 7.5
7.8 8.5
8.9 10.1
10.4 14.1
14.6 ns
fMAX Maximum Frequency FO = 16
FO = 128 113
109 105
101 96
92 83
80 50
48 MHz
TTL Output Module Timing4
tDLH Data-to-Pad HIGH 4.7 5.4 6.1 7.2 10.0 ns
tDHL Data-to-Pad LOW 5.6 6.4 7.3 8.6 12.0 ns
tENZH Enable Pad Z to HIGH 5.2 6.0 6.9 8.1 11.3 ns
tENZL Enable Pad Z to LOW 6.6 7.6 8.6 10.1 14.1 ns
tENHZ Enable Pad HIGH to Z 11.1 12.8 14.5 17.1 23.9 ns
tENLZ Enable Pad LOW to Z 8.2 9.5 10.7 12.6 17.7 ns
dTLH Delta LOW to HIGH 0.03 0.0 3 0.04 0.04 0.06 ns/pF
dTHL Delta HIGH to LOW 0.04 0.04 0.05 0.06 0.08 ns/pF
Table 1-31 • A40MX04 Timing Characteristics (Nominal 3.3 V Operation) (continued)
(Worst-Case Commercial Conditions, VCC = 3.0 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed Std Speed –F Speed
UnitsParame ter / Description Min. Max. Min. Max. Min. Max. Min. Ma x. Min. Max.
Notes:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility.
3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check
the hold time for th is ma cro.
4. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
Revision 11 1-51
CMOS Output Mo dule Timing 4
tDLH Data-to-Pad HIGH 5.5 6.4 7.2 8.5 11.9 ns
tDHL Data-to-Pad LOW 4.8 5.5 6.2 7.3 10.2 ns
tENZH Enable Pad Z to HIGH 4.7 5.5 6.2 7.3 10.2 ns
tENZL Enable Pad Z to LOW 6.8 7.9 8.9 10.5 14.7 ns
tENHZ Enable Pad HIGH to Z 11.1 12.8 14.5 17.1 23.9 ns
tENLZ Enable Pad LOW to Z 8.2 9.5 10.7 12.6 17.7 ns
dTLH Delta LOW to HIGH 0.05 0.0 5 0.06 0.07 0.10 ns/pF
dTHL Delta HIGH to LOW 0.03 0.03 0.04 0.04 0.06 ns/pF
Table 1-31 • A40MX04 Timing Characteristics (Nominal 3.3 V Operation) (continued)
(Worst-Case Commercial Conditions, VCC = 3.0 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed Std Speed –F Speed
UnitsParame ter / Description Min. Max. Min. Max. Min. Max. Min. Ma x. Min. Max.
Notes:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility.
3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check
the hold time for th is ma cro.
4. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
1-52 Revision 11
Table 1-32 • A42MX09 Timing Characteristics (Nominal 5.0 V Operation)
(Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed Std Speed –F Speed
UnitsParameter / Description M in. Max. Min. Max. Min. Max. Min. Max. Min. Max.
Logic Module Propagation Delays1
tPD1 Single Module 1.2 1.3 1.5 1.8 2.5 ns
tCO Sequential Clock-to-Q 1.3 1.4 1.6 1.9 2.7 ns
tGO Latch G-to-Q 1.2 1.4 1.6 1.8 2.6 ns
tRS Flip-Flop (Latch) Reset-to-Q 1.2 1.6 1.8 2.1 2.9 ns
Logic Module Predicted Routing Delays2
tRD1 FO = 1 Routing Delay 0.7 0.8 0.9 1.0 1.4 ns
tRD2 FO = 2 Routing Delay 0.9 1.0 1.2 1.4 1.9 ns
tRD3 FO = 3 Routing Delay 1.2 1.3 1.5 1.7 2.4 ns
tRD4 FO = 4 Routing Delay 1.4 1.5 1.7 2.0 2.9 ns
tRD8 FO = 8 Routing Delay 2.3 2.6 2.9 3.4 4.8 ns
Logic Module Sequential Timing3, 4
tSUD Flip-Flop (Latch)
Data Input Set-Up 0.3 0.4 0.4 0.5 0.7 ns
tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns
tSUENA Flip-Flop (Latch) Enable Set-Up 0.4 0.5 0.5 0.6 0.8 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns
tWCLKA Flip-Flop (Latch) Clock Active
Pulse Width 3.4 3.8 4.3 5.0 7.0 ns
tWASYN Flip-Flop (Latch) Asynchronous
Pulse Width 4.5 4.9 5.6 6.6 9.2 ns
tAFlip-Flop Clock Input Period 3.5 3.8 4.3 5.1 7.1 ns
tINH Input Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns
tINSU Input Buffer Latch Set-Up 0.3 0.3 0.4 0.4 0.6 ns
tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns
tOUTSU Output Buffer Latch Set-U p 0.3 0.3 0.4 0.4 0.6 ns
fMAX Flip-Flop (Latch) Clock Frequency 268 244 224 195 117 MHz
Notes:
1. For dual-module macros, use t PD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hol d ti min g p arameters for th e i nput buf f er lat ch a re d efi ned with respe ct to the PAD an d the D i nput . Exte rnal
setup/hold timing parameters must acco unt f or delay from an e xtern al PAD signal to the G inputs . Delay from an exte rnal
PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
Revision 11 1-53
Input Module Propagation Delays
tINYH Pad-to-Y HIGH 1.0 1.2 1.3 1.6 2.2 ns
tINYL Pad-to-Y LOW 0.8 0.9 1.0 1.2 1.7 ns
tINGH G to Y HIGH 1.3 1.4 1.6 1.9 2.7 ns
tINGL G to Y LOW 1.3 1.4 1.6 1.9 2.7 ns
Input Module Predicted Rout ing Delays2
tIRD1 FO = 1 Routing Delay 2.0 2.2 2.5 3.0 4.2 ns
tIRD2 FO = 2 Routing Delay 2.3 2.5 2.9 3.4 4.7 ns
tIRD3 FO = 3 Routing Delay 2.5 2.8 3.2 3.7 5.2 ns
tIRD4 FO = 4 Routing Delay 2.8 3.1 3.5 4.1 5.7 ns
tIRD8 FO = 8 Routing Delay 3.7 4.1 4.7 5.5 7.7 ns
Global Clock Network
tCKH Input LOW to HIGH FO = 32
FO = 256 2.4
2.7 2.7
3.0 3.0
3.4 3.6
4.0 5.0
5.5 ns
ns
tCKL Input HIGH to LOW FO = 32
FO = 256 3.5
3.9 3.9
4.3 4.4
4.9 5.2
5.7 7.3
8.0 ns
ns
tPWH Minimum Pulse
Width HIGH FO = 32
FO = 256 1.2
1.3 1.4
1.5 1.5
1.7 1.8
2.0 2.5
2.7 ns
ns
tPWL Minimum Pulse
Width LOW FO = 32
FO = 256 1.2
1.3 1.4
1.5 1.5
1.7 1.8
2.0 2.5
2.7 ns
ns
tCKSW Maximum Skew FO = 32
FO = 256 0.3
0.3 0.3
0.3 0.4
0.4 0.5
0.5 0.6
0.6 ns
ns
tSUEXT Input Latch
External Set-Up FO = 32
FO = 256 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 ns
ns
tHEXT Input Latch
External Hold FO = 32
FO = 256 2.3
2.2 2.6
2.4 3.0
3.3 3.5
3.9 4.9
5.5 ns
ns
tPMinimum Period FO = 32
FO = 256 3.4
3.7 3.7
4.1 4.0
4.5 4.7
5.2 7.8
8.6 ns
ns
fMAX Maximum Frequency FO = 32
FO = 256 296
268 269
244 247
224 215
195 129
117 MHz
MHz
Table 1-32 • A42MX09 Timing Characteristics (Nominal 5.0 V Operation) (continued)
(Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed Std Speed –F Speed
UnitsParameter / Description M in. Max. Min. Max. Min. Max. Min. Max. Min. Max.
Notes:
1. For dual-module macros, use t PD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hol d ti min g p arameters for th e i nput buf f er lat ch a re d efi ned with respe ct to the PAD an d the D i nput . Exte rnal
setup/hold timing parameters must acco unt f or delay from an e xtern al PAD signal to the G inputs . Delay from an exte rnal
PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
1-54 Revision 11
TTL Output Module Timing5
tDLH Data-to-Pad HIGH 2.5 2.7 3.1 3.6 5.1 ns
tDHL Data-to-Pad LOW 2.9 3.2 3.6 4.3 6.0 ns
tENZH Enable Pad Z to HIGH 2.6 2.9 3.3 3.9 5.5 ns
tENZL Enable Pad Z to LOW 2.9 3.2 3.7 4.3 6.1 ns
tENHZ Enable Pad HIGH to Z 4.9 5.4 6.2 7.3 10.2 ns
tENLZ Enable Pad LOW to Z 5.3 5.9 6.7 7.9 11.1 ns
tGLH G-to-Pad HIGH 2.6 2.9 3.3 3.8 5.3 ns
tGHL G-to-Pad LOW 2.6 2.9 3.3 3.8 5.3 ns
tLSU I/O Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns
tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns
tLCO I/O Latch Clock-to-Out
(Pad-to-Pad), 64 Clock Loading 5.2 5.8 6.6 7.7 10.8 ns
tACO Array Clock-to-Out
(Pad-to-Pad), 64 Clock Loading 7.4 8.2 9.3 10.9 15.3 ns
dTLH Capacity Loading, LOW to HIGH 0.03 0.03 0.03 0.04 0.06 ns/pF
dTHL Capacity Loading, HIGH to LOW 0.04 0.04 0.0 4 0.05 0.07 ns/pF
Table 1-32 • A42MX09 Timing Characteristics (Nominal 5.0 V Operation) (continued)
(Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed Std Speed –F Speed
UnitsParameter / Description M in. Max. Min. M ax. Min. Max. Min. Max. Min. Max.
Notes:
1. For dual-module macros, use t PD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hol d ti min g p arameters for th e i nput buf f er lat ch a re d efi ned with respe ct to the PAD an d the D i nput . Exte rnal
setup/hold timing parameters must acco unt f or delay from an e xtern al PAD signal to the G inputs . Delay from an exte rnal
PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
Revision 11 1-55
CMOS Output Module Timing5
tDLH Data-to-Pad HIGH 2.4 2.7 3.1 3.6 5.1 ns
tDHL Data-to-Pad LOW 2.9 3.2 3.6 4.3 6.0 ns
tENZH Enable Pad Z to HIGH 2.7 2.9 3.3 3.9 5.5 ns
tENZL Enable Pad Z to LOW 2.9 3.2 3.7 4.3 6.1 ns
tENHZ Enable Pad HIGH to Z 4.9 5.4 6.2 7.3 10.2 ns
tENLZ Enable Pad LOW to Z 5.3 5.9 6.7 7.9 11.1 ns
tGLH G-to-Pad HIGH 4.2 4.6 5.2 6.1 8.6 ns
tGHL G-to-Pad LOW 4.2 4.6 5.2 6.1 8.6 ns
tLSU I/O Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns
tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns
tLCO I/O Latch Clock-to-Out
(Pad-to-Pad), 64 Clock Loading 5.2 5.8 6.6 7.7 10.8 ns
tACO Array Clock-to-Out (
Pad-to-Pad), 64 Clock Loading 7.4 8.2 9.3 10.9 15.3 ns
dTLH Capacity Loading, LOW to HIGH 0.03 0.03 0.03 0.04 0.06 ns/pF
dTHL Capacity Loading, HIGH to LOW 0.04 0.04 0.0 4 0.05 0.07 ns/pF
Table 1-32 • A42MX09 Timing Characteristics (Nominal 5.0 V Operation) (continued)
(Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed Std Speed –F Speed
UnitsParameter / Description M in. Max. Min. M ax. Min. Max. Min. Max. Min. Max.
Notes:
1. For dual-module macros, use t PD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hol d ti min g p arameters for th e i nput buf f er lat ch a re d efi ned with respe ct to the PAD an d the D i nput . Exte rnal
setup/hold timing parameters must acco unt f or delay from an e xtern al PAD signal to the G inputs . Delay from an exte rnal
PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
1-56 Revision 11
Table 1-33 • A42MX09 Timing Characteristics (Nominal 3.3 V Operation)
(Worst-Case Commercial Conditions, VCCA = 3.0 V, TJ = 70°C)
–3 Speed –2 Speed 1 Speed Std S p eed –F Speed
UnitsParameter / Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
Logic Module Propagation Delays1
tPD1 Single Module 1.6 1.8 2.1 2.5 3.5 ns
tCO Sequential Clock-to-Q 1.8 2.0 2.3 2.7 3.8 ns
tGO Latch G-to-Q 1.7 1.9 2.1 2.5 3.5 ns
tRS Flip-Flop (Latch) Reset-to-Q 2.0 2.2 2.5 2.9 4.1 ns
Logic Module Predicted Routing Delays2
tRD1 FO = 1 Routing Delay 1.0 1.1 1.2 1.4 2.0 ns
tRD2 FO = 2 Routing Delay 1.3 1.4 1.6 1.9 2.7 ns
tRD3 FO = 3 Routing Delay 1.6 1.8 2.0 2.4 3.3 ns
tRD4 FO = 4 Routing Delay 1.9 2.1 2.4 2.9 4.0 ns
tRD8 FO = 8 Routing Delay 3.2 3.6 4.1 4.8 6.7 ns
Logic Module Sequential Timing 3, 4
tSUD Flip-Flop (Latch) Data Input Set-Up 0.5 0.5 0.6 0.7 0.9 ns
tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns
tSUENA Flip-Flop (Latch) Enable Set-Up 0.6 0.6 0.7 0.8 1.2 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns
tWCLKA Flip-Flop (Latch)
Clock Active Pulse Width 4.7 5.3 6.0 7.0 9.8 ns
tWASYN Flip-Flop (Latch)
Asynchronous Pulse Width 6.2 6.9 7.8 9.2 12.9 ns
tAFlip-Flop Clock Input Period 5.0 5.6 6.2 7.1 9.9 ns
tINH Input Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns
tINSU Input Buffer Latch Set-Up 0.3 0.3 0.3 0.4 0.6 ns
tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns
tOUTSU Output Buffer Latch Set-Up 0.3 0.3 0.3 0.4 0.6 ns
fMAX Flip-Flop (Latch) Clock Frequency 161 146 135 117 70 MHz
Notes:
1. For dual-module macros, use t PD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hold timing parameters for th e input buff er latch are defined with respect to the PAD and the D input. External
setup/hold timing parameters must account for delay from an external PAD signal t o the G inputs. Delay from an exte rnal
PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
Revision 11 1-57
Input Module Propagation Delays
tINYH Pad-to-Y HIGH 1.5 1.6 1. 8 2.17 3.0 ns
tINYL Pad-to-Y LOW 1.2 1.3 1.4 1.7 2.4 ns
tINGH G to Y HIGH 1.8 2.0 2.3 2.7 3.7 ns
tINGL G to Y LOW 1.8 2.0 2.3 2.7 3.7 ns
Input Module Predicted Routing Delays 2
tIRD1 FO = 1 Routing Delay 2.8 3.2 3.6 4.2 5.9 ns
tIRD2 FO = 2 Routing Delay 3.2 3.5 4.0 4.7 6.6 ns
tIRD3 FO = 3 Routing Delay 3.5 3.9 4.4 5.2 7.3 ns
tIRD4 FO = 4 Routing Delay 3.9 4.3 4.9 5.7 8.0 ns
tIRD8 FO = 8 Routing Delay 5.2 5.8 6.6 7.7 10.8 ns
Global Clock Network
tCKH Input LOW to HIGH FO = 32
FO = 256 4.1
4.5 4.5
5.0 5.1
5.6 6.0
6.7 8.4
9.3 ns
ns
tCKL Input HIGH to LOW FO = 32
FO = 256 5.0
5.4 5.5
6.0 6.2
6.8 7.3
8.0 10.2
11.2 ns
ns
tPWH Minimum Pulse Width
HIGH FO = 32
FO = 256 1.7
1.9 1.9
2.1 2.1
2.3 2.5
2.7 3.5
3.8 ns
ns
tPWL Minimum Pulse Width
LOW FO = 32
FO = 256 1.7
1.9 1.9
2.1 2.1
2.3 2.5
2.7 3.5
3.8 ns
ns
tCKSW Maximum Skew FO = 32
FO = 256 0.4
0.4 0.5
0.5 0.5
0.5 0.6
0.6 0.9
0.9 ns
ns
tSUEXT Input Latch External
Set-Up FO = 32
FO = 256 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 ns
ns
tHEXT Input Latch External
Hold FO = 32
FO = 256 3.3
3.7 3.7
4.1 4.2
4.6 4.9
5.5 6.9
7.6 ns
ns
tPMinimum Period FO = 32
FO = 256 5.6
6.1 6.2
6.8 6.7
7.4 7.8
8.5 12.9
14.2 ns
ns
fMAX Maximum Frequency FO = 32
FO = 256 177
161 161
146 148
135 129
117 77
70 MHz
MHz
Table 1-33 • A42MX09 Timing Characteristics (Nominal 3.3 V Operation) (continued)
(Worst-Case Commercial Conditions, VCCA = 3.0 V, TJ = 70°C)
–3 Speed –2 Speed 1 Speed Std S p eed –F Speed
UnitsParameter / Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
Notes:
1. For dual-module macros, use t PD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hold timing parameters for th e input buff er latch are defined with respect to the PAD and the D input. External
setup/hold timing parameters must account for delay from an external PAD signal t o the G inputs. Delay from an exte rnal
PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
1-58 Revision 11
TTL Output Module Timing5
tDLH Data -to-Pad HIGH 3.4 3.8 4.3 5.1 7.1 ns
tDHL Data -to-Pad LOW 4.0 4.5 5.1 6.1 8.3 ns
tENZH Enable Pad Z to HIGH 3.7 4.1 4.6 5.5 7.6 ns
tENZL Enable Pad Z to LOW 4.1 4.5 5.1 6.1 8.5 ns
tENHZ Enable Pad HIGH to Z 6.9 7.6 8.6 10.2 14.2 ns
tENLZ Enable Pad LO W to Z 7.5 8.3 9.4 11.1 15.5 ns
tGLH G-to-Pad HIGH 5.8 6.5 7.3 8.6 12.0 ns
tGHL G-to-Pad LOW 5.8 6.5 7.3 8.6 12.0 ns
tLSU I/O Latch Set-Up 0.7 0.8 0.9 1.0 1.4 ns
tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns
tLCO I/O Latch Clock-to-Out
(Pad-to-Pad), 64 Clock Loading 8.7 9.7 10.9 12.9 18.0 ns
tACO Array Clock-to-Out
(Pad-to-Pad),64 Clock Loading 12.2 13.5 15.4 18.1 25.3 ns
dTLH Capacity Loading, LOW to HIGH 0.00 0.00 0.00 0.10 0.01 ns/pF
dTHL Capacity Loading, HIGH to LOW 0.09 0.10 0.10 0.10 0.10 ns/pF
Table 1-33 • A42MX09 Timing Characteristics (Nominal 3.3 V Operation) (continued)
(Worst-Case Commercial Conditions, VCCA = 3.0 V, TJ = 70°C)
–3 Speed –2 Speed 1 Speed Std S p eed –F Speed
UnitsParameter / Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
Notes:
1. For dual-module macros, use t PD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hold timing parameters for th e input buff er latch are defined with respect to the PAD and the D input. External
setup/hold timing parameters must account for delay from an external PAD signal t o the G inputs. Delay from an exte rnal
PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
Revision 11 1-59
CMOS Output Module Timing5
tDLH Data -to-Pad HIGH 3.4 3.8 5.5 6.4 9.0 ns
tDHL Data -to-Pad LOW 4.1 4.5 4.2 5.0 7.0 ns
tENZH Enable Pad Z to HIGH 3.7 4.1 4.6 5.5 7.6 ns
tENZL Enable Pad Z to LOW 4.1 4.5 5.1 6.1 8.5 ns
tENHZ Enable Pad HIGH to Z 6.9 7.6 8.6 10.2 14.2 ns
tENLZ Enable Pad LO W to Z 7.5 8.3 9.4 11.1 15.5 ns
tGLH G-to-Pad HIGH 5.8 6.5 7.3 8.6 12.0 ns
tGHL G-to-Pad LOW 5.8 6.5 7.3 8.6 12.0 ns
tLSU I/O Latch Set-Up 0.7 0.8 0.9 1.0 1.4 ns
tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns
tLCO I/O Latch Clock-to-Out
(Pad-to-Pad), 64 Clock Loading 8.7 9.7 10.9 12.9 18.0 ns
tACO Array Clock-to-Out
(Pad-to-Pad),
64 Clock Loading
12.2 13.5 15.4 18.1 25.3 ns
dTLH Capacity Loading, LOW to HIGH 0.04 0.04 0.05 0.06 0.08 ns/pF
dTHL Capacity Loading, HIGH to LOW 0.05 0.05 0.06 0.07 0.10 ns/pF
Table 1-33 • A42MX09 Timing Characteristics (Nominal 3.3 V Operation) (continued)
(Worst-Case Commercial Conditions, VCCA = 3.0 V, TJ = 70°C)
–3 Speed –2 Speed 1 Speed Std S p eed –F Speed
UnitsParameter / Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
Notes:
1. For dual-module macros, use t PD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hold timing parameters for th e input buff er latch are defined with respect to the PAD and the D input. External
setup/hold timing parameters must account for delay from an external PAD signal t o the G inputs. Delay from an exte rnal
PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
1-60 Revision 11
Table 1-34 • A42MX16 Timing Characteristics (Nominal 5.0 V Operation)
(Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed Std Speed –F Speed
UnitsParameter / Description Min. Ma x. Min. Max. Min. Max. Min. Max. Min. Max.
Logic Module Propagation Delays1
tPD1 Single Module 1.4 1.5 1.7 2.0 2.8 ns
tCO Sequential Clock-to-Q 1.4 1.6 1.8 2.1 3.0 ns
tGO Latch G-to-Q 1.4 1.5 1.7 2.0 2.8 ns
tRS Flip-Flop (Latch) Reset-to-Q 1.6 1.7 2.0 2.3 3.3 ns
Logic Module Predicted Routing Delays2
tRD1 FO = 1 Routing Delay 0.8 0.9 1.0 1.2 1.6 ns
tRD2 FO = 2 Routing Delay 1.0 1.2 1.3 1.5 2.1 ns
tRD3 FO = 3 Routing Delay 1.3 1.4 1.6 1.9 2.7 ns
tRD4 FO = 4 Routing Delay 1.6 1.7 2.0 2.3 3.2 ns
tRD8 FO = 8 Routing Delay 2.6 2.9 3.2 3.8 5.3 ns
Logic Module Sequential Timing3,4
tSUD Flip-Flop (Latch)
Data Input Set-Up 0.3 0.4 0.4 0.5 0.7 ns
tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns
tSUENA Flip-Flop (Latch) Enable Set-Up 0.7 0.8 0.9 1.0 1.4 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0 .0 0.0 0.0 ns
tWCLKA Flip-Flop (Latch)
Clock Active Pulse Width 3.4 3.8 4.3 5.0 7.1 ns
tWASYN Flip-Flop (Latch)
Asynchronous Pulse Width 4.5 5.0 5.6 6.6 9.2 ns
tAFlip-Flop Clock Input Period 6.8 7.6 8.6 10.1 14.1 ns
tINH Input Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns
tINSU Input Buffer Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns
tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns
tOUTSU Output Buffer Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns
fMAX Flip-Flop (Latch) Clock Frequency 215 195 179 156 94 MHz
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, point and position whichever is
appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hold timi ng pa ra mete rs for the i npu t bu ff er latch ar e defin ed wit h resp ect to the PAD and the D inpu t. Ext erna l
setup/hold timing parameters must accoun t fo r delay f rom an exte rnal PAD signal to the G input s. Del ay from an externa l
PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
Revision 11 1-61
Input Module Propagation Delays
tINYH Pad-to-Y HIGH 1.1 1.2 1.3 1.6 2.2 ns
tINYL Pad-to-Y LOW 0.8 0.9 1.0 1.2 1.7 ns
tINGH G to Y HIGH 1.4 1.6 1.8 2.1 2.9 ns
tINGL G to Y LOW 1.4 1.6 1.8 2.1 2.9 ns
Input Module Predicted Routing Delays 2
tIRD1 FO = 1 Routing Delay 1.8 2.0 2.3 2.7 4.0 ns
tIRD2 FO = 2 Routing Delay 2.1 2.3 2.6 3.1 4.3 ns
tIRD3 FO = 3 Routing Delay 2.3 2.6 3.0 3.5 4.9 ns
tIRD4 FO = 4 Routing Delay 2.6 3.0 3.3 3.9 5.4 ns
tIRD8 FO = 8 Routing Delay 3.6 4.0 4.6 5.4 7.5 ns
Global Clock Network
tCKH Input LOW to HIGH FO = 32
FO = 384 2.6
2.9 2.9
3.2 3.3
3.6 3.9
4.3 5.4
6.0 ns
ns
tCKL Input HIGH to LOW FO = 32
FO = 384 3.8
4.5 4.2
5.0 4.8
5.6 5.6
6.6 7.8
9.2 ns
ns
tPWH Minimum Pulse Width
HIGH FO = 32
FO = 384 3.2
3.7 3.5
4.1 4.0
4.6 4.7
5.4 6.6
7.6 ns
ns
tPWL Minimum Pulse Width
LOW FO = 32
FO = 384 3.2
3.7 3.5
4.1 4.0
4.6 4.7
5.4 6.6
7.6 ns
ns
tCKSW Maximum Skew FO = 32
FO = 384 0.3
0.3 0.4
0.4 0.4
0.4 0.5
0.5 0.7
0.7 ns
ns
tSUEXT Input Latch External
Set-Up FO = 32
FO = 384 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 ns
ns
tHEXT Input Latch External
Hold FO = 32
FO = 384 2.8
3.2 3.1
3.5 5.5
4.0 4.1
4.7 5.7
6.6 ns
ns
tPMinimum Period FO = 32
FO = 384 4.2
4.6 4.67
5.1 5.1
5.6 5.8
6.4 9.7
10.7 ns
ns
fMAX Maximum Frequency FO = 32
FO = 384 237
215 215
195 198
179 172
156 103
94 MHz
MHz
Table 1-34 • A42MX16 Timing Characteristics (Nominal 5.0 V Operation) (continued)
(Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed Std Speed –F Speed
UnitsParameter / Description Min. Ma x. Min. Max. Min. Max. Min. Max. Min. Max.
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, point and position whichever is
appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hold timi ng pa ra mete rs for the i npu t bu ff er latch ar e defin ed wit h resp ect to the PAD and the D inpu t. Ext erna l
setup/hold timing parameters must accoun t fo r delay f rom an exte rnal PAD signal to the G input s. Del ay from an externa l
PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
1-62 Revision 11
TTL Output Module Timing5
tDLH Data-to-Pad HIGH 2.5 2.8 3.2 3.7 5.2 ns
tDHL Data-to-Pad LOW 3.0 3.3 3.7 4.4 6.1 ns
tENZH Enable Pad Z to HIGH 2.7 3.0 3.4 4.0 5.6 ns
tENZL Enable Pad Z to LOW 3.0 3.3 3.8 4.4 6.2 ns
tENHZ Enable Pad HIGH to Z 5.4 6.0 6.8 8.0 11.2 ns
tENLZ Enable Pad LOW to Z 5.0 5.6 6.3 7.4 10.4 ns
tGLH G-to-Pad HIGH 2.9 3.2 3.6 4.3 6.0 ns
tGHL G-to-Pad LOW 2.9 3.2 3.6 4.3 6.0 ns
tLCO I/O Latch Clock-to-Out
(Pad-to-Pad), 64 Clock Loading 5.7 6.3 7.1 8.4 11.9 ns
tACO Array Clock-to-Out
(Pad-to-Pad), 64 Clock Loading 8.0 8.9 10.1 11.9 16.7 ns
dTLH Capacitive Loading, LOW to HIGH 0.03 0.03 0.03 0.04 0.06 ns/pF
dTHL Capacitive Loading, HIGH to LOW 0.0 4 0.04 0.04 0.05 0.07 ns/pF
Table 1-34 • A42MX16 Timing Characteristics (Nominal 5.0 V Operation) (continued)
(Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed Std Speed –F Speed
UnitsParameter / Description Min. Ma x. Min. Max. Min. Max. Min. Max. Min. Max.
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, point and position whichever is
appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hold timi ng pa ra mete rs for the i npu t bu ff er latch ar e defin ed wit h resp ect to the PAD and the D inpu t. Ext erna l
setup/hold timing parameters must accoun t fo r delay f rom an exte rnal PAD signal to the G input s. Del ay from an externa l
PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
Revision 11 1-63
CMOS Output Module Timing5
tDLH Data-to-Pad HIGH 3.2 3.6 4.0 4.7 6.6 ns
tDHL Data-to-Pad LOW 2.5 2.7 3.1 3.6 5.1 ns
tENZH Enable Pad Z to HIGH 2.7 3.0 3.4 4.0 5.6 ns
tENZL Enable Pad Z to LOW 3.0 3.3 3.8 4.4 6.2 ns
tENHZ Enable Pad HIGH to Z 5.4 6.0 6.8 8.0 11.2 ns
tENLZ Enable Pad LOW to Z 5.0 5.6 6.3 7.4 10.4 ns
tGLH G-to-Pad HIGH 5.1 5.6 6.4 7.5 10.5 ns
tGHL G-to-Pad LOW 5.1 5.6 6.4 7.5 10.5 ns
tLCO I/O Latch Clock-to-Out
(Pad-to-Pad), 64 Clock Loading 5.7 6.3 7.1 8.4 11.9 ns
tACO Array Clock-to-Out
(Pad-to-Pad), 64 Clock Loading 8.0 8.9 10.1 11.9 16.7 ns
dTLH Capacitive Loading, LOW to HIGH 0.03 0.03 0.03 0.04 0.06 ns/pF
Table 1-34 • A42MX16 Timing Characteristics (Nominal 5.0 V Operation) (continued)
(Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed Std Speed –F Speed
UnitsParameter / Description Min. Ma x. Min. Max. Min. Max. Min. Max. Min. Max.
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, point and position whichever is
appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hold timi ng pa ra mete rs for the i npu t bu ff er latch ar e defin ed wit h resp ect to the PAD and the D inpu t. Ext erna l
setup/hold timing parameters must accoun t fo r delay f rom an exte rnal PAD signal to the G input s. Del ay from an externa l
PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
1-64 Revision 11
Table 1-35 • A42MX16 Timing Characteristics (Nominal 3.3 V Operation)
(Worst-Case Commercial Conditions, VCCA = 3.0 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed Std Speed –F Speed
Parameter / Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Logic Module Propagation Delays1
tPD1 Single Module 1.9 2.1 2.4 2.8 4.0 ns
tCO Sequential Clock-to-Q 2.0 2.2 2.5 3.0 4.2 ns
tGO Latch G-to-Q 1.9 2.1 2.4 2.8 4.0 ns
tRS Flip-Flop (Latch) Reset-to-Q 2.2 2.4 2.8 3.3 4.6 ns
Logic Module Predicted Routing Delays2
tRD1 FO = 1 Routing Delay 1.1 1.2 1.4 1.6 2.3 ns
tRD2 FO = 2 Routing Delay 1.5 1.6 1.8 2.1 3.0 ns
tRD3 FO = 3 Routing Delay 1.8 2.0 2.3 2.7 3.8 ns
tRD4 FO = 4 Routing Delay 2.2 2.4 2.7 3.2 4.5 ns
tRD8 FO = 8 Routing Delay 3.6 4.0 4.5 5.3 7.5 ns
Logic Module Sequential Timing3, 4
tSUD Flip-Flop (Latch)
Data Input Set-Up 0.5 0.5 0.6 0.7 0.9 ns
tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns
tSUENA Flip-Flop (Latch) Enable Set-Up 1.0 1.1 1.2 1.4 2.0 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns
tWCLKA Flip-Flop (Latch)
Clock Active Pulse Width 4.8 5.3 6.0 7.1 9.9 ns
tWASYN Flip-Flop (Latch)
Asynchronous Pulse Width 6.2 6.9 7.9 9.2 12.9 ns
tAFlip-Flop Clock Input Period 9.5 10.6 12.0 14.1 19.8 n s
tINH Input Buffer Latch Hold 0.0 0.0 0.0 0.0 0 .0 ns
tINSU Input Buffer Latch Set-Up 0.7 0.8 0.9 1.01 1.4 ns
tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns
tOUTSU Output Buffer Latch Set-Up 0.7 0.8 0.89 1.01 1 .4 ns
fMAX Flip-Flop (Latch) Clock Frequency 129 117 108 94 56 MHz
Notes:
1. For dual-module macros use tPD1 + tRD1 + taped, to + tRD1 + taped, or tPD1 + tRD1 + tusk, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hold timing parameters for th e input buff er latch are defined with respect to the PAD and the D input. External
setup/hold timing parameters must account for delay from an external PAD signal t o the G inputs. Delay from an exte rnal
PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
Revision 11 1-65
Input Module Propagation Delays
tINYH Pad-to-Y HIGH 1.5 1.6 1.9 2.2 3.1 ns
tINYL Pad-to-Y LOW 1.1 1.3 1.4 1.7 2.4 ns
tINGH G to Y HIGH 2.0 2.2 2.5 2.9 4.1 ns
tINGL G to Y LOW 2.0 2.2 2.5 2.9 4.1 ns
Input Module Predicted Routing Delays 2
tIRD1 FO = 1 Routing Delay 2.6 2.9 3.2 3.8 5.3 ns
tIRD2 FO = 2 Routing Delay 2.9 3.2 3.7 4.3 6.1 ns
tIRD3 FO = 3 Routing Delay 3.3 3.6 4.1 4.9 6.8 ns
tIRD4 FO = 4 Routing Delay 3.6 4.0 4.6 5.4 7.6 ns
tIRD8 FO = 8 Routing Delay 5.1 5.6 6.4 7.5 10.5 ns
Global Clock Network
tCKH Input LOW to HIGH FO = 32
FO = 384 4.4
4.8 4.8
5.3 5.5
6.0 6.5
7.1 9.0
9.9 ns
ns
tCKL Input HIGH to LOW FO = 32
FO = 384 5.3
6.2 5.9
6.9 6.7
7.9 7.8
9.2 11.0
12.9 ns
ns
tPWH Minimum Pulse
Width HIGH FO = 32
FO = 384 5.7
6.6 6.3
7.4 7.1
8.3 8.4
9.8 11.8
13.7 ns
ns
tPWL Minimum Pulse
Width LOW FO = 32
FO = 384 5.3
6.2 5.9
6.9 6.7
7.9 7.8
9.2 11.0
12.9 ns
ns
tCKSW Maximum Skew FO = 32
FO = 384 0.5
2.2 0.5
2.4 0.6
2.7 0.7
3.2 1.0
4.5 ns
ns
tSUEXT Input Latch External
Set-Up FO = 32
FO = 384 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 ns
ns
tHEXT Input Latch External
Hold FO = 32
FO = 384 3.9
4.5 4.3
4.9 4.9
5.6 5.7
6.6 8.0
9.2 ns
ns
tPMinimum Period FO = 32
FO = 384 7.0
7.7 7.8
8.6 8.4
9.3 9.7
10.7 16.2
17.8 ns
ns
fMAX Maximum Frequency FO = 32
FO = 384 142
129 129
117 119
108 103
94 62
56 MHz
MHz
Table 1-35 • A42MX16 Timing Characteristics (Nominal 3.3 V Operation) (continued)
(Worst-Case Commercial Conditions, VCCA = 3.0 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed Std Speed –F Speed
Parameter / Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Notes:
1. For dual-module macros use tPD1 + tRD1 + taped, to + tRD1 + taped, or tPD1 + tRD1 + tusk, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hold timing parameters for th e input buff er latch are defined with respect to the PAD and the D input. External
setup/hold timing parameters must account for delay from an external PAD signal t o the G inputs. Delay from an exte rnal
PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
1-66 Revision 11
TTL Output Module Timing5
tDLH Data-to-Pad HIGH 3.5 3.9 4.4 5.2 7.3 ns
tDHL Data-to-Pad LOW 4.1 4.6 5.2 6.1 8.6 ns
tENZH Enable Pad Z to HIGH 3.8 4.2 4.8 5.6 7.8 ns
tENZL Enable Pad Z to LOW 4.2 4.6 5.3 6.2 8.7 ns
tENHZ Enable Pad HIGH to Z 7.6 8.4 9.5 11.2 15.7 ns
tENLZ Enable Pad LOW to Z 7.0 7.8 8.8 10.4 14.5 ns
tGLH G-to-Pad HIGH 4.8 5.3 6.0 7.2 10.0 ns
tGHL G-to-Pad LOW 4.8 5.3 6.0 7.2 10.0 ns
tLCO I/O Latch Clock-to-Out
(Pad-to-Pad), 64 Clock Loading 8.0 8.9 10.1 11.9 16.7 ns
tACO Array Clock-to-Out
(Pad-to-Pad), 64 Clock Loading 11.3 12.5 14.2 16.7 23.3 ns
dTLH Capacitive Loading, LOW to HIGH 0.04 0.04 0.05 0.06 0.08 ns/pF
dTHL Capacitive Loading, HIGH to LOW 0.05 0.05 0.06 0.07 0.10 ns/pF
CMOS Output Module Timing5
tDLH Data-to-Pad HIGH 4.5 5.0 5.6 6.6 9.3 ns
tDHL Data-to-Pad LOW 3.4 3.8 4.3 5.1 7.1 ns
tENZH Enable Pad Z to HIGH 3.8 4.2 4.8 5.6 7.8 ns
tENZL Enable Pad Z to LOW 4.2 4.6 5.3 6.2 8.7 ns
tENHZ Enable Pad HIGH to Z 7.6 8.4 9.5 11.2 15.7 ns
tENLZ Enable Pad LOW to Z 7.0 7.8 8.8 10.4 14.5 ns
tGLH G-to-Pad HIGH 7.1 7.9 8.9 10.5 14.7 ns
tGHL G-to-Pad LOW 7.1 7.9 8.9 10.5 14.7 ns
tLCO I/O Latch Clock-to-Out
(Pad-to-Pad), 64 Clock Loading 8.0 8.9 10.1 11.9 16.7 ns
tACO Array Clock-to-Out
(Pad-to-Pad),64 Clock Loading 11.3 12.5 14.2 16.7 23.3 ns
dTLH Capacitive Loading, LOW to HIGH 0.04 0.04 0.05 0.06 0.08 ns/pF
dTHL Capacitive Loading, HIGH to LOW 0.05 0.05 0.06 0.07 0.10 ns/pF
Table 1-35 • A42MX16 Timing Characteristics (Nominal 3.3 V Operation) (continued)
(Worst-Case Commercial Conditions, VCCA = 3.0 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed Std Speed –F Speed
Parameter / Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Notes:
1. For dual-module macros use tPD1 + tRD1 + taped, to + tRD1 + taped, or tPD1 + tRD1 + tusk, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hold timing parameters for th e input buff er latch are defined with respect to the PAD and the D input. External
setup/hold timing parameters must account for delay from an external PAD signal t o the G inputs. Delay from an exte rnal
PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
Revision 11 1-67
Table 1-36 • A42MX24 Timing Characteristics (Nominal 5.0 V Operation)
(Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed Std Speed –F Speed
Parameter / Description Min. Max. Min . Max. Min. Max. Min. Max. Min. Max. Units
Logic Module Combinatorial Functions1
tPD Internal Array Module Delay 1.2 1.3 1.5 1.8 2.5 ns
tPDD Internal Decode Module Delay 1.4 1.6 1.8 2.1 3.0 ns
Logic Module Predicted Routing Delays2
tRD1 FO = 1 Routing Delay 0.8 0.9 1.0 1.2 1.7 ns
tRD2 FO = 2 Routing Delay 1.0 1.2 1.3 1.5 2.1 ns
tRD3 FO = 3 Routing Delay 1.3 1.4 1.6 1.9 2.6 ns
tRD4 FO = 4 Routing Delay 1.5 1.7 1.9 2.2 3.1 ns
tRD5 FO = 8 Routing Delay 2.4 2.7 3.0 3.6 5.0 ns
Logic Module Sequential Timing3, 4
tCO Flip-Flop Clock-to-Output 1.3 1.4 1.6 1.9 2.7 ns
tGO Latch Gate-to-Output 1.2 1 .3 1.5 1.8 2.5 ns
tSUD Flip-Flop (Latch) Set-Up Time 0.3 0.4 0.4 0.5 0.7 ns
tHD Flip-Flop (Latch) Hold Time 0.0 0.0 0.0 0.0 0.0 ns
tRO Flip-Flop (Latch) Reset-to-Output 1.4 1.6 1.8 2.1 2.9 ns
tSUENA Flip-Flop (Latch) Enable Set-Up 0.4 0.5 0.5 0.6 0.8 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns
tWCLKA Flip-Flop (Latch)
Clock Active Pulse Width 3.3 3.7 4.2 4.9 6.9 ns
tWASYN Flip-Flop (Latch)
Asynchronous Pulse Width 4.4 4.8 5.3 6.5 9.0 ns
Input Module Propagation Delays
tINPY Input Data Pad-to-Y 1.0 1.1 1.3 1.5 2.1 ns
tINGO Input Latch Gate-to-Output 1.3 1.4 1.6 1.9 2.6 ns
tINH Input Latch Hold 0.0 0.0 0.0 0.0 0.0 ns
tINSU Input Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns
tILA Latch Active Pulse Width 4.7 5.2 5.9 6.9 9.7 ns
Notes:
1. For dual-module macros, use t PD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input.
External setup/hold ti mi ng parame ters must acc ount fo r de lay fr om an extern al PAD sig nal to the G inpu ts . Dela y from an
external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
1-68 Revision 11
Input Module Predicted Routing Delays 2
tIRD1 FO = 1 Routing Delay 1.8 2.0 2.3 2.7 3.8 ns
tIRD2 FO = 2 Routing Delay 2.1 2.3 2.6 3.1 4.3 ns
tIRD3 FO = 3 Routing Delay 2.3 2.5 2.9 3.4 4.8 ns
tIRD4 FO = 4 Routing Delay 2.5 2.8 3.2 3.7 5.2 ns
tIRD8 FO = 8 Routing Delay 3.4 3.8 4.3 5.1 7.1 ns
Global Clock Network
tCKH Input LOW to HIGH FO = 32
FO = 486 2.6
2.9 2.9
3.2 3.3
3.6 3.9
4.3 5.4
5.9 ns
ns
tCKL Input HIGH to LOW FO = 32
FO = 486 3.7
4.3 4.1
4.7 4.6
5.4 5.4
6.3 7.6
8.8 ns
ns
tPWH Minimum Pulse
Width HIGH FO = 32
FO = 486 2.2
2.4 2.4
2.6 2.7
3.0 3.2
3.5 4.5
4.9 ns
ns
tPWL Minimum Pulse
Width LOW FO = 32
FO = 486 2.2
2.4 2.4
2.6 2.7
3.0 3.2
3.5 4.5
4.9 ns
ns
tCKSW Maximum Skew FO = 32
FO = 486 0.5
0.5 0.6
0.6 0.7
0.7 0.8
0.8 1.1
1.1 ns
ns
tSUEXT Input Latch External
Set-Up FO = 32
FO = 486 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 ns
ns
tHEXT Input Latch External
Hold FO = 32
FO = 486 2.8
3.3 3.1
3.7 3.5
4.2 4.1
4.9 5.7
6.9 ns
ns
tPMinimum Period
(1/fMAX)FO = 32
FO = 486 4.7
5.1 5.2
5.7 5.7
6.2 6.5
7.1 10.9
11.9 ns
ns
Table 1-36 • A42MX24 Timing Characteristics (Nominal 5.0 V Operation) (continued)
(Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed Std Speed –F Speed
Parameter / Description Min. Max. Min . Max. Min. Max. Min. Max. Min. Max. Units
Notes:
1. For dual-module macros, use t PD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input.
External setup/hold ti mi ng parame ters must acc ount fo r de lay fr om an extern al PAD sig nal to the G inpu ts . Dela y from an
external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
Revision 11 1-69
TTL Output Module Timing5
tDLH Data-to-Pad HIGH 2.4 2.7 3.1 3.6 5.1 ns
tDHL Data-to-Pad LOW 2.8 3.2 3.6 4.2 5.9 ns
tENZH Enable Pad Z to HIGH 2 .5 2.8 3.2 3.8 5.3 ns
tENZL Enable Pad Z to LOW 2.8 3.1 3.5 4.2 5.9 ns
tENHZ Enable Pad HIGH to Z 5.2 5.7 6.5 7.6 10.7 ns
tENLZ Enable Pad LOW to Z 4.8 5.3 6.0 7.1 9.9 ns
tGLH G-to-Pad HIGH 2 .9 3.2 3.6 4.3 6.0 ns
tGHL G-to-Pad LOW 2.9 3.2 3.6 4.3 6.0 ns
tLSU I/O Latch Output Set-Up 0.5 0.5 0.6 0.7 1.0 ns
tLH I/O Latch Output Hold 0.0 0.0 0.0 0.0 0.0 ns
tLCO I/O Latch Clock-to-Out
(Pad-to-Pad) 32 I/O 5.6 6.1 6.9 8.1 11.4 ns
tACO Array Latch Clock-to-Out
(Pad-to-Pad) 32 I/O 10.6 11.8 13.4 15.7 22.0 ns
dTLH Capacitive Loading, LOW to HIGH 0.04 0.04 0.04 0.05 0.07 ns/p F
dTHL Capacitive Loading, HIGH to LOW 0.03 0.03 0.03 0.04 0.06 ns/pF
Table 1-36 • A42MX24 Timing Characteristics (Nominal 5.0 V Operation) (continued)
(Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed Std Speed –F Speed
Parameter / Description Min. Max. Min . Max. Min. Max. Min. Max. Min. Max. Units
Notes:
1. For dual-module macros, use t PD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input.
External setup/hold ti mi ng parame ters must acc ount fo r de lay fr om an extern al PAD sig nal to the G inpu ts . Dela y from an
external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
1-70 Revision 11
CMOS Output Module Timing5
tDLH Data-to-Pad HIGH 3.1 3.5 3.9 4.6 6.4 ns
tDHL Data-to-Pad LOW 2.4 2.6 3.0 3.5 4.9 ns
tENZH Enable Pad Z to HIGH 2 .5 2.8 3.2 3.8 5.3 ns
tENZL Enable Pad Z to LOW 2.8 3.1 3.5 4.2 5.8 ns
tENHZ Enable Pad HIGH to Z 5.2 5.7 6.5 7.6 10.7 ns
tENLZ Enable Pad LOW to Z 4.8 5.3 6.0 7.1 9.9 ns
tGLH G-to-Pad HIGH 4 .9 5.4 6.2 7.2 10.1 ns
tGHL G-to-Pad LOW 4.9 5.4 6.2 7.2 10.1 ns
tLSU I/O Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns
tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns
tLCO I/O Latch Clock-to-Out
(Pad-to-Pad) 32 I/O 5.5 6.1 6.9 8.1 11.3 ns
tACO Array Latch Clock-to-Out
(Pad-to-Pad) 32 I/O 10.6 11.8 13.4 15.7 22.0 ns
dTLH Capacitive Loading, LOW to HIGH 0.04 0.04 0.04 0.05 0.07 ns/p F
dTHL Capacitive Loading, HIGH to LOW 0.03 0.03 0.03 0.04 0.06 ns/pF
Table 1-36 • A42MX24 Timing Characteristics (Nominal 5.0 V Operation) (continued)
(Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed Std Speed –F Speed
Parameter / Description Min. Max. Min . Max. Min. Max. Min. Max. Min. Max. Units
Notes:
1. For dual-module macros, use t PD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input.
External setup/hold ti mi ng parame ters must acc ount fo r de lay fr om an extern al PAD sig nal to the G inpu ts . Dela y from an
external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
Revision 11 1-71
Table 1-37 • A42MX24 Timing Characteristics (Nominal 3.3 V Operation)
(Worst-Case Commercial Conditions, VCCA = 3.0 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed S td Speed –F Speed
UnitsParameter / Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
Logic Module Combinatorial Functions1
tPD Internal Array Module Delay 2.0 1.8 2.1 2.5 3.4 ns
tPDD Internal Decode Module Delay 1.1 2.2 2.5 3.0 4.2 ns
Logic Module Predicted Routing Delays2
tRD1 FO = 1 Routing Delay 1.7 1.3 1.4 1.7 2.3 ns
tRD2 FO = 2 Routing Delay 2.0 1.6 1.8 2.1 3.0 ns
tRD3 FO = 3 Routing Delay 1.1 2.0 2.2 2.6 3.7 ns
tRD4 FO = 4 Routing Delay 1.5 2.3 2.6 3.1 4.3 ns
tRD5 FO = 8 Routing Delay 1.8 3.7 4.2 5.0 7.0 ns
Logic Module Sequential Timing3, 4
tCO Flip-Flop Clock-to-Output 2.1 2.0 2.3 2.7 3.7 ns
tGO Latch Gate-to-Output 3.4 1.9 2.1 2.5 3.4 ns
tSUD Flip-Flop (Latch) Set-Up Time 0.4 0.5 0.6 0 .7 0.9 ns
tHD Flip-Flop (Latch) Hold Time 0.0 0.0 0.0 0.0 0.0 ns
tRO Flip-Flop (Latch) Reset-to-Output 2.0 2.2 2.5 2.9 4.1 ns
tSUENA Flip-Flop (Latch) Enable Set-Up 0.6 0.6 0.7 0.8 1.2 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns
tWCLKA Flip-Flop (Latch)
Clock Active Pulse Width 4.6 5.2 5.8 6.9 9.6 ns
tWASYN Flip-Flop (Latch)
Asynchronous Pulse Width 6.1 6.8 7.7 9.0 12.6 ns
Input Module Propagation Delays
tINPY Input Data Pad-to-Y 1.4 1.6 1.8 2.2 3.0 ns
tINGO Input Latch Gate-to-Output 1.8 1.9 2.2 2.6 3.6 ns
tINH Input Latch Hold 0.0 0.0 0.0 0.0 0.0 ns
tINSU Input Latch Set-Up 0.7 0.7 0.8 1.0 1.4 ns
tILA Latch Active Pulse Width 6.5 7.3 8.2 9.7 1 3.5 ns
Notes:
1. For dual-module macros, use t PD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input.
External setup/hold timing parameters must account for d elay f rom an e xtern al PAD s ignal t o the G inputs . Delay f rom an
external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
1-72 Revision 11
Input Module Predicted Routing Delays 2
tIRD1 FO = 1 Routing Delay 2.6 2.9 3.2 3.8 5.3 ns
tIRD2 FO = 2 Routing Delay 2.9 3.2 3.6 4.3 6.0 ns
tIRD3 FO = 3 Routing Delay 3.2 3.6 4.0 4.8 6.6 ns
tIRD4 FO = 4 Routing Delay 3.5 3.9 4.4 5.2 7.3 ns
tIRD8 FO = 8 Routing Delay 4.8 5.3 6.1 7 .1 10.0 ns
Global Clock Network
tCKH Input LOW to HIGH FO = 32
FO = 486 4.4
4.8 4.8
5.3 5.5
6.0 6.5
7.1 9.1
10.0 ns
ns
tCKL Input HIGH to LOW FO = 32
FO = 486 5.1
6.0 5.7
6.6 6.4
7.5 7.6
8.8 10.6
12.4 ns
ns
tPWH Minimum Pulse
Width HIGH FO = 32
FO = 486 3.0
3.3 3.3
3.7 3.8
4.2 4.5
4.9 6.3
6.9 ns
ns
tPWL Minimum Pulse
Width LOW FO = 32
FO = 486 3.0
3.3 3.4
3.7 3.8
4.2 4.5
4.9 6.3
6.9 ns
ns
tCKSW Maximum Skew FO = 32
FO = 486 0.8
0.8 0.8
0.8 1.0
1.0 1.1
1.1 1.6
1.6 ns
ns
tSUEXT Input Latch External
Set-Up FO = 32
FO = 486 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 ns
ns
TTL Output Module Timing5
tDLH Data-to-Pad HIGH 3.4 3.8 4.3 5.0 7.1 ns
tDHL Data-to-Pad LOW 4.0 4.4 5.0 5.9 8.3 ns
tENZH Enable Pad Z to HIGH 3.6 4.0 4.5 5.3 7.4 ns
tENZL Enable Pad Z to LOW 3.9 4.4 5.0 5.8 8.2 ns
tENHZ Enable Pad HIGH to Z 7.2 8.0 9.1 10.7 14.9 ns
tENLZ Enable Pad LOW to Z 6.7 7.5 8.5 9.9 13.9 ns
tGLH G-to-Pad HIGH 4.8 5.3 6.0 7.2 10.0 ns
tGHL G-to-Pad LOW 4.8 5.3 6.0 7.2 10.0 ns
tLSU I/O Latch Output Set-Up 0.7 0.7 0.8 1.0 1.4 ns
Table 1-37 • A42MX24 Timing Characteristics (Nominal 3.3 V Operation) (continued)
(Worst-Case Commercial Conditions, VCCA = 3.0 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed S td Speed –F Speed
UnitsParameter / Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
Notes:
1. For dual-module macros, use t PD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input.
External setup/hold timing parameters must account for d elay f rom an e xtern al PAD s ignal t o the G inputs . Delay f rom an
external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
Revision 11 1-73
TTL Output Module Timing5 (continued)
tLH I/O Latch Output Hold 0.0 0.0 0.0 0.0 0.0 ns
tLCO I/O Latch Clock-to-Out
(Pad-to-Pad) 32 I/O 7.7 8.5 9.6 11.3 15.9 ns
tACO Array Latch Clock-to-Out
(Pad-to-Pad) 32 I/O 14.8 16.5 18.7 22.0 30.8 ns
dTLH Capacitive Loading, LOW to HIGH 0.05 0.05 0.06 0.07 0.10 ns/pF
dTHL Capacitive Loading, HIGH to LOW 0.04 0.04 0.05 0.06 0.08 ns/pF
CMOS Output Module Timing5
tDLH Data-to-Pad HIGH 4.8 5.3 5.5 6.4 9.0 ns
tDHL Data-to-Pad LOW 3.5 3.9 4.1 4.9 6.8 ns
tENZH Enable Pad Z to HIGH 3.6 4.0 4.5 5.3 7.4 ns
tENZL Enable Pad Z to LOW 3.4 4.0 5.0 5.8 8.2 ns
tENHZ Enable Pad HIGH to Z 7.2 8.0 9.0 10.7 14.9 ns
tENLZ Enable Pad LOW to Z 6.7 7.5 8.5 9.9 13.9 ns
tGLH G-to-Pad HIGH 6.8 7.6 8.6 10.1 14.2 ns
tGHL G-to-Pad LOW 6.8 7.6 8.6 10.1 14.2 ns
tLSU I/O Latch Set-Up 0.7 0.7 0.8 1.0 1.4 ns
tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns
tLCO I/O Latch Clock-to-Out
(Pad-to-Pad) 32 I/O 7.7 8.5 9.6 11.3 15.9 ns
tACO Array Latch Clock-to-Out
(Pad-to-Pad) 32 I/O 14.8 16.5 18.7 22.0 30.8 ns
dTLH Capacitive Loading, LOW to HIGH 0.05 0.05 0.06 0.07 0.10 ns/pF
dTHL Capacitive Loading, HIGH to LOW 0.04 0.04 0.05 0.06 0.08 ns/pF
tHEXT Input Latch External
Hold FO = 32
FO = 486 3.9
4.6 4.3
5.2 4.9
5.8 5.7
6.9 8.1
9.6 ns
ns
tPMinimum Period
(1/fMAX)FO = 32
FO = 486 7.8
8.6 8.7
9.5 9.5
10.4 10.8
11.9 18.2
19.9 ns
ns
Table 1-37 • A42MX24 Timing Characteristics (Nominal 3.3 V Operation) (continued)
(Worst-Case Commercial Conditions, VCCA = 3.0 V, TJ = 70°C)
–3 Speed –2 Speed –1 Speed S td Speed –F Speed
UnitsParameter / Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
Notes:
1. For dual-module macros, use t PD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input.
External setup/hold timing parameters must account for d elay f rom an e xtern al PAD s ignal t o the G inputs . Delay f rom an
external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
1-74 Revision 11
Table 1-38 • A42MX36 Timing Characteristics (Nominal 5.0 V Operation)
(Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70°C)
–3 Sp eed –2 Speed –1 Speed Std Speed –F Speed
Parameter / Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Logic Module Combinatorial Functions1
tPD Internal Array Module Delay 1.3 1.5 1.7 2.0 2.7 ns
tPDD Internal Decode Module Delay 1.6 1.8 2.0 2.4 3.3 ns
Logic Module Predicted Routing Delays2
tRD1 FO = 1 Rou ti ng Delay 0.9 1.0 1.2 1.4 2.0 ns
tRD2 FO = 2 Rou ti ng Delay 1.3 1.4 1.6 1.9 2.7 ns
tRD3 FO =3 Routing Delay 1.6 1.8 2.0 2.4 3.4 ns
tRD4 FO = 4 Rou ti ng Delay 2.0 2.2 2.5 2.9 4.1 ns
tRD5 FO = 8 Rou ti ng Delay 3.3 3.7 4.2 4.9 6.9 ns
tRDD Decode-to-Output Routing Delay 0.3 0.4 0.4 0.5 0.7 ns
Logic Module Sequential Timing3, 4
tCO Flip-Flop Clock-to-Output 1.3 1.4 1.6 1.9 2.7 ns
tGO Latch Gate-to-Output 1.3 1.4 1.6 1.9 2.7 ns
tSUD Flip-Flop (Latch) Set-Up Time 0.3 0.3 0.4 0.5 0.7 ns
tHD Flip-Flop (Latch) Hold Time 0.0 0.0 0.0 0.0 0.0 ns
tRO Flip-Flop (Latch) Reset-to-Output 1.6 1.7 2.0 2.3 3.2 ns
tSUENA Flip-Flop (Latch) Enable Set-Up 0.7 0.8 0.9 1.0 1.4 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns
tWCLKA Flip-Flop (Latch) Clock Active
Pulse Width 3.3 3.7 4.2 4.9 6.9 ns
tWASYN Flip-Flop (Latch) Asynchronous
Pulse Width 4.4 4.8 5.5 6.4 9.0 ns
Synchronous SRAM Ope ra tions
tRC Read Cycle Time 6.8 7.5 8.5 10.0 14.0 ns
tWC Write Cycle Time 6.8 7.5 8.5 10.0 14.0 ns
tRCKHL Clock HIGH/LOW Time 3.4 3.8 4.3 5.0 7.0 ns
tRCO Dat a Valid After Clock HIGH/LOW 3.4 3.8 4.3 5.0 7.0 ns
tADSU Address/Data Set-Up Time 1.6 1.8 2.0 2.4 3.4 ns
Synchronous SRAM Ope ra tions (continued)
tADH Address/Data Hold Time 0.0 0.0 0.0 0.0 0.0 ns
Notes:
1. For dual-module macros, use t PD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input.
External setup/hold ti mi ng parame ters must acc ount fo r de lay fr om an ex ternal PAD sig nal to the G inpu ts . Dela y from an
external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
Revision 11 1-75
tRENSU Read Enable Set-Up 0.6 0.7 0.8 0.9 1.3 ns
tRENH Read Enable Hold 3.4 3.8 4.3 5.0 7.0 ns
tWENSU Write Enable Set-Up 2.7 3.0 3.4 4.0 5.6 ns
tWENH Write Enable Hold 0.0 0.0 0.0 0.0 0.0 ns
tBENS Block Enable Set-Up 2.8 3.1 3.5 4.1 5.7 ns
tBENH Block Enable Hold 0.0 0.0 0.0 0.0 0.0 ns
Asynchronous SRAM Operations
tRPD Asynchronous Access Time 8.1 9.0 10.2 12.0 16.8 ns
tRDADV Read Address Vali d 8.8 9.8 11 .1 1 3.0 18.2 ns
tADSU Address/Data Set-Up Time 1.6 1.8 2.0 2.4 3.4 ns
tADH Address/Data Hold Time 0.0 0.0 0.0 0.0 0.0 ns
tRENSUA Read Enable Set-Up to Address
Valid 0.6 0.7 0.8 0.9 1.3 ns
tRENHA Read Enable Hold 3.4 3 .8 4.3 5.0 7.0 ns
tWENSU Write Enable Set-Up 2.7 3.0 3.4 4.0 5.6 ns
tWENH Write Enable Hold 0.0 0.0 0.0 0.0 0.0 ns
tDOH Data Out Hold Time 1.2 1.3 1.5 1.8 2.5 ns
Input Module Propagation Delays
tINPY Input Data Pad-to-Y 1 .0 1.1 1.3 1.5 2.1 n s
tINGO Input Latch Gate-to-Output 1.4 1.6 1.8 2.1 2.9 n s
tINH Input Latch Hold 0.0 0.0 0.0 0.0 0.0 ns
tINSU Input Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns
tILA Latch Active Pulse Width 4.7 5.2 5.9 6.9 9.7 ns
Input Module Predicted Rout ing Delays2
tIRD1 FO = 1 Routing Delay 2.0 2.2 2.5 2.9 4.1 ns
tIRD2 FO = 2 Routing Delay 2.3 2.6 2.9 3.4 4.8 ns
tIRD3 FO = 3 Routing Delay 2.6 2.9 3.3 3.9 5.5 ns
tIRD4 FO = 4 Routing Delay 3.0 3.3 3.8 4.4 6.2 ns
tIRD8 FO = 8 Routing Delay 4.3 4.8 5.5 6.4 9.0 ns
Table 1-38 • A42MX36 Timing Characteristics (Nominal 5.0 V Operation)
(Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70°C)
–3 Sp eed –2 Speed –1 Speed Std Speed –F Speed
Parameter / Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Notes:
1. For dual-module macros, use t PD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input.
External setup/hold ti mi ng parame ters must acc ount fo r de lay fr om an ex ternal PAD sig nal to the G inpu ts . Dela y from an
external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
1-76 Revision 11
Global Clock Network
tCKH Input LOW to HIGH FO = 32
FO = 635 2.7
3.0 3.0
3.3 3.4
3.8 4.0
4.4 5.6
6.2 ns
ns
tCKL Input HIGH to LOW FO = 32
FO = 635 3.8
4.9 4.2
5.4 4.8
6.1 5.6
7.2 7.8
10.1 ns
ns
tPWH Minimum Pulse
Width HIGH FO = 32
FO = 635 1.8
2.0 2.0
2.2 2.2
2.5 2.6
2.9 3.6
4.1 ns
ns
tPWL Minimum Pulse
Width LOW FO = 32
FO = 635 1.8
2.0 2.0
2.2 2.2
2.5 2.6
2.9 3.6
4.1 ns
ns
tCKSW Maximum Skew FO = 32
FO = 635 0.8
0.8 0.8
0.8 0.9
0.9 1.0
1.0 1.4
1.4 ns
ns
tSUEXT Input Latch External
Set-Up FO = 32
FO = 635 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 ns
ns
tHEXT Input Latch External
Hold FO = 32
FO = 635 2.8
3.3 3.2
3.7 3.6
4.2 4.2
4.9 5.9
6.9 ns
ns
tPMinimum Period
(1/fMAX)FO = 32
FO = 635 5.5
6.0 6.1
6.6 6.6
7.2 7.6
8.3 12.7
13.8 ns
ns
fMAX Maximum Datapath
Frequency FO = 32
FO = 635 180
166 164
151 151
139 131
121 79
73 MHz
MHz
TTL Output Module Timing5
tDLH Dat a -to-Pad HIGH 2.6 2.8 3.2 3.8 5.3 ns
tDHL Data-to-Pad LOW 3.0 3.3 3.7 4.4 6.2 ns
tENZH Enable Pad Z to HIGH 2.7 3.0 3.3 3.9 5.5 ns
tENZL Enable Pad Z to LOW 3.0 3.3 3.7 4.3 6.1 ns
tENHZ Enable Pad HIGH to Z 5.3 5.8 6.6 7.8 10.9 ns
Table 1-38 • A42MX36 Timing Characteristics (Nominal 5.0 V Operation)
(Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70°C)
–3 Sp eed –2 Speed –1 Speed Std Speed –F Speed
Parameter / Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Notes:
1. For dual-module macros, use t PD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input.
External setup/hold ti mi ng parame ters must acc ount fo r de lay fr om an ex ternal PAD sig nal to the G inpu ts . Dela y from an
external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
Revision 11 1-77
TTL Output Module Timing5 (Continued)
tENLZ Enable Pad LO W to Z 4.9 5.5 6.2 7.3 10.2 ns
tGLH G-to-Pad HIGH 2.9 3.3 3.7 4.4 6.1 ns
tGHL G-to-Pad LOW 2.9 3.3 3.7 4.4 6.1 ns
tLSU I/O Latch Output Set-Up 0.5 0.5 0.6 0.7 1.0 n s
tLH I/O Latch Output Hold 0.0 0.0 0.0 0.0 0.0 ns
tLCO I/O Latch Clock-to-Out
(Pad-to-Pad) 32 I/O 5.7 6.3 7.1 8.4 11.8 ns
tACO Array Latch Clock-to-Out
(Pad-to-Pad) 32 I/O 7.8 8.6 9.8 11.5 16.1 ns
dTLH Capacitive Loading,
LOW to HIGH 0.07 0.08 0.09 0.10 0.14 ns/pF
dTHL Capacitive Loading,
HIGH to LOW 0.07 0.08 0.09 0.10 0.14 ns/pF
Table 1-38 • A42MX36 Timing Characteristics (Nominal 5.0 V Operation)
(Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70°C)
–3 Sp eed –2 Speed –1 Speed Std Speed –F Speed
Parameter / Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Notes:
1. For dual-module macros, use t PD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input.
External setup/hold ti mi ng parame ters must acc ount fo r de lay fr om an ex ternal PAD sig nal to the G inpu ts . Dela y from an
external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
1-78 Revision 11
CMOS Output Module Timing5
tDLH Dat a -to-Pad HIGH 3.5 3.9 4.5 5.2 7.3 ns
tDHL Data-to-Pad LOW 2.5 2.7 3.1 3.6 5.1 ns
tENZH Enable Pad Z to HIGH 2.7 3.0 3.3 3.9 5.5 ns
tENZL Enable Pad Z to LOW 2.9 3.3 3.7 4.3 6.1 ns
tENHZ Enable Pad HIGH to Z 5.3 5.8 6.6 7.8 10.9 ns
tENLZ Enable Pad LO W to Z 4.9 5.5 6.2 7.3 10.2 ns
tGLH G-to-Pad HIGH 5.0 5.6 6.3 7.5 10.4 ns
tGHL G-to-Pad LOW 5.0 5.6 6.3 7.5 10 .4 n s
tLSU I/O Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns
tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns
tLCO I/O Latch Clock-to-Out
(Pad-to-Pad) 32 I/O 5.7 6.3 7.1 8.4 11.8 ns
tACO Array Latch Clock-to-Out
(Pad-to-Pad) 32 I/O 7.8 8.6 9.8 11.5 16.1 ns
dTLH Capacitive Loading,
LOW to HIGH 0.07 0.08 0.09 0.10 0.14 ns/pF
dTHL Capacitive Loading,
HIGH to LOW 0.07 0.08 0.09 0.10 0.14 ns/pF
Table 1-38 • A42MX36 Timing Characteristics (Nominal 5.0 V Operation)
(Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70°C)
–3 Sp eed –2 Speed –1 Speed Std Speed –F Speed
Parameter / Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Notes:
1. For dual-module macros, use t PD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input.
External setup/hold ti mi ng parame ters must acc ount fo r de lay fr om an ex ternal PAD sig nal to the G inpu ts . Dela y from an
external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
Revision 11 1-79
Table 1-39 • A42MX36 Timing Characteristics (Nominal 3.3 V Operation)
(Worst-Case Commercial Conditions, VCCA = 3.0 V, TJ = 70°C)
–3 Speed 2 Speed –1 Speed Std Speed –F Speed
Parameter / Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Logic Module Combinatorial Functions1
tPD Internal Array Module Delay 1.9 2.1 2.3 2.7 3.8 ns
tPDD Internal Decode Module Delay 2.2 2.5 2.8 3.3 4.7 ns
Logic Module Predicted Routing Delays2
tRD1 FO = 1 Routing Delay 1.3 1.5 1.7 2.0 2.7 ns
tRD2 FO = 2 Routing Delay 1.8 2.0 2.3 2.7 3.7 ns
tRD3 FO = 3 Routing Delay 2.3 2.5 2.8 3.4 4.7 ns
tRD4 FO = 4 Routing Delay 2.8 3.1 3.5 4.1 5.7 ns
tRD5 FO = 8 Routing Delay 4.6 5.2 5.8 6.9 9.6 ns
tRDD Decode-to-Output Routing Delay 0.5 0.5 0.6 0.7 1.0 ns
Logic Module Sequential Timing3, 4
tCO Flip-Flop Clock-to-Output 1.8 2.0 2.3 2.7 3.7 ns
tGO Latch Gate-to-Output 1.8 2.0 2.3 2.7 3.7 ns
tSUD Flip-Flop (Latch) Set-Up Time 0.4 0.5 0.6 0.7 0.9 ns
tHD Flip-Flop (Latch) Hold Time 0.0 0.0 0.0 0.0 0.0 ns
tRO Flip-Flop (Latch) Reset-to-Output 2.2 2.4 2.7 3.2 4.5 ns
tSUENA Flip-Flop (Latch) Enable Set-Up 1.0 1.1 1.2 1.4 2.0 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns
tWCLKA Flip-Flop (Latch)
Clock Active Pulse Width 4.6 5.2 5.8 6.9 9.6 ns
tWASYN Flip-Flop (Latch)
Asynchronous Pulse Width 6.1 6.8 7.7 9.0 12.6 ns
Synchronous SRAM Ope ra tions
tRC Read Cycle Time 9.5 10.5 11.9 14.0 19.6 ns
tWC Write Cycle Time 9.5 10.5 11.9 14.0 19.6 ns
tRCKHL Clock HIGH/LOW Time 4.8 5.3 6.0 7.0 9.8 ns
tRCO Data Valid After Clock HIGH/LOW 4.8 5.3 6.0 7.0 9.8 ns
tADSU Address/Data Set-Up Time 2.3 2.5 2.8 3.4 4.8 ns
Notes:
1. For dual-module macros, use t PD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input.
External setup/hold timing parameters must account for d elay f rom an e xtern al PAD s ignal t o the G inputs . Delay f rom an
external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
1-80 Revision 11
Synchronous SRAM Ope ra tions (continued)
tADH Address/Data Hold Time 0.0 0.0 0.0 0.0 0.0 ns
tRENSU Read Enable Set-Up 0.9 1.0 1.1 1.3 1.8 ns
tRENH Read Enable Hold 4.8 5.3 6.0 7.0 9.8 ns
tWENSU W rite Enable Set-Up 3.8 4.2 4.8 5.6 7.8 ns
tWENH Write Enable Hold 0.0 0.0 0.0 0.0 0.0 ns
tBENS Block Enable Set-Up 3.9 4.3 4.9 5.7 8.0 ns
tBENH Block Enable Hold 0.0 0.0 0.0 0.0 0.0 ns
Asynchronous SRAM Operations
tRPD Asynchronous Access Time 11.3 12.6 14.3 16.8 23.5 ns
tRDADV Read Add r e ss Valid 12.3 13.7 15.5 18.2 25.5 ns
tADSU Address/Data Set-Up Time 2.3 2.5 2.8 3.4 4.8 ns
tADH Address/Data Hold Time 0.0 0.0 0.0 0.0 0.0 ns
tRENSUA Read Enable Set-Up to Address
Valid 0.9 1.0 1.1 1.3 1.8 ns
tRENHA Read Enable Hold 4.8 5.3 6.0 7.0 9.8 ns
tWENSU W rite Enable Set-Up 3.8 4.2 4.8 5.6 7.8 ns
tWENH Write Enable Hold 0.0 0.0 0.0 0.0 0.0 ns
tDOH Data Out Hold Time 1.8 2. 0 2.1 2.5 3.5 ns
Input Module Propagation Delays
tINPY Input Data Pad-to-Y 1.4 1.6 1.8 2.1 3.0 ns
tINGO Input Latch Gate-to-Output 2.0 2.2 2.5 2.9 4.1 ns
tINH Input Latch Hold 0.0 0.0 0.0 0.0 0.0 ns
tINSU Input Latch Set-Up 0.7 0.7 0.8 1.0 1.4 ns
tILA Latch Active Pulse Width 6.5 7.3 8.2 9.7 13.5 ns
Table 1-39 • A42MX36 Timing Characteristics (Nominal 3.3 V Operation) (continued)
(Worst-Case Commercial Conditions, VCCA = 3.0 V, TJ = 70°C)
–3 Speed 2 Speed –1 Speed Std Speed –F Speed
Parameter / Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Notes:
1. For dual-module macros, use t PD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input.
External setup/hold timing parameters must account for d elay f rom an e xtern al PAD s ignal t o the G inputs . Delay f rom an
external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
Revision 11 1-81
Input Module Predicted Rout ing Delays2
tIRD1 FO = 1 Routing Delay 2.8 3.1 3.5 4.1 5.7 ns
tIRD2 FO = 2 Routing Delay 3.2 3.5 4.1 4.8 6.7 ns
tIRD3 FO = 3 Routing Delay 3.7 4.1 4.7 5.5 7.7 ns
tIRD4 FO = 4 Routing Delay 4.2 4.6 5.3 6.2 8.7 ns
tIRD8 FO = 8 Routing Delay 6.1 6.8 7.7 9.0 12 .6 ns
Global Clock Network
tCKH Input LOW to HIGH FO = 32
FO = 635 4.6
5.0 5.1
5.6 5.7
6.3 6.7
7.4 9.3
10.3 ns
ns
tCKL Input HIGH to LOW FO = 32
FO = 635 5.3
6.8 5.9
7.6 6.7
8.6 7.8
10.1 11.0
14.1 ns
ns
tPWH Minimum Pulse
Widt h HIGH FO = 32
FO = 635 2.5
2.8 2.7
3.1 3.1
3.5 3.6
4.1 5.1
5.7 ns
ns
tPWL Minimum Pulse
Width LOW FO = 32
FO = 635 2.5
2.8 2.7
3.1 3.1
3.5 3.6
4.1 5.1
5.7 ns
ns
tCKSW Maximum Skew FO = 32
FO = 635 1.0
1.0 1.2
1.2 1.3
1.3 1.5
1.5 2.2
2.2 ns
ns
tSUEXT Input Latch
External Set-Up FO = 32
FO = 635 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 ns
ns
tHEXT Input Latch
External Hold FO = 32
FO = 635 4.0
4.6 4.4
5.2 5.0
5.9 5.9
6.9 8.2
9.6 ns
ns
tPMinimum Period
(1/fMAX)FO = 32
FO = 635 9.2
9.9 10.2
11.0 11.1
12.0 12.7
13.8 21.2
23.0 ns
ns
fMAX Maximum Datapath
Frequency FO = 32
FO = 635 108
100 98
91 90
83 79
73 47
44 MHz
MHz
TTL Output Module Timing5
tDLH Data-to-Pad HIGH 3.6 4.0 4.5 5.3 7.4 ns
tDHL Data-to-Pad LOW 4.2 4.6 5.2 6.2 8.6 ns
tENZH Enable Pad Z to HIGH 3.7 4.2 4.7 5.5 7.7 ns
tENZL Enable Pad Z to LOW 4.1 4.6 5.2 6 .1 8.5 ns
tENHZ Enable Pad HIGH to Z 7.34 8.2 9.3 10.9 15 .3 ns
Table 1-39 • A42MX36 Timing Characteristics (Nominal 3.3 V Operation) (continued)
(Worst-Case Commercial Conditions, VCCA = 3.0 V, TJ = 70°C)
–3 Speed 2 Speed –1 Speed Std Speed –F Speed
Parameter / Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Notes:
1. For dual-module macros, use t PD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input.
External setup/hold timing parameters must account for d elay f rom an e xtern al PAD s ignal t o the G inputs . Delay f rom an
external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
1-82 Revision 11
TTL Output Module Timing5
tENLZ Enable Pad LOW to Z 6.9 7.6 8.7 10.2 14.3 ns
tGLH G-to-Pad HIGH 4.9 5.5 6.2 7.3 10.2 ns
tGHL G-to-Pad LOW 4.9 5.5 6.2 7.3 10.2 ns
tLSU I/O Latch Output Set-Up 0.7 0.7 0.8 1.0 1.4 ns
tLH I/O Latch Output Hold 0.0 0.0 0.0 0.0 0.0 ns
tLCO I/O Latch Clock-t o-Out
(Pad-to-Pad) 32 I/O 7.9 8.8 10.0 11.8 16.5 ns
tACO Array Latch Clock-to-Out
(Pad-to-Pad) 32 I/O 10.9 12.1 13.7 16.1 22.5 ns
dTLH Capacitive Loading, LOW to HIGH 0.10 0.11 0.12 0.14 0.20 ns/pF
dTHL Capacitive Loading, HIGH to LOW 0.10 0.11 0.12 0.14 0.20 ns/pF
CMOS Output Module Timing5
tDLH Data-to-Pad HIGH 4.9 5.5 6.2 7.3 10.3 ns
tDHL Data-to-Pad LOW 3.4 3.8 4.3 5.1 7.1 ns
tENZH Enable Pad Z to HIGH 3.7 4.1 4.7 5.5 7.7 ns
tENZL Enable Pad Z to LOW 4.1 4.6 5.2 6 .1 8.5 ns
tENHZ Enable Pad HIGH to Z 7.4 8.2 9.3 10.9 15.3 ns
tENLZ Enable Pad LOW to Z 6.9 7.6 8.7 10.2 14.3 ns
tGLH G-to-Pad HIGH 7.0 7.8 8.9 10.4 14.6 ns
tGHL G-to-Pad LOW 7.0 7.8 8.9 10.4 14.6 ns
tLSU I/O Latch Set-Up 0.7 0.7 0.8 1.0 1.4 ns
tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns
tLCO I/O Latch Clock-t o-Out
(Pad-to-Pad) 32 I/O 7.9 8.8 10.0 11.8 16.5 ns
Table 1-39 • A42MX36 Timing Characteristics (Nominal 3.3 V Operation) (continued)
(Worst-Case Commercial Conditions, VCCA = 3.0 V, TJ = 70°C)
–3 Speed 2 Speed –1 Speed Std Speed –F Speed
Parameter / Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Notes:
1. For dual-module macros, use t PD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the Timer utility.
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input.
External setup/hold timing parameters must account for d elay f rom an e xtern al PAD s ignal t o the G inputs . Delay f rom an
external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
5. Delays based on 35 pF loading.
40MX and 42MX FPGA Families
Revision 11 1-83
Pin Descriptions
CLK/A/B, I/O Global Clock
Clock inputs for clock distribution networks. CLK is for 40MX while CLKA and CLKB are for 42MX
devices. The clock input is buffered prior to clocking the logic modules. Thi s pin can also be used as an
I/O.
DCLK, I/O Diagnostic Clock
Clock input for diagnostic probe and d evice programming. DCLK is active wh en the MODE pin is HIGH.
This pin functions as an I/O when the MODE pin is LOW.
GND Ground
Input LOW supply voltage.
I/O Input/Output
Input, output, tristate or bidirectional buffer. Input and output levels are compatible with standard TTL and
CMOS specifications. Unused I/Os pins are configured by the Designer software as shown in Table 1-40.
In all cases, it is recommended to tie all unused MX I/O pins to LOW on the board. This applies to all
dual-purpose pins when configured as I/Os as well .
LP Low Power Mode
Controls the low power mode of all 42MX devices. The device is placed in the low power mode by
connecting the LP pin to logic HIGH. In low power mode, all I/Os are tristated, all input buffers are turned
OFF, and the core of the device is turned OFF. To exit the low power mode, the LP pin must be set LOW.
The device enters the low power mo de 800 ns after the LP pin is driven to a logic HIGH. It will resume
normal operation in 200 µs after the LP pin is driven to a logic LOW.
MODE Mode
Controls the use of multifunction pins (DCLK, PRA, PRB, SDI, TDO). The MODE pin is held HIGH to
provide verification capability. The MODE pin should be terminated to GND through a 10kΩ resistor so
that the MODE pin can be pulled HIGH when required.
NC No Connection
This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be
left floating with no effect on the operation of the device.
PRA, I/O
PRB, I/O Probe A/B
The Probe pin is used to output data from any user-defined design node within the device. Each
diagnostic pin can be used in conjunctio n with the ot her probe pin to all ow real-time diag nostic output of
any signal path within the device. The Probe pin can be used as a user-defined I/O when verification has
been completed. The pin's probe capabilities can be permanently disabled to protect programmed design
confidentiality. The Probe pin is accessible when the MODE pin is HIGH. This pin functions as an I/O
when the MODE pi n is LOW.
QCLKA/B/C/D, I/O Quadrant Clock
Quadrant clock inputs for A42MX36 devices. Wh en not used as a register control signal, these pins can
function as user I/Os.
Table 1-40 • Configuration of Unused I/Os
Device Configuration
A40MX02, A40MX04 Pulled LOW
A42MX09, A42MX16 Pulled LOW
A42MX24, A42MX36 Tristated
40MX and 42MX FPGA Families
1-84 Revision 11
SDI, I/O Serial Data Input
Serial data input for diagnostic probe and device programming. SDI is active when the MODE pin is
HIGH. This pin functions as an I/O when the MODE pin is LOW.
SDO, I/O Serial Data Output
Serial data output for diagnostic probe and device programming. SDO is active when the MODE pin is
HIGH. This pin functions as an I/O when the MODE pin is LOW. SDO is available for 42MX devices only.
When Silicon Explorer II is being used, SDO will act as an output while the "checksum" command is run.
It will return to user I/O when "checksum" is complete.
TCK, I/O Test Clock
Clock signal to shift the Boundary Scan Test (BST) data into the device. This pin functions as an I/O
when "Reserve JTAG" is not checked in the Designer Software. BST pins are only available in A42MX24
and A42MX36 devices.
TDI, I/O Test Data In
Serial data input for BST instructions and data. Data is shifted in on the rising edge of TCK. This pin
functions as an I/O when "Reserve JTAG" is not checked in the Designer Software. BST pins are only
available in A42MX24 and A42MX36 devices.
TDO, I/O Test Data Out
Serial data output for BST instructions and test d ata. This pin functions as an I/O when "Reserve JTAG"
is not checked in the Designer Software. BST pins are only available in A42MX24 and A42MX36
devices.
TMS, I/O Test Mode Select
The TMS pin controls the use of the IEEE 1149.1 Boundary Scan pins (TCK, TDI, TDO). In flexible mode
when the TMS pin is set LOW, the TCK, TDI and TDO pin s are boundary scan p ins. Once the boundary
scan pins are in test mode, they will rema in in that mode until the internal bo undary scan state machine
reaches the "logic reset" state. At this point, the boun dary scan pins will be released a nd will function as
regular I/O pins. The "logic reset" state is reached 5 TCK cycles after the TMS pin is set HIGH. In
dedicated test mode, TMS functions as specified in the IEEE 1149.1 specifications. IEEE JTAG
specification recommends a 10kΩ pull-up resistor on the pin. BST pins are only available in A42MX24
and A42MX36 devices.
VCC Supply Voltage
Input supply voltage for 40MX devices
VCCA Supply Voltage
Supply voltage for array in 42MX devices
VCCI Su pp ly Voltage
Supply voltage for I/Os in 42MX devices
WD, I/O Wide Decode Output
When a wide decode module is used in a 42MX device this p in can be used as a dedicated output from
the wide decode module. This direct connection eliminates additional interconnect delays associated
with regular logic modules. To imple ment the direct I/O co nnection, connect an output buffer of any type
to the output of the wide decode macro and place this output on one of the reserved WD pins.
Revision 11 2-1
2 – Package Pin Assignment s
PL44
44
1
44-Pin
PLCC
Package Pin Assignments
2-2 Revision 11
PL44
Pin Number A40MX02 Function A40MX04 Function
1 I/O I/O
2 I/O I/O
3VCC VCC
4 I/O I/O
5 I/O I/O
6 I/O I/O
7 I/O I/O
8 I/O I/O
9 I/O I/O
10 GND GND
11 I/O I/O
12 I/O I/O
13 I/O I/O
14 VCC VCC
15 I/O I/O
16 VCC VCC
17 I/O I/O
18 I/O I/O
19 I/O I/O
20 I/O I/O
21 GND GND
22 I/O I/O
23 I/O I/O
24 I/O I/O
25 VCC VCC
26 I/O I/O
27 I/O I/O
28 I/O I/O
29 I/O I/O
30 I/O I/O
31 I/O I/O
32 GND GND
33 CLK, I/O CLK, I/O
34 MODE MODE
35 VCC VCC
36 SDI, I/O SDI, I/O
37 DCLK, I/O DCLK, I/O
38 PRA, I/O PRA, I/O
39 PRB, I/O PRB, I/O
40 I/O I/O
41 I/O I/O
42 I/O I/O
43 GND GND
44 I/O I/O
PL44
Pin Number A40MX02 Function A40MX04 Function
40MX and 42MX FPGA Families
Revision 11 2-3
PL68
1 68
68-Pin
PLCC
40MX and 42MX FPGA Families
Revision 11 2-4
PL44
Pin
Number A40MX02
Function A40MX04
Function
1 I/O I/O
2 I/O I/O
3 I/O I/O
4VCCVCC
5 I/O I/O
6 I/O I/O
7 I/O I/O
8 I/O I/O
9 I/O I/O
10 I/O I/O
11 I/O I/O
12 I/O I/O
13 I/O I/O
14 GND GND
15 GND GND
16 I/O I/O
17 I/O I/O
18 I/O I/O
19 I/O I/O
20 I/O I/O
21 VCC VCC
22 I/O I/O
23 I/O I/O
24 I/O I/O
25 VCC VCC
26 I/O I/O
27 I/O I/O
28 I/O I/O
29 I/O I/O
30 I/O I/O
31 I/O I/O
32 GND GND
33 I/O I/O
34 I/O I/O
35 I/O I/O
36 I/O I/O
37 I/O I/O
38 VCC VCC
39 I/O I/O
40 I/O I/O
41 I/O I/O
42 I/O I/O
43 I/O I/O
44 I/O I/O
45 I/O I/O
46 I/O I/O
47 I/O I/O
48 I/O I/O
49 GND GND
50 I/O I/O
51 I/O I/O
52 CLK, I/O CLK, I/O
53 I/O I/O
54 MODE MODE
55 VCC VCC
56 SDI, I/ O SDI , I/O
57 DCLK, I/O DCLK, I/O
58 PRA, I/O PRA, I/O
59 PRB, I/O PRB, I/O
60 I/O I/O
61 I/O I/O
62 I/O I/O
63 I/O I/O
64 I/O I/O
65 I/O I/O
66 GND GND
67 I/O I/O
68 I/O I/O
PL44
Pin
Number A40MX02
Function A40MX04
Function
40MX and 42MX FPGA Families
Revision 11 2-5
PL84
184
84-Pin
PLCC
Package Pin Assignments
2-6 Revision 11
PL84
Pin Number A40MX04 Function A42MX09 Fun c tion A42MX16 Function A42MX24 Function
1 I/O I/O I/O I/O
2 I/O CLKB, I/O CLKB, I/O CLKB, I/O
3 I/O I/O I/O I/O
4 VCC PRB, I/O PRB, I/O PRB, I/O
5 I/O I/O I/O WD, I/O
6 I/O GND GND GND
7 I/O I/O I/O I/O
8 I/O I/O I/O WD, I/O
9 I/O I/O I/O WD, I/O
10 I/O DCLK, I/O DCLK, I/O DCLK, I/O
11 I/O I/O I/O I/O
12 NC MODE MODE MODE
13 I/O I/O I/O I/O
14 I/O I/O I/O I/O
15 I/O I/O I/O I/O
16 I/O I/O I/O I/O
17 I/O I/O I/O I/O
18 GND I/O I/O I/O
19 GND I/O I/O I/O
20 I/O I/O I/O I/O
21 I/O I/O I/O I/O
22 I/O VCCA VCCI VCCI
23 I/O VCCI VCCA VCCA
24 I/O I/O I/O I/O
25 VCC I/O I/O I/O
26 VCC I/O I/O I/O
27 I/O I/O I/O I/O
28 I/O GND GND GND
29 I/O I/O I/O I/O
30 I/O I/O I/O I/O
31 I/O I/O I/O I/O
32 I/O I/O I/O I/O
33 VCC I/O I/O I/O
34 I/O I/O I/O TMS, I/O
35 I/O I/O I/O TDI, I/O
36 I/O I/O I/O WD, I/O
40MX and 42MX FPGA Families
Revision 11 2-7
37 I/O I/O I/O I/O
38 I/O I/O I/O WD, I/O
39 I/O I/O I/O WD, I/O
40 GND I/O I/O I/O
41 I/O I/O I/O I/O
42 I/O I/O I/O I/O
43 I/O VCCA VCCA VCCA
44 I/O I/O I/O WD, I/O
45 I/O I/O I/O WD, I/O
46 VCC I/O I/O WD, I/O
47 I/O I/O I/O WD, I/O
48 I/O I/O I/O I/O
49 I/O GND GND GND
50 I/O I/O I/O WD, I/O
51 I/O I/O I/O WD, I/O
52 I/O SDO, I/O SDO, I/O SDO, TDO, I/O
53 I/O I/O I/O I/O
54 I/O I/O I/O I/O
55 I/O I/O I/O I/O
56 I/O I/O I/O I/O
57 I/O I/O I/O I/O
58 I/O I/O I/O I/O
59 I/O I/O I/O I/O
60 GND I/O I/O I/O
61 GND I/O I/O I/O
62 I/O I/O I/O TCK, I/O
63 I/O LP LP LP
64 CLK, I/O VCCA VCCA VCCA
65 I/O VCCI VCCI VCCI
66 MODE I/O I/O I/O
67 VCC I/O I/O I/O
68 VCC I/O I/O I/O
69 I/O I/O I/O I/O
70 I/O GND GND GND
71 I/O I/O I/O I/O
72 SDI, I/O I/O I/O I/O
PL84
Pin Number A40MX04 Function A42MX09 Fun c tion A42MX16 Function A42MX24 Function
Package Pin Assignments
2-8 Revision 11
73 DCLK, I/O I/O I/O I/O
74 PRA, I/O I/O I/O I/O
75 PRB, I/O I/O I/O I/O
76 I/O SDI, I/O SDI, I/O SDI, I/O
77 I/O I/O I/O I/O
78 I/O I/O I/O WD, I/O
79 I/O I/O I/O WD, I/O
80 I/O I/O I/O WD, I/O
81 I/O PRA, I/O PRA, I/O PRA, I/O
82 GND I/O I/O I/O
83 I/O CLKA, I/O CLKA, I/O CLKA, I/O
84 I/O VCCA VCCA VCCA
PL84
Pin Number A40MX04 Function A42MX09 Fun c tion A42MX16 Function A42MX24 Function
40MX and 42MX FPGA Families
Revision 11 2-9
PQ100
1
100
100-Pin
PQFP
Package Pin Assignments
2-10 Revision 11
PQ100
Pin Number A40MX0 2 Function A40MX04 Fu nction A42MX09 Function A42MX16 Func tion
1NCNCI/OI/O
2 NC NC DCLK, I/O DCLK, I/O
3NCNCI/OI/O
4 NC NC MODE MODE
5NCNCI/OI/O
6 PRB, I/O PRB, I/ O I/O I/O
7 I/O I/O I/O I/O
8 I/O I/O I/O I/O
9 I/O I/O GND GND
10 I/O I/O I/O I/O
11 I/O I/O I/O I/O
12 I/O I/O I/O I/O
13 GND GND I/O I/O
14 I/O I/O I/O I/O
15 I/O I/O I/O I/O
16 I/O I/O VCCA VCCA
17 I/O I/O VCCI VCCA
18 I/O I/O I/O I/O
19 VCC VCC I/O I/O
20 I/O I/O I/O I/O
21 I/O I/O I/O I/O
22 I/O I/O GND GND
23 I/O I/O I/O I/O
24 I/O I/O I/O I/O
25 I/O I/O I/O I/O
26 I/O I/O I/O I/O
27 NC NC I/O I/O
28 NC NC I/O I/O
29 NC NC I/O I/O
30 NC NC I/O I/O
31 NC I/O I/O I/O
32 NC I/O I/O I/O
33 NC I/O I/O I/O
34 I/O I/O GND GND
35 I/O I/O I/O I/O
36 GND GND I/O I/O
40MX and 42MX FPGA Families
Revision 11 2-11
37 GND GND I/O I/O
38 I/O I/O I/O I/O
39 I/O I/O I/O I/O
40 I/O I/O VCCA VCCA
41 I/O I/O I/O I/O
42 I/O I/O I/O I/O
43 VCC VCC I/O I/O
44 VCC VCC I/O I/O
45 I/O I/O I/O I/O
46 I/O I/O GND GND
47 I/O I/O I/O I/O
48 NC I/O I/O I/O
49 NC I/O I/O I/O
50 NC I/O I/O I/O
51 NC NC I/O I/O
52 NC NC SDO, I/O SDO, I/O
53 NC NC I/O I/O
54 NC NC I/O I/O
55 NC NC I/O I/O
56 VCC VCC I/O I/O
57 I/O I/O GND GND
58 I/O I/O I/O I/O
59 I/O I/O I/O I/O
60 I/O I/O I/O I/O
61 I/O I/O I/O I/O
62 I/O I/O I/O I/O
63 GND GND I/O I/O
64 I/O I/O LP LP
65 I/O I/O VCCA VCCA
66 I/O I/O VCCI VCCI
67 I/O I/O VCCA VCCA
68 I/O I/O I/O I/O
69 VCC VCC I/O I/O
70 I/O I/O I/O I/O
71 I/O I/O I/O I/O
72 I/O I/O GND GND
PQ100
Pin Number A40MX0 2 Function A40MX04 Fu nction A42MX09 Function A42MX16 Func tion
Package Pin Assignments
2-12 Revision 11
73 I/O I/O I/O I/O
74 I/O I/O I/O I/O
75 I/O I/O I/O I/O
76 I/O I/O I/O I/O
77 NC NC I/O I/O
78 NC NC I/O I/O
79 NC NC SDI, I/O SDI, I/O
80 NC I/O I/O I/O
81 NC I/O I/O I/O
82 NC I/O I/O I/O
83 I/O I/O I/O I/O
84 I/O I/O GND GND
85 I/O I/O I/O I/O
86 GND GND I/O I/O
87 GND GND PRA, I/O PRA, I/O
88 I/O I/O I/O I/O
89 I/O I/O CLKA, I/O CLKA, I/O
90 CLK, I/O CLK, I/O VCCA VCCA
91 I/O I/O I/O I/O
92 MODE MODE CLKB, I/O CLKB, I/O
93 VCC VCC I/O I/O
94 VCC VCC PRB, I/O PRB, I/O
95 NC I/O I/O I/O
96 NC I/O GND GND
97 NC I/O I/O I/O
98 SDI, I/O SDI, I/O I/O I/O
99 DCLK, I/O DCLK, I/O I/O I/O
100 PRA, I/O PRA, I/O I/O I/O
PQ100
Pin Number A40MX0 2 Function A40MX04 Fu nction A42MX09 Function A42MX16 Func tion
40MX and 42MX FPGA Families
Revision 11 2-13
PQ160
160
1
160-Pin
PQFP
Package Pin Assignments
2-14 Revision 11
PQ160
Pin Number A42MX09 Function A42MX16 Function A42MX24 Function
1 I/O I/O I/O
2 DCLK, I/O DCLK, I/O DCLK, I/O
3NCI/OI/O
4 I/O I/O WD, I/ O
5 I/O I/O WD, I/ O
6 NC VCCI VCCI
7 I/O I/O I/O
8 I/O I/O I/O
9 I/O I/O I/O
10 NC I/O I/O
11 GND GND GND
12 NC I/O I/O
13 I/O I/O WD, I/O
14 I/O I/O WD, I/O
15 I/O I/O I/O
16 PRB, I/O PRB, I/O PRB, I/O
17 I/O I/O I/O
18 CLKB, I/O CLKB, I/O CLKB, I/O
19 I/O I/O I/O
20 VCCA VCCA VCCA
21 CLKA, I/O CLKA, I/O CLKA, I/O
22 I/O I/O I/O
23 PRA, I/O PRA, I/O PRA, I/O
24 NC I/O WD, I/O
25 I/O I/O WD, I/O
26 I/O I/O I/O
27 I/O I/O I/O
28 NC I/O I/O
29 I/O I/O WD, I/O
30 GND GND GND
31 NC I/O WD, I/O
32 I/O I/O I/O
33 I/O I/O I/O
34 I/O I/O I/O
35 NC VCCI VCCI
36 I/O I/O WD, I/O
40MX and 42MX FPGA Families
Revision 11 2-15
37 I/O I/O WD, I/O
38 SDI, I/O SDI, I/O SDI, I/O
39 I/O I/O I/O
40 GND GND GND
41 I/O I/O I/O
42 I/O I/O I/O
43 I/O I/O I/O
44 GND GND GND
45 I/O I/O I/O
46 I/O I/O I/O
47 I/O I/O I/O
48 I/O I/O I/O
49 GND GND GND
50 I/O I/O I/O
51 I/O I/O I/O
52 NC I/O I/O
53 I/O I/O I/O
54 NC VCCA VCCA
55 I/O I/O I/O
56 I/O I/O I/O
57 VCCA VCCA VCCA
58 VCCI VCCI VCCI
59 GND GND GND
60 VCCA VCCA VCCA
61 LP LP LP
62 I/O I/O TCK, I/ O
63 I/O I/O I/O
64 GND GND GND
65 I/O I/O I/O
66 I/O I/O I/O
67 I/O I/O I/O
68 I/O I/O I/O
69 GND GND GND
70 NC I/O I/O
71 I/O I/O I/O
72 I/O I/O I/O
PQ160
Pin Number A42MX09 Function A42MX16 Function A42MX24 Function
Package Pin Assignments
2-16 Revision 11
73 I/O I/O I/O
74 I/O I/O I/O
75 NC I/O I/O
76 I/O I/O I/O
77 NC I/O I/O
78 I/O I/O I/O
79 NC I/O I/O
80 GND GND GND
81 I/O I/O I/O
82 SDO, I/O SDO, I/O SDO, TDO, I/O
83 I/O I/O WD, I/O
84 I/O I/O WD, I/O
85 I/O I/O I/O
86 NC VCCI VCCI
87 I/O I/O I/O
88 I/O I/O WD, I/O
89 GND GND GND
90 NC I/O I/O
91 I/O I/O I/O
92 I/O I/O I/O
93 I/O I/O I/O
94 I/O I/O I/O
95 I/O I/O I/O
96 I/O I/O WD, I/O
97 I/O I/O I/O
98 VCCA VCCA VCCA
99 GND GND GND
100 NC I/O I/O
101 I/O I/O I/O
102 I/O I/O I/O
103 NC I/O I/O
104 I/O I/O I/O
105 I/O I/O I/O
106 I/O I/O WD, I/O
107 I/O I/O WD, I/O
108 I/O I/O I/O
PQ160
Pin Number A42MX09 Function A42MX16 Function A42MX24 Function
40MX and 42MX FPGA Families
Revision 11 2-17
109 GND GND GND
110 NC I/O I/O
111 I/O I/O WD, I/O
112 I/O I/O WD, I/O
113 I/O I/O I/O
114 NC VCCI VCCI
115 I/O I/O WD, I/O
116 NC I/O WD, I/O
117 I/O I/O I/O
118 I/O I/O TDI, I/O
119 I/O I/O TMS, I /O
120 GND GND GND
121 I/O I/O I/O
122 I/O I/O I/O
123 I/O I/O I/O
124 NC I/O I/O
125 GND GND GND
126 I/O I/O I/O
127 I/O I/O I/O
128 I/O I/O I/O
129 NC I/O I/O
130 GND GND GND
131 I/O I/O I/O
132 I/O I/O I/O
133 I/O I/O I/O
134 I/O I/O I/O
135 NC VCCA VCCA
136 I/O I/O I/O
137 I/O I/O I/O
138 NC VCCA VCCA
139 VCCI VCCI VCCI
140 GND GND GND
141 NC I/O I/O
142 I/O I/O I/O
143 I/O I/O I/O
144 I/O I/O I/O
PQ160
Pin Number A42MX09 Function A42MX16 Function A42MX24 Function
Package Pin Assignments
2-18 Revision 11
145 GND GND GND
146 NC I/O I/O
147 I/O I/O I/O
148 I/O I/O I/O
149 I/O I/O I/O
150 NC VCCA VCCA
151 NC I/O I/O
152 NC I/O I/O
153 NC I/O I/O
154 NC I/O I/O
155 GND GND GND
156 I/O I/O I/O
157 I/O I/O I/O
158 I/O I/O I/O
159 MODE MODE MODE
160 GND GND GND
PQ160
Pin Number A42MX09 Function A42MX16 Function A42MX24 Function
40MX and 42MX FPGA Families
Revision 11 2-19
PQ208
208-Pin PQFP
1208
Package Pin Assignments
2-20 Revision 11
PQ208
Pin Number A42MX16 Function A42MX24 Function A42MX36 Function
1 GND GND GND
2 NC VCCA VCCA
3 MODE MODE MODE
4 I/O I/O I/O
5 I/O I/O I/O
6 I/O I/O I/O
7 I/O I/O I/O
8 I/O I/O I/O
9NCI/OI/O
10 NC I/O I/O
11 NC I/O I/O
12 I/O I/O I/O
13 I/O I/O I/O
14 I/O I/O I/O
15 I/O I/O I/O
16 NC I/O I/O
17 VCCA VCCA VCCA
18 I/O I/O I/O
19 I/O I/O I/O
20 I/O I/O I/O
21 I/O I/O I/O
22 GND GND GND
23 I/O I/O I/O
24 I/O I/O I/O
25 I/O I/O I/O
26 I/O I/O I/O
27 GND GND GND
28 VCCI VCCI VCCI
29 VCCA VCCA VCCA
30 I/O I/O I/O
31 I/O I/O I/O
32 VCCA VCCA VCCA
33 I/O I/O I/O
34 I/O I/O I/O
35 I/O I/O I/O
36 I/O I/O I/O
40MX and 42MX FPGA Families
Revision 11 2-21
37 I/O I/O I/O
38 I/O I/O I/O
39 I/O I/O I/O
40 I/O I/O I/O
41 NC I/O I/O
42 NC I/O I/O
43 NC I/O I/O
44 I/O I/O I/O
45 I/O I/O I/O
46 I/O I/O I/O
47 I/O I/O I/O
48 I/O I/O I/O
49 I/O I/O I/O
50 NC I/O I/O
51 NC I/O I/O
52 GND GND GND
53 GND GND GND
54 I/ O TMS, I/O TMS, I/O
55 I/O TDI, I/O TDI, I/O
56 I/O I/O I/O
57 I/O WD, I/O WD, I/O
58 I/O WD, I/O WD, I/O
59 I/O I/O I/O
60 VCCI VCCI VCCI
61 NC I/O I/O
62 NC I/O I/O
63 I/O I/O I/O
64 I/O I/O I/O
65 I/O I/O QCL KA, I/O
66 I/O WD, I/O WD, I/O
67 NC WD, I/O WD, I/O
68 NC I/O I/O
69 I/O I/O I/O
70 I/O WD, I/O WD, I/O
71 I/O WD, I/O WD, I/O
72 I/O I/O I/O
PQ208
Pin Number A42MX16 Function A42MX24 Function A42MX36 Function
Package Pin Assignments
2-22 Revision 11
73 I/O I/O I/O
74 I/O I/O I/O
75 I/O I/O I/O
76 I/O I/O I/O
77 I/O I/O I/O
78 GND GND GND
79 VCCA VCCA VCCA
80 NC VCCI VCCI
81 I/O I/O I/O
82 I/O I/O I/O
83 I/O I/O I/O
84 I/O I/O I/O
85 I/O WD, I/O WD, I/O
86 I/O WD, I/O WD, I/O
87 I/O I/O I/O
88 I/O I/O I/O
89 NC I/O I/O
90 NC I/O I/O
91 I/O I/O QCLKB, I/O
92 I/O I/O I/O
93 I/O WD, I/O WD, I/O
94 I/O WD, I/O WD, I/O
95 NC I/O I/O
96 NC I/O I/O
97 NC I/O I/O
98 VCCI VCCI VCCI
99 I/O I/O I/O
100 I/O WD, I/O WD, I/O
101 I/O WD, I/O WD, I/O
102 I/O I/O I/O
103 SDO, I/O SDO, TDO, I/O SDO, TDO, I/O
104 I/O I/O I/O
105 GND GND GND
106 NC VCCA VCCA
107 I/O I/O I/O
108 I/O I/O I/O
PQ208
Pin Number A42MX16 Function A42MX24 Function A42MX36 Function
40MX and 42MX FPGA Families
Revision 11 2-23
109 I/O I/O I/O
110 I/O I/O I/O
111 I/O I/O I/O
112 NC I/O I/O
113 NC I/O I/O
114 NC I/O I/O
115 NC I/O I/O
116 I/O I/O I/O
117 I/O I/O I/O
118 I/O I/O I/O
119 I/O I/O I/O
120 I/O I/O I/O
121 I/O I/O I/O
122 I/O I/O I/O
123 I/O I/O I/O
124 I/O I/O I/O
125 I/O I/O I/O
126 GND GND GND
127 I/O I/O I/O
128 I/O TCK, I/O TCK, I/O
129 LP LP LP
130 VCCA VCCA VCCA
131 GND GND GND
132 VCCI VCCI VCCI
133 VCCA VCCA VCCA
134 I/O I/O I/O
135 I/O I/O I/O
136 VCCA VCCA VCCA
137 I/O I/O I/O
138 I/O I/O I/O
139 I/O I/O I/O
140 I/O I/O I/O
141 NC I/O I/O
142 I/O I/O I/O
143 I/O I/O I/O
144 I/O I/O I/O
PQ208
Pin Number A42MX16 Function A42MX24 Function A42MX36 Function
Package Pin Assignments
2-24 Revision 11
145 I/O I/O I/O
146 NC I/O I/O
147 NC I/O I/O
148 NC I/O I/O
149 NC I/O I/O
150 GND GND GND
151 I/O I/O I/O
152 I/O I/O I/O
153 I/O I/O I/O
154 I/O I/O I/O
155 I/O I/O I/O
156 I/O I/O I/O
157 GND GND GND
158 I/O I/O I/O
159 SDI, I/O SDI, I/O SDI, I/O
160 I/O I/O I/O
161 I/O WD, I/O WD, I/O
162 I/O WD, I/O WD, I/O
163 I/O I/O I/O
164 VCCI VCCI VCCI
165 NC I/O I/O
166 NC I/O I/O
167 I/O I/O I/O
168 I/O WD, I/O WD, I/O
169 I/O WD, I/O WD, I/O
170 I/O I/O I/O
171 NC I/O QCLKD, I/O
172 I/O I/O I/O
173 I/O I/O I/O
174 I/O I/O I/O
175 I/O I/O I/O
176 I/O WD, I/O WD, I/O
177 I/O WD, I/O WD, I/O
178 PRA, I/O PRA, I/O PRA, I/O
179 I/O I/O I/O
180 CLKA, I/O CLKA, I/O CLKA, I/O
PQ208
Pin Number A42MX16 Function A42MX24 Function A42MX36 Function
40MX and 42MX FPGA Families
Revision 11 2-25
181 NC I/O I/O
182 NC VCCI VCCI
183 VCCA VCCA VCCA
184 GND GND GND
185 I/O I/O I/O
186 CLKB, I/O CLKB, I/O CLKB, I/O
187 I/O I/O I/O
188 PRB, I/O PRB, I/O PRB, I/O
189 I/O I/O I/O
190 I/O WD, I/O WD, I/O
191 I/O WD, I/O WD, I/O
192 I/O I/O I/O
193 NC I/O I/O
194 NC WD, I/O WD, I/O
195 NC WD, I/O WD, I/O
196 I/O I/O QCLKC, I/O
197 NC I/O I/O
198 I/O I/O I/O
199 I/O I/O I/O
200 I/O I/O I/O
201 NC I/O I/O
202 VCCI VCCI VCCI
203 I/O WD, I/O WD, I/O
204 I/O WD, I/O WD, I/O
205 I/O I/O I/O
206 I/O I/O I/O
207 DCLK, I/O DCLK, I/O DCLK, I/O
208 I/O I/O I/O
PQ208
Pin Number A42MX16 Function A42MX24 Function A42MX36 Function
Package Pin Assignments
2-26 Revision 11
PQ240
Note: 240-Pin PQFP Package (Top View)
240-Pin
PQFP
1240
40MX and 42MX FPGA Families
Revision 11 2-27
PQ240
Pin Number A42MX36 Function
1I/O
2 DCLK, I/O
3I/O
4I/O
5I/O
6 WD, I/O
7 WD, I/O
8 VCCI
9I/O
10 I/O
11 I/O
12 I/O
13 I/O
14 I/O
15 QCLKC, I/O
16 I/O
17 WD, I/O
18 WD, I/O
19 I/O
20 I/O
21 WD, I/O
22 WD, I/O
23 I/O
24 PRB, I/O
25 I/O
26 CLKB, I/O
27 I/O
28 GND
29 VCCA
30 VCCI
31 I/O
32 CLKA, I/O
33 I/O
34 PRA, I/O
35 I/O
36 I/O
37 WD, I/O
38 WD, I/O
39 I/O
40 I/O
41 I/O
42 I/O
43 I/O
44 I/O
45 QCLKD, I/O
46 I/O
47 WD, I/O
48 WD, I/O
49 I/O
50 I/O
51 I/O
52 VCCI
53 I/O
54 WD, I/O
55 WD, I/O
56 I/O
57 SDI, I/O
58 I/O
59 VCCA
60 GND
61 GND
62 I/O
63 I/O
64 I/O
65 I/O
66 I/O
67 I/O
68 I/O
69 I/O
70 I/O
71 VCCI
72 I/O
PQ240
Pin Number A42MX36 Function
73 I/O
74 I/O
75 I/O
76 I/O
77 I/O
78 I/O
79 I/O
80 I/O
81 I/O
82 I/O
83 I/O
84 I/O
85 VCCA
86 I/O
87 I/O
88 VCCA
89 VCCI
90 VCCA
91 LP
92 TCK, I/O
93 I/O
94 GND
95 I/O
96 I/O
97 I/O
98 I/O
99 I/O
100 I/O
101 I/O
102 I/O
103 I/O
104 I/O
105 I/O
106 I/O
107 I/O
108 VCCI
PQ240
Pin Number A42MX36 Function
Package Pin Assignments
2-28 Revision 11
109 I/O
110 I/O
111 I/O
112 I/O
113 I/O
114 I/O
115 I/O
116 I/O
117 I/O
118 VCCA
119 GND
120 GND
121 GND
122 I/O
123 SDO, TDO, I/O
124 I/O
125 WD, I/O
126 WD, I/O
127 I/O
128 VCCI
129 I/O
130 I/O
131 I/O
132 WD, I/O
133 WD, I/O
134 I/O
135 QCLKB, I/O
136 I/O
137 I/O
138 I/O
139 I/O
140 I/O
141 I/O
142 WD, I/O
143 WD, I/O
144 I/O
PQ240
Pin Number A42MX36 Function
145 I/O
146 I/O
147 I/O
148 I/O
149 I/O
150 VCCI
151 VCCA
152 GND
153 I/O
154 I/O
155 I/O
156 I/O
157 I/O
158 I/O
159 WD, I/O
160 WD, I/O
161 I/O
162 I/O
163 WD, I/O
164 WD, I/O
165 I/O
166 QCLKA, I/O
167 I/O
168 I/O
169 I/O
170 I/O
171 I/O
172 VCCI
173 I/O
174 WD, I/O
175 WD, I/O
176 I/O
177 I/O
178 TDI, I/O
179 TMS, I/O
180 GND
PQ240
Pin Number A42MX36 Function
181 VCCA
182 GND
183 I/O
184 I/O
185 I/O
186 I/O
187 I/O
188 I/O
189 I/O
190 I/O
191 I/O
192 VCCI
193 I/O
194 I/O
195 I/O
196 I/O
197 I/O
198 I/O
199 I/O
200 I/O
201 I/O
202 I/O
203 I/O
204 I/O
205 I/O
206 VCCA
207 I/O
208 I/O
209 VCCA
210 VCCI
211 I/O
212 I/O
213 I/O
214 I/O
215 I/O
216 I/O
PQ240
Pin Number A42MX36 Function
40MX and 42MX FPGA Families
Revision 11 2-29
217 I/O
218 I/O
219 VCCA
220 I/O
221 I/O
222 I/O
223 I/O
224 I/O
225 I/O
226 I/O
227 VCCI
228 I/O
229 I/O
230 I/O
231 I/O
232 I/O
233 I/O
234 I/O
235 I/O
236 I/O
237 GND
238 MODE
239 VCCA
240 GND
PQ240
Pin Number A42MX36 Function
Package Pin Assignments
2-30 Revision 11
VQ80
80
1
80-Pin
VQFP
40MX and 42MX FPGA Families
Revision 11 2-31
VQ80
Pin
Number A40MX02
Function A40MX04
Function
1 I/O I/O
2NCI/O
3NCI/O
4NCI/O
5 I/O I/O
6 I/O I/O
7GNDGND
8 I/O I/O
9 I/O I/O
10 I/O I/O
11 I/O I/O
12 I/O I/O
13 VCC VCC
14 I/O I/O
15 I/O I/O
16 I/O I/O
17 NC I/O
18 NC I/O
19 NC I/O
20 VCC VCC
21 I/O I/O
22 I/O I/O
23 I/O I/O
24 I/O I/O
25 I/O I/O
26 I/O I/O
27 GND GND
28 I/O I/O
29 I/O I/O
30 I/O I/O
31 I/O I/O
32 I/O I/O
33 VCC VCC
34 I/O I/O
35 I/O I/O
36 I/O I/O
37 I/O I/O
38 I/O I/O
39 I/O I/O
40 I/O I/O
41 NC I/O
42 NC I/O
43 NC I/O
44 I/O I/O
45 I/O I/O
46 I/O I/O
47 GND GND
48 I/O I/O
49 I/O I/O
50 CLK, I/O CLK, I/O
51 I/O I/O
52 MODE MODE
53 VCC VCC
54 NC I/O
VQ80
Pin
Number A40MX02
Function A40MX04
Function
55 NC I/O
56 NC I/O
57 SDI, I/O SDI, I/O
58 DCLK, I/O DCLK, I/O
59 PRA, I/O PRA, I/O
60 NC NC
61 PRB, I/O PRB, I/O
62 I/O I/O
63 I/O I/O
64 I/O I/O
65 I/O I/O
66 I/O I/O
67 I/O I/O
68 GND GND
69 I/O I/O
70 I/O I/O
71 I/O I/O
72 I/O I/O
73 I/O I/O
74 VCC VCC
75 I/O I/O
76 I/O I/O
77 I/O I/O
78 I/O I/O
79 I/O I/O
80 I/O I/O
VQ80
Pin
Number A40MX02
Function A40MX04
Function
Package Pin Assignments
2-32 Revision 11
VQ100
1
100-Pin
VQFP
100
40MX and 42MX FPGA Families
Revision 11 2-33
VQ100
Pin
Number A42MX09
Function A42MX16
Function
1 I/O I/O
2MODEMODE
3 I/O I/O
4 I/O I/O
5 I/O I/O
6 I/O I/O
7GNDGND
8 I/O I/O
9 I/O I/O
10 I/O I/O
11 I/O I/O
12 I/O I/O
13 I/O I/O
14 VCCA NC
15 VCCI VCCI
16 I/O I/O
17 I/O I/O
18 I/O I/O
19 I/O I/O
20 GND GND
21 I/O I/O
22 I/O I/O
23 I/O I/O
24 I/O I/O
25 I/O I/O
26 I/O I/O
27 I/O I/O
28 I/O I/O
29 I/O I/O
30 I/O I/O
31 I/O I/O
32 GND GND
33 I/O I/O
34 I/O I/O
35 I/O I/O
36 I/O I/O
37 I/O I/O
38 VCCA VCCA
39 I/O I/O
40 I/O I/O
41 I/O I/O
42 I/O I/O
43 I/O I/O
44 GND GND
45 I/O I/O
46 I/O I/O
47 I/O I/O
48 I/O I/O
49 I/O I/O
50 SDO, I/O SDO, I/O
51 I/O I/O
52 I/O I/O
53 I/O I/O
54 I/O I/O
55 GND GND
56 I/O I/O
57 I/O I/O
58 I/O I/O
59 I/O I/O
60 I/O I/O
61 I/O I/O
62 LP LP
63 VCCA VCCA
64 VCCI VCCI
65 VCCA VCCA
66 I/O I/O
67 I/O I/O
68 I/O I/O
69 I/O I/O
70 GND GND
VQ100
Pin
Number A42MX09
Function A42MX16
Function
71 I/O I/O
72 I/O I/O
73 I/O I/O
74 I/O I/O
75 I/O I/O
76 I/O I/O
77 SDI, I/O SDI, I/O
78 I/O I/O
79 I/O I/O
80 I/O I/O
81 I/O I/O
82 GND GND
83 I/O I/O
84 I/O I/O
85 PRA, I/O PRA, I/O
86 I/O I/O
87 CLKA, I/O CLKA, I/O
88 VCCA VCCA
89 I/O I/O
90 CLKB, I/O CLKB, I/O
91 I/O I/O
92 PRB, I/O PRB, I/O
93 I/O I/O
94 GND GND
95 I/O I/O
96 I/O I/O
97 I/O I/O
98 I/O I/O
99 I/O I/O
100 DCLK, I/O DCLK, I/O
VQ100
Pin
Number A42MX09
Function A42MX16
Function
Package Pin Assignments
2-34 Revision 11
TQ176
176-Pin
TQFP
176
1
40MX and 42MX FPGA Families
Revision 11 2-35
TQ176
Pin Number A42MX09 Function A42MX16 Function A42MX24 Function
1 GND GND GND
2 MODE MODE MODE
3 I/O I/O I/O
4 I/O I/O I/O
5 I/O I/O I/O
6 I/O I/O I/O
7 I/O I/O I/O
8 NC NC I/O
9 I/O I/O I/O
10 NC I/O I/O
11 NC I/O I/O
12 I/O I/O I/O
13 NC VCCA VCCA
14 I/O I/O I/O
15 I/O I/O I/O
16 I/O I/O I/O
17 I/O I/O I/O
18 GND GND GND
19 NC I/O I/O
20 NC I/O I/O
21 I/O I/O I/O
22 NC I/O I/O
23 GND GND GND
24 NC VCCI VCCI
25 VCCA VCCA VCCA
26 NC I/O I/O
27 NC I/O I/O
28 VCCI VCCA VCCA
29 NC I/O I/O
30 I/O I/O I/O
31 I/O I/O I/O
32 I/O I/O I/O
33 NC NC I/O
34 I/O I/O I/O
35 I/O I/O I/O
36 I/O I/O I/O
Package Pin Assignments
2-36 Revision 11
37 NC I/O I/O
38 NC NC I/O
39 I/O I/O I/O
40 I/O I/O I/O
41 I/O I/O I/O
42 I/O I/O I/O
43 I/O I/O I/O
44 I/O I/O I/O
45 GND GND GND
46 I/O I/O TMS, I/O
47 I/O I/O TDI, I/O
48 I/O I/O I/O
49 I/O I/O WD, I/O
50 I/O I/O WD, I/O
51 I/O I/O I/O
52 NC VCCI VCCI
53 I/O I/O I/O
54 NC I/O I/O
55 NC I/O WD, I/O
56 I/O I/O WD, I/O
57 NC NC I/O
58 I/O I/O I/O
59 I/O I/O WD, I/O
60 I/O I/O WD, I/O
61 NC I/O I/O
62 I/O I/O I/O
63 I/O I/O I/O
64 NC I/O I/O
65 I/O I/O I/O
66 NC I/O I/O
67 GND GND GND
68 VCCA VCCA VCCA
69 I/O I/O WD, I/O
70 I/O I/O WD, I/O
71 I/O I/O I/O
72 I/O I/O I/O
TQ176
Pin Number A42MX09 Function A42MX16 Function A42MX24 Function
40MX and 42MX FPGA Families
Revision 11 2-37
73 I/O I/O I/O
74 NC I/O I/O
75 I/O I/O I/O
76 I/O I/O I/O
77 NC NC WD, I/O
78 NC I/O WD, I/O
79 I/O I/O I/O
80 NC I/O I/O
81 I/O I/O I/O
82 NC VCCI VCCI
83 I/O I/O I/O
84 I/O I/O WD, I/O
85 I/O I/O WD, I/O
86 NC I/O I/O
87 SDO, I/O SDO, I/O SDO, TDO, I/O
88 I/O I/O I/O
89 GND GND GND
90 I/O I/O I/O
91 I/O I/O I/O
92 I/O I/O I/O
93 I/O I/O I/O
94 I/O I/O I/O
95 I/O I/O I/O
96 NC I/O I/O
97 NC I/O I/O
98 I/O I/O I/O
99 I/O I/O I/O
100 I/O I/O I/O
101 NC NC I/O
102 I/O I/O I/O
103 NC I/O I/O
104 I/O I/O I/O
105 I/O I/O I/O
106 GND GND GND
107 NC I/O I/O
108 NC I/O TCK, I/O
TQ176
Pin Number A42MX09 Function A42MX16 Function A42MX24 Function
Package Pin Assignments
2-38 Revision 11
109 LP LP LP
110 VCCA VCCA VCCA
111 GND GND GND
112 VCCI VCCI VCCI
113 VCCA VCCA VCCA
114 NC I/O I/O
115 NC I/O I/O
116 NC VCCA VCCA
117 I/O I/O I/O
118 I/O I/O I/O
119 I/O I/O I/O
120 I/O I/O I/O
121 NC NC I/O
122 I/O I/O I/O
123 I/O I/O I/O
124 NC I/O I/O
125 NC I/O I/O
126 NC NC I/O
127 I/O I/O I/O
128 I/O I/O I/O
129 I/O I/O I/O
130 I/O I/O I/O
131 I/O I/O I/O
132 I/O I/O I/O
133 GND GND GND
134 I/O I/O I/O
135 SDI, I/O SDI, I/O SDI, I/O
136 NC I/O I/O
137 I/O I/O WD, I/O
138 I/O I/O WD, I/O
139 I/O I/O I/O
140 NC VCCI VCCI
141 I/O I/O I/O
142 I/O I/O I/O
143 NC I/O I/O
144 NC I/O WD, I/O
TQ176
Pin Number A42MX09 Function A42MX16 Function A42MX24 Function
40MX and 42MX FPGA Families
Revision 11 2-39
145 NC NC WD, I/O
146 I/O I/O I/O
147 NC I/O I/O
148 I/O I/O I/O
149 I/O I/O I/O
150 I/O I/O WD, I/O
151 NC I/O WD, I/O
152 PRA, I/O PRA, I/O PRA, I/O
153 I/O I/O I/O
154 CLKA, I/O CLKA, I/O CLKA, I/O
155 VCCA VCCA VCCA
156 GND GND GND
157 I/O I/O I/O
158 CLKB, I/O CLKB, I/O CLKB, I/O
159 I/O I/O I/O
160 PRB, I/O PRB, I/O PRB, I/O
161 NC I/O WD, I/O
162 I/O I/O WD, I/O
163 I/O I/O I/O
164 I/O I/O I/O
165 NC NC WD, I/O
166 NC I/O WD, I/O
167 I/O I/O I/O
168 NC I/O I/O
169 I/O I/O I/O
170 NC VCCI VCCI
171 I/O I/O WD, I/O
172 I/O I/O WD, I/O
173 NC I/O I/O
174 I/O I/O I/O
175 DCLK, I/O DCLK, I/O DCLK, I/O
176 I/O I/O I/O
TQ176
Pin Number A42MX09 Function A42MX16 Function A42MX24 Function
Package Pin Assignments
2-40 Revision 11
CQ208
A42MX36
208-Pin
CQFP
Pin #1
Index
208207206205204203202201200 164163162161160159158157
53 54 55 56 57 58 59 60 61 97 98 99 100101102103104
105
106
107
108
109
110
111
112
113
149
150
151
152
153
154
155
156
52
51
50
49
48
47
46
45
44
8
7
6
5
4
3
2
1
40MX and 42MX FPGA Families
Revision 11 2-41
CQ208
Pin Number A42MX36 Function
1GND
2 VCCA
3MODE
4I/O
5I/O
6I/O
7I/O
8I/O
9I/O
10 I/O
11 I/O
12 I/O
13 I/O
14 I/O
15 I/O
16 I/O
17 VCCA
18 I/O
19 I/O
20 I/O
21 I/O
22 GND
23 I/O
24 I/O
25 I/O
26 I/O
27 GND
28 VCCI
29 VCCA
30 I/O
31 I/O
32 VCCA
33 I/O
34 I/O
35 I/O
36 I/O
37 I/O
38 I/O
39 I/O
40 I/O
41 I/O
42 I/O
43 I/O
44 I/O
45 I/O
46 I/O
47 I/O
48 I/O
49 I/O
50 I/O
51 I/O
52 GND
53 GND
54 TMS, I/O
55 TDI, I/O
56 I/O
57 WD, I/O
58 WD, I/O
59 I/O
60 VCCI
61 I/O
62 I/O
63 I/O
64 I/O
65 QCLKA, I/O
66 WD, I/O
67 WD, I/O
68 I/O
69 I/O
70 WD, I/O
71 WD, I/O
72 I/O
CQ208
Pin Number A42MX36 Function
73 I/O
74 I/O
75 I/O
76 I/O
77 I/O
78 GND
79 VCCA
80 VCCI
81 I/O
82 I/O
83 I/O
84 I/O
85 WD, I/O
86 WD, I/O
87 I/O
88 I/O
89 I/O
90 I/O
91 QCLKB, I/O
92 I/O
93 WD, I/O
94 WD, I/O
95 I/O
96 I/O
97 I/O
98 VCCI
99 I/O
100 WD, I/O
101 WD, I/O
102 I/O
103 TDO, I/O
104 I/O
105 GND
106 VCCA
107 I/O
108 I/O
CQ208
Pin Number A42MX36 Function
Package Pin Assignments
2-42 Revision 11
109 I/O
110 I/O
111 I/O
112 I/O
113 I/O
114 I/O
115 I/O
116 I/O
117 I/O
118 I/O
119 I/O
120 I/O
121 I/O
122 I/O
123 I/O
124 I/O
125 I/O
126 GND
127 I/O
128 TCK, I/O
129 LP
130 VCCA
131 GND
132 VCCI
133 VCCA
134 I/O
135 I/O
136 VCCA
137 I/O
138 I/O
139 I/O
140 I/O
141 I/O
142 I/O
143 I/O
144 I/O
CQ208
Pin Number A42MX36 Function
145 I/O
146 I/O
147 I/O
148 I/O
149 I/O
150 GND
151 I/O
152 I/O
153 I/O
154 I/O
155 I/O
156 I/O
157 GND
158 I/O
159 SDI, I/O
160 I/O
161 WD, I/O
162 WD, I/O
163 I/O
164 VCCI
165 I/O
166 I/O
167 I/O
168 WD, I/O
169 WD, I/O
170 I/O
171 QCLKD, I/O
172 I/O
173 I/O
174 I/O
175 I/O
176 WD, I/O
177 WD, I/O
178 PRA, I/O
179 I/O
180 CLKA, I/O
CQ208
Pin Number A42MX36 Function
181 I/O
182 VCCI
183 VCCA
184 GND
185 I/O
186 CLKB, I/O
187 I/O
188 PRB, I/O
189 I/O
190 WD, I/O
191 WD, I/O
192 I/O
193 I/O
194 WD, I/O
195 WD, I/O
196 QCLKC, I/O
197 I/O
198 I/O
199 I/O
200 I/O
201 I/O
202 VCCI
203 WD, I/O
204 WD, I/O
205 I/O
206 I/O
207 DCLK, I/O
208 I/O
CQ208
Pin Number A42MX36 Function
40MX and 42MX FPGA Families
Revision 11 2-43
CQ256
A42MX36
256-Pin
CQFP
Pin #1
Index
256255254253252251250249248 200199198197196195194193
65 66 67 68 69 70 71 72 73 121122123124125126127128
129
130
131
132
133
134
135
136
137
18
5
186
187
188
189
190
191
192
64
63
62
61
60
59
58
57
56
8
7
6
5
4
3
2
1
Package Pin Assignments
2-44 Revision 11
CQ256
Pin Number A42MX36 Function
1NC
2GND
3 I/O
4 I/O
5 I/O
6 I/O
7 I/O
8 I/O
9 I/O
10 GND
11 I/O
12 I/O
13 I/O
14 I/O
15 I/O
16 I/O
17 I/O
18 I/O
19 I/O
20 I/O
21 I/O
22 I/O
23 I/O
24 I/O
25 I/O
26 VCCA
27 I/O
28 I/O
29 VCCA
30 VCCI
31 GND
32 VCCA
33 LP
34 TCK, I/O
35 I/O
36 GND
37 I/O
38 I/O
39 I/O
40 I/O
41 I/O
42 I/O
43 I/O
44 I/O
45 I/O
46 I/O
47 I/O
48 GND
49 I/O
50 I/O
51 I/O
52 I/O
53 I/O
54 I/O
55 I/O
56 I/O
57 I/O
58 I/O
59 I/O
60 VCCA
61 GND
62 GND
63 NC
64 NC
65 NC
66 I/O
67 SDO, TDO, I/O
68 I/O
69 WD, I/O
70 WD, I/O
71 I/O
72 VCCI
CQ256
Pin Number A42MX36 Function
73 I/O
74 I/O
75 I/O
76 WD, I/O
77 GND
78 WD, I/O
79 I/O
80 QCLKB, I/O
81 I/O
82 I/O
83 I/O
84 I/O
85 I/O
86 I/O
87 WD, I/O
88 WD, I/O
89 I/O
90 I/O
91 I/O
92 I/O
93 I/O
94 I/O
95 VCCI
96 VCCA
97 GND
98 GND
99 I/O
100 I/O
101 I/O
102 I/O
103 I/O
104 I/O
105 WD, I/O
106 WD, I/O
107 I/O
108 I/O
CQ256
Pin Number A42MX36 Function
40MX and 42MX FPGA Families
Revision 11 2-45
109 WD, I/O
110 WD, I/O
111 I/O
112 QCLKA, I/O
113 I/O
114 GND
115 I/O
116 I/O
117 I/O
118 I/O
119 VCCI
120 I/O
121 WD, I/O
122 WD, I/O
123 I/O
124 I/O
125 I/O
126 I/O
127 GND
128 NC
129 NC
130 NC
131 GND
132 I/O
133 I/O
134 I/O
135 I/O
136 I/O
137 I/O
138 I/O
139 GND
140 I/O
141 I/O
142 I/O
143 I/O
144 I/O
CQ256
Pin Number A42MX36 Function
145 I/O
146 I/O
147 I/O
148 I/O
149 I/O
150 I/O
151 I/O
152 I/O
153 I/O
154 I/O
155 VCCA
156 I/O
157 I/O
158 VCCA
159 VCCI
160 GND
161 I/O
162 I/O
163 I/O
164 I/O
165 GND
166 I/O
167 I/O
168 I/O
169 I/O
170 VCCA
171 I/O
172 I/O
173 I/O
174 I/O
175 I/O
176 I/O
177 I/O
178 I/O
179 I/O
180 GND
CQ256
Pin Number A42MX36 Function
181 I/O
182 I/O
183 I/O
184 I/O
185 I/O
186 I/O
187 I/O
188 MODE
189 VCCA
190 GND
191 NC
192 NC
193 NC
194 I/O
195 DCLK, I/O
196 I/O
197 I/O
198 I/O
199 WD, I/O
200 WD, I/O
201 VCCI
202 I/O
203 I/O
204 I/O
205 I/O
206 GND
207 I/O
208 I/O
209 QCLKC, I/O
210 I/O
211 WD, I/O
212 WD, I/O
213 I/O
214 I/O
215 WD, I/O
216 WD, I/O
CQ256
Pin Number A42MX36 Function
Package Pin Assignments
2-46 Revision 11
217 I/O
218 PRB, I/O
219 I/O
220 CLKB, I/O
221 I/O
222 GND
223 GND
224 VCCA
225 VCCI
226 I/O
227 CLKA, I/O
228 I/O
229 PRA, I/O
230 I/O
231 I/O
232 WD, I/O
233 WD, I/O
234 I/O
235 I/O
236 I/O
237 I/O
238 I/O
239 I/O
240 QCLKD, I/O
241 I/O
242 WD, I/O
243 GND
244 WD, I/O
245 I/O
246 I/O
247 I/O
248 VCCI
249 I/O
250 WD, I/O
251 WD, I/O
252 I/O
CQ256
Pin Number A42MX36 Function
253 SDI, I/O
254 I/O
255 GND
256 NC
CQ256
Pin Number A42MX36 Function
40MX and 42MX FPGA Families
Revision 11 2-47
BG272
272-Pin PBGA
2019181716151413121110987654321
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
Package Pin Assignments
2-48 Revision 11
BG272
Pin Number A42MX36 Function
A1 GND
A2 GND
A3 I/O
A4 WD, I/O
A5 I/O
A6 I/O
A7 WD, I/O
A8 WD, I/O
A9 I/O
A10 I/O
A11 CLKA
A12 I/O
A13 I/O
A14 I/O
A15 I/O
A16 WD, I/O
A17 I/O
A18 I/O
A19 GND
A20 GND
B1 GND
B2 GND
B3 DCLK, I/O
B4 I/O
B5 I/O
B6 I/O
B7 WD, I/O
B8 I/O
B9 PRB, I/O
B10 I/O
B11 I/O
B12 WD, I/O
B13 I/O
B14 I/O
B15 WD, I/O
B16 I/O
B17 WD, I/O
B18 I/O
B19 GND
B20 GND
C1 I/O
C2 MODE
C3 GND
C4 I/O
C5 WD, I/O
C6 I/O
C7 QCLKC, I/O
C8 I/O
C9 I/O
C10 CLKB
C11 PRA, I/O
C12 WD, I/O
C13 I/O
C14 QCLKD, I/O
C15 I/O
C16 WD, I/O
C17 S DI, I/O
C18 I/O
C19 I/O
C20 I/O
D1 I/O
D2 I/O
D3 I/O
D4 I/O
D5 VCCI
D6 I/O
D7 I/O
D8 VCCA
D9 WD, I/O
D10 VCCI
D11 I/O
D12 VCCI
BG272
Pin Number A42MX36 Function
D13 I/O
D14 VCCI
D15 I/O
D16 VCCA
D17 GND
D18 I/O
D19 I/O
D20 I/O
E1 I/O
E2 I/O
E3 I/O
E4 VCCA
E17 VCCI
E18 I/O
E19 I/O
E20 I/O
F1 I/O
F2 I/O
F3 I/O
F4 VCCI
F17 I/O
F18 I/O
F19 I/O
F20 I/O
G1 I/O
G2 I/O
G3 I/O
G4 VCCI
G17 VCCI
G18 I/O
G19 I/O
G20 I/O
H1 I/O
H2 I/O
H3 I/O
H4 VCCA
BG272
Pin Number A42MX36 Function
40MX and 42MX FPGA Families
Revision 11 2-49
H17 I/O
H18 I/O
H19 I/O
H20 I/O
J1 I/O
J2 I/O
J3 I/O
J4 VCCI
J9 GND
J10 GND
J11 GND
J12 GND
J17 VCCA
J18 I/O
J19 I/O
J20 I/O
K1 I/O
K2 I/O
K3 I/O
K4 VCCI
K9 GND
K10 GND
K11 GND
K12 GND
K17 I/O
K18 VCCA
K19 VCCA
K20 LP
L1 I/O
L2 I/O
L3 VCCA
L4 VCCA
L9 GND
L10 GND
L11 GND
L12 GND
BG272
Pin Number A42MX36 Function
L17 VCCI
L18 I/O
L19 I/O
L20 TCK, I/O
M1 I/O
M2 I/O
M3 I/O
M4 VCCI
M9 GND
M10 GND
M11 GND
M12 GND
M17 I/O
M18 I/O
M19 I/O
M20 I/O
N1 I/O
N2 I/O
N3 I/O
N4 VCCI
N17 VCCI
N18 I/O
N19 I/O
N20 I/O
P1 I/O
P2 I/O
P3 I/O
P4 VCCA
P17 I/O
P18 I/O
P19 I/O
P20 I/O
R1 I/O
R2 I/O
R3 I/O
R4 VCCI
BG272
Pin Number A42MX36 Function
R17 VCCI
R18 I/O
R19 I/O
R20 I/O
T1 I/O
T2 I/O
T3 I/O
T4 I/O
T17 VCCA
T18 I/O
T19 I/O
T20 I/O
U1 I/O
U2 I/O
U3 I/O
U4 I/O
U5 VCCI
U6 WD, I/O
U7 I/O
U8 I/O
U9 WD, I/O
U10 VCCA
U11 VCCI
U12 I/O
U13 I/O
U14 QCLKB, I/O
U15 I/O
U16 VCCI
U17 I/O
U18 GND
U19 I/O
U20 I/O
V1 I/O
V2 I/O
V3 GND
V4 GND
BG272
Pin Number A42MX36 Function
Package Pin Assignments
2-50 Revision 11
V5 I/O
V6 I/O
V7 I/O
V8 WD, I/O
V9 I/O
V10 I/O
V11 I/O
V12 I/O
V13 WD, I/O
V14 I/O
V15 WD, I/O
V16 I/O
V17 I/O
V18 SDO, TDO, I/O
V19 I/O
V20 I/O
W1 GND
W2 GND
W3 I/O
W4 TMS, I/O
W5 I/O
W6 I/O
W7 I/O
W8 WD, I/O
W9 WD, I/O
W10 I/O
W11 I/O
W12 I/O
W13 WD, I/O
W14 I/O
W15 I/O
W16 WD, I/O
W17 I/O
W18 WD, I/O
W19 GND
W20 GND
BG272
Pin Number A42MX36 Function
Y1 GND
Y2 GND
Y3 I/O
Y4 TDI, I/O
Y5 WD, I/O
Y6 I/O
Y7 QCLKA, I/O
Y8 I/O
Y9 I/O
Y10 I/O
Y11 I/O
Y12 I/O
Y13 I/O
Y14 I/O
Y15 I/O
Y16 I/O
Y17 I/O
Y18 WD, I/O
Y19 GND
Y20 GND
BG272
Pin Number A42MX36 Function
Revision 11 3-1
3 – Dat asheet Information
List of Changes
The following table lists critical changes that were made in the current version of the documen t.
Revision Changes Page
Revision 11
(May 2012) The FuseLock logo and accompanying text was removed from the "User Security"
section. This marking is no longer used on Microsemi devices (PCN 0915). 1-8
The "Developme nt Tool Support" section was updated (SAR 38512). 1-16
Revision 10
(April 2012) "Ordering Information" was updated to include lead-free package ordering codes
(SAR 21968). ii
The "User Security" section was revised to clarify that although no existing security
measures can give an absolute guarantee, Microsemi FPGAs implement the best
security available in the industry (SAR 34673).
1-8
The "Transient Current" section is new (SAR 36930). 1-9
Package names were revised according to standards established in Package
Mechanical Drawings (SAR 34774). 2-1
Revision 9
(v6.1, April 2009) In Table 1-14 • Absolute M aximu m R a ti ngs*, the limits in VI were changed from -0.5 to
VCCI + 0.5 to -0.5 to VCCA + 0.5. 1-21
In Tab le 1-16 • Mixed 5.0V/3.3V Electri cal Specifications, VOH was changed from 3.7
to 2.4 for the min in industrial and military. VIH had VCCI and that was changed to
VCCA.
1-22
v6.0
(January 2004) The "Ease of Integration" section was updated. 1-i
The "Temperature Grade Offerings" section is new. 1-iii
The "Speed Grade Offerings" section is new. 1-iii
The "General Description" section was updated. 1-1
The "MultiPlex I/O Modules" section was updated. 1-7
The "User Security" section was updated. 1-8
Table 1-1 • Voltage Support of MX Devices was updated. 1-9
The "Power Dissipation" section was updated. 1-10
The "Static Power Component" section was updated. 1-10
The "Equivalent Capacitance" section was updated. 1-10
Figure 1-12 • Silicon Explorer II Setup with 42MX was updated. 1-12
Table 1-4 • Supported BST Publ ic Instructions was updated. 1-14
Figure 1-13 • 42MX IEEE 1149.1 Boundary Scan Circuitry was updated. 1-14
Table 1-5 • Boundary Scan Pin Configuration and Function ality was updated. 1-15
The "Developme nt Tool Support" section was updated. 1-16
Datasheet Information
3-2 Revision 11
v6.0
(continued) The Table 1-7 • Absolute Maximum Ratings for 42MX Devices* and the Table 1-6 •
Absolute Maximum Ratings for 40MX Devices* were updated. 1-16
The Table 1-9 • 5V TTL Electrical Specifications was updated. 1-18
The Table 1-13 • 3.3V LVTTL Electrical Specifi ca ti ons was updated. 1-20
In the "Mixed 5.0V/3.3V Electrical Specifications" section, Table 1-14 • Absolute
Maximum Ratings*, Table 1-15 • Recommended Operating Conditions, and
Table 1-16 • Mixed 5.0V/3.3V Electrical Specifications were updated.
1-21
Table 1-17 • DC Specification (5.0 V PCI Signaling)1 was updated. 1-23
Table 1-19 • DC Specification (3.3 V PCI Signaling)1 was updated. 1-24
The "Junction Temper ature (TJ)" section, "Package Thermal Characteristics" section,
and the tables were updated. 1-26
Figure 1-16 • 40MX Timing Model* was updated. 1-27
Figure 1-18 • 42MX Timing Model (Logic Functions Using Quadrant Clocks) was
updated. 1-28
Figure 1-19 • 42MX Timing Model (SRAM Functions) was updated. 1-29
Figure 1-26 • Output Buffer Latches was updated. 1-32
Table 1-22 • 42MX Temperature and Voltage Derating Factors is new. 1-36
Table 1-23 • 40MX Temperature and Voltage Derating Factors is new. 1-36
The "Pin Descriptions" section was updated. 1-83
In the "PQ100" table, Pin 64 (42MX09 and 42MX16) has changed to LP. 2-10
In the "PQ160" table, Pin 61 (42MX09, 42MX16, and 42MX64) has changed to LP. 2-14
In the "PQ208" table, the following pins changed:
Pin 129 (42MX09, 42MX16, and 42MX64) has changed to LP.
Pin 198 (42MX09) has changed to I/O.
2-20
The n the "PQ240" table, Pin 91 (42MX36) has changed to LP. 2-27
In the "VQ100" table, Pin 62 (42MX09 and 42MX16) has changed to LP. 2-33
In the "TQ176" table, Pin 109 (42MX09 and 42MX16) has changed to LP. 2-35
In the "BG272" table, Pin K20 (42MX36) has changed to LP. 2-48
v5.1 The "Low Power Mode" section was updated. 1-9
Footnote 8 in Table 1-9 • 5V TTL Electrical Specificati ons was updated. 1-18
Footnote 8 in Table 1-13 • 3.3V LVTTL Electrical Specifica ti o n s was updated. 1-20
v5.0 Because the changes in this data sheet are extensive and technical in nature, this
should be viewed as a new document. Please read it as you would a datasheet that is
published for the first time.
ALL
Note that the “Package Characteristics and Mechanical Drawings” section has been
eliminated from the datasheet. The mechanical drawings are now contained in a
separate document, Package Mechan ical Drawings, available on the Microsemi SoC
Products Group website.
Revision Changes Page
40MX and 42MX FPGA Families
Revision 11 3-3
Datasheet Categories
In order to provide the latest information to designers, some datasheets are published before data has
been fully characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and
"Datasheet Supplement." The definitions of these categories are as follows:
Product Brief
The product brief is a summarized version of a datasheet (advanced or production) containing general
product information. This brief gives an overview of specific device an d family information.
Advance
This datasheet version contains initial estimated information based on simulation, other products,
devices, or speed grades. This information can be used as estimates, but not for production.
Unmarked (production)
This datasheet version contains information that is considered to be final.
Datasheet Supplement
The datasheet supplement gives specific device information for a derivative family that differs from the
general family datasheet. The supplement is to be used in conjunction with the datasheet to obtain more
detailed information and for specifications that do not differ between the two families.
5172136-11/5.12
© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.
Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
solutions for: aerospace, defense and security; en terprise and communications; and in dustrial
and alternative energy markets. Products include high-p erformance, high-relia bility an alog and
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at
www.microsemi.com.
Microsemi Corporate Headquarters
One Enterprise, Ali so Viejo CA 92656 USA
Within the USA: +1 (949) 380-61 00
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996