ALPHANUMERIC INDEX CROSS-REFERENCE (Continued) Motorola Motorola Motorola Motorola Industry Direct Similar Page (ndustry Direct Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement Number 2N6410 MJE200 3-866 2N6531 TIP102 3-1091 2N6411 MJE210 3-866 2N6532 TIP102 3-1091 2N6412 MJE180 3-862 2N6534 2N6301 3-147 2N6413 MJE181 3-862 2N6535 TIPTO2 3-1091 2N6414 MJE170 3-862 2N6536 TIP102 3-1091 2N6415 MJE171 3-862 2N6542 2N6543 3-215 2N6416 MJE243 3-870 2N6543 2N6543 3-215 2N6417 MJE243 3-870 2N6544 2N6545 3-221 2N6418 MJE253 3-870 2N6545 2N6545 3-221 2N6419 MJE253 3-870 2N6546 2N6546 3-225 2N6420 2N6420 3-20 2N6546JAN 2N6546JAN 3-225 2N6421 2N6421 3-20 2N6546JTX 2N6546JTX 3-225 2N6422 2N6422 3-20 2N6547 2N6547 3-225 2N6423 2N6212 3-161 2N6547JAN 2N6547JAN 3-225 2N6424 2N6212 3-161 2N6547JTX 2N6547JTX 3-225 2N6425 2N6212 3-161 2N6548 MJE80C 3-888 2N6436 2N6436 3-203 2N6549 MJE80 3-888 2N6437 2N6437 3-203 2N6551 2N4923 3-79 2N6437JAN 2N6437JAN 3-203 2N6552 2N4923 3-79 2N6437JTX 2N6437JTX 3-203 2N6553 2N4923 3-79 2N6437JTXV 2N6437 JTXV 3-203 2N6554 2N4919 3-75 2N6438 2N6438 3-203 2N6555 2N4919 3-75 2N6438JAN 2N6438JAN 3-203 2N6556 2N4919 3-75 2N6438JTX 2N6438JTX 3-203 2N6557 MJE340 3-876 2NGA3BSTXV ANGA3BIT XV 3-203 2N6558 MJE340 3-876 2N6465 MJE15030 3-972 2N6559 MJE340 3-876 2N6466 MJE15030 3-972 2N6569 2N3055 3-6 2N6467 MJE15037 3-972 2N6573 2N6546 3-225 2N6468 MJE15031 3-972 2N6574 2N6546 3-225 2N6469 2N5879 3-123 2N6575 2N6547 3-225 2N6470 2N5831 3-123 2N6576 2N6576 3-229 2N6471 2N5881 3-123 2N6577 2N6577 3-229 2N6472 2N5882 3-123 2N6578 2N6578 3-229 2N6473 MJE15028 3-972 2N6609 2N6609 3-52 2N6474 MJE15028 3-972 2N6648 2N6648 3-195 2N6475 MJE15029 3-972 2N6648JAN 2N6648JAN 3-195 2N6476 MJE15029 3-972 2N6648JTX 2N6648JTX 3-195 2N6477 MJE15028 3-972 2N6648JTXV 2N6648UTXV 3-195 2N6478 MJE15030 3-972 2N6649 2N6054 3-147 2N6486 2N6486 3-207 2N6649JAN 2N6649JAN 2N6487 2N6487 3-207 2N6649JTX 2N6649JTX _ 2N6488 2N6488 3-207 2N6649JTXV 2NG649JTXV _ 2N6489 2N6489 3-207 2N6650JAN 2N6650JAN _ 2N6490 2N6490 3-207 2N66SQJTX 2N6650JTX _ 2N6491 2N6491 3-207 2N6E650JTXV 2N6650JTXV _ 2N6492 2N6055 3-147 2N6666 2N6667 3-232 2N6493 2N6056 3147 2N666?7 2N6667 3-232 2N6494 2N6056 3-147 2N6668 2N6668 3-232 2N6495 2N5428 3-101 2N6671JAN 2N6671JAN - 2N6496 2N6339 3-188 2N6671JTX 2N6671JTX _ 2N6497 2N6497 3-211 2N6671JTXV 2N6671JTXV _ 2N6498 2N6498 3-211 2N6673JAN 2N6673JAN _ 2N6499 MJE13005 3-944 2N6673JTX 2N6673JTX _ 2N6500 2N5430 3-101 2NEB73ITXV 2NBB73NTXV _ 2N6510 2N6306 3-181 2N6676 MJ16010 3-758 2N6511 2N6306 3-181 2N6677 MJ16010 3-758 2N6512 2N6545 3-221 2N6678 MJ16010 3-758 2N6513 2N6545 3-221 2N6833 2N6833 3-236 2N6514 2N6545 3-221 2N6834 2N6834 3-236 2N6530 TIP101 3-1091 2N6835 MJ16006 3-742 *Consult Motorola if a direct replacement is necessary. 1-8TABLE 5 PLASTIC TO-220 (continued) Resistive Switching IcCont | VcEO{sus) ice T ts te fr Pp (Case) Amps Voits Device Type hee @ Ie BS BS @ ic MHz Watts Max Min NPN PNP Min/Max Amp Max Max Amp Min @ 25C 10 60 D44H7 D45H7 20 min 4 50 D44H8 D45H8 40 min 4 50 D45H9 40 min 4 50 MJE2801T 25/100 3 75 MJE3055T MJE2955T 20/70 4 75 2N6387#4 2N6667## 1k/20k 5 20# 65 SE9300## SE9400## 1k min 4 1# 70 80 BDX33B## BDX34B4# 750 min 3 3 70 BD809 BD810 15 min 4 16 90 D44E3## 1000 min 5 2 typ 0.5 typ 10 50 D45H12 40 min 4 50 2N6388#4 2N66684# 1k/20k 5 20 65 D44H10 D45H10 20 min 4 0.5 typ | 0.14 typ 5 50 typ 50 D44H11 D45H11 40 min 4 0.5 typ | 0.14 typ 5 50 typ 50 SE9301#4 SE9401## 1k min 4 1# 70 100 BDX33C## BDX34C## 750 min 3 3 70 SE9302## SE94024## 1k min 4 1# 70 12 300 MJE13008 6/30 8 3 0.7 8 4 100 400 MJE13009 6/30 8 3 0.7 8 4 100 15 30 D44VH1 D45VH1 20 min 4 0.7 0.09 8 50 typ 83 40 2N6486 2N6489 20/150 5 0.6 typ | 0.3 typ 5 5 78 45 BOoWw39 BDW44 Tk min 5 1 typ 1.5 typ 5 4 85 D44VH4 D45VH4 20 min 4 0.5 0.09 8 50 typ 83 60 2N6487 2N6490 20/150 5 0.6 typ | 0.3 typ 5 5 75 BDW40 BDW45 1k min 5 1 typ 1.5 typ 5 4 85 D44VH7 20 min 4 0.5 0.09 & 50 typ 85 80 2N6488 2N6491 20/150 5 0.6 typ | 0.3 typ 5 5 75 BDW41 BDWw46 1k min 5 1 typ 1.5 typ 5 4 85 D44VH10 D45VH10 20 min 4 05 0.09 8 50 typ 83 100 BDW42 BDWa47 1k min 5 1 typ 4.5 typ 5 4 85 120 BDW43 BDWwa48 1k min 5 1 typ 1.5 typ 5 4 85 # |bfel @ 1 MHz, ## Darlington TABLE 6 PLASTIC Full Pak (TO-220 Type) ig 1 2 3 CASE 221C-02 Resistive Switching IcCont | VcEO{sus) ice T ts te fr Pp (Case) Amps Volts Device Type bFE @iIc BS BS @iIc MHz Watts Max Min NPN PNP Min/Max Amp Max Max Amp Min @ 25C 1 250 MJF47 30/150 0.3 2typ | 0.17 typ 0.3 10 28 5 100 MJF12244 MJFI27##4 2000 min 3 1.5 typ | 1.5 typ 3 4# 28 8 80 MJF6107 30/90 2 0.5 typ | 0.13 typ 2 4 35 100 MJF102## MJF107## 3000 min 3 1.6 typ | 1.5 typ 3 4# 35 150 MJF15030 MJF15031 40 min 3 1typ | 0.15 typ 3 30 35 10 60 MJF3055 MJF2955 20/100 4 2 40 # |hte] @ 1 MHz, ## Darlington 2-14TABLE 12 POWER DARLINGTONS (continued) Resistive Switching IcCont | VcEO(sus} . ts tt |hfel @ | Pp (Case) Amps Volts Device Type hrE @ic us BS @lc | 1MHz! Watts Case Max Min NPN PNP Min/Max | Amp Max Max | Amp ; Min @ 25C JEDEC/MOT 8 80 MJ1001 MJ901 1k min 3 90 TO-204/1 TIP101 TIP106 1k/20k 3 1.5 typ }1.5 typ 3 4 80 TO-220/221A 2N6044 2N6041 1k/10k 4 1.5 typ | 1.5 typ 3 4 75 TO-220/221A 2N6301 2N6299 750k/18k 4 1.6 typ | 1.5 typ 4 4 75 TO-213A/80 2N6056 2N6054 750k/18k 4 1.5 typ | 1.5 typ 4 4 100 TO-204A/1 MJE6044 MJE6041 1k/20k 4 1.5 typ |1.5 typ 4 2 75 TO-225AB/90 100 BDX53C BDX54C 750 min 3 4 60 TO-220/221A BD901 BD902 750 min 3 1 70 TO-220/221A MJE6045 1k/20k 4 1.5 typ |1.5 typ 4 2 75 TO-225AB/90 MJD122 MJD127 1k/12k 4 1.5 typ | 2 typ 4 4 20 TO-252/369A-04 MJF102 MJF107 3k min 3 1.5 typ | 1.5 typ 3 4 35 /221C-02 TIP102 TIP107 1k/20k 3 1.5 typ [1.5 typ 3 4 80 TO-220/221A 2N6045 2N6042 1k/10k 4 1.5 typ |1.5 typ 3 4 75 TO-220/221A 120 BDX53D BDX54D 750 min 3 4 60 TO-220/221A 150 BU807e 100 min 5 0.55 typ | 0.2 typ 5 60 TO-220/221A 200 BU806e 100 min 5 0.55 typ | 0.2 typ 5 60 TO-220/221A 300 MJE5740 200/400 4 8typ | 2typ 6 80 TO-220/221A 350 MJE5741 200/400 4 8typ | 2 typ 6 80 TO-220/221A 400 MJE5742 200/400 4 8 typ 2 typ 6 80 TO-220/221A 500 BUT50Pe 30 min 2 0.75 typ | 0.1 typ 5 100 TO-218/340D 1400* MJ10011 20 min 4 1 4 80 TO-204/1 10 40 2N6383 2N6648 1k/20k 5 20 100 TO-204/1 D44E1 1000 min 5 2typ |O0.5typ| 10 50 TO-220/221A 45 BDX33 BDX34 750 min 4 3 70 TO-220/221A 60 BDV65 BDV64 1k min 5 125 TO-218/340D BDX33A BDX34A 750 min 4 3 70 TO-220/221A MJ3000 MJ2500 1k min 5 150 TO-204/1 2N6387 2N6667 1k/20k 5 20 65 TO-220/221A4 2N6384 1k/20k 5 20 100 TO-204/1 D44E2 1000 min 5 2typ |O5typ| 10 50 TO-220/221A TIP140 TIP145 500 min 10 2.5 typ | 2.5 typ 5 4 125 TO-218/340 80 2N6388 2N6668 1k/20k 5 20 65 TO-220/221A 2N6385 1k/20k 5 20 100 TO-204/1 BDV65A BDV64A 1k min 5 125 TO-218/340D BDX33B BDX34B 750 min 3 3 70 TO-220/221A D44E3 1000 min 5 2typ jO.5typ! 10 50 TO-220/221A MJD44E3 1k min 5 2typ {0.5typ| 10 20 TO-252/369A-04 TIP141 TIP146 500 min 10 2.5 typ (2.5 typ 5 4 125 TO-218/340 100 BDV65B BDV64B tk min 5 125 TO-218/340D BDX33C BDX34C 750 min 3 3 70 TO-220/221A TIP142 TIP147 500 min 10 2.5 typ | 2.5 typ 5 4 125 TO-218/340 120 BDV65C BDV64C 1k min 5 125 TO-218/340D BDX33D BDX34D 750 min 3 3 70 TO-220/221A 200 BU323P 150 min 6 15 15 6 125 TO-218/340D 250 BU323AP 150 min 6 15 15 6 125 TO-218/340D 350 BU323 150 min 6 7.5 typ |5.2 typ 6 175 TO-204/1 MJ10002 30/300 5 2.5 1 5 10 150 TO-204/1 MJ100060 30/300 5 1.5 0.5 5 10 150 TO-204/1 400 BU323A 150 min 6 7.5 typ [5.2 typ 6 175 TO-204/1 MJH10012 100/2k 6 15 15 6 118 TO-218/340 MJ10007 30/300 5 1.5 0.5 5 10 150 TO-204/1 Darlington with speed-up diode. (continued) 2-22MOTOROLA TECHNICAL DATA Darlington Silicon Power Transistors = SEMICONDUCTOR xox ... designed for general-purpose amplifier and low speed switching applications. High DC Current Gain hfe = 3500 (Typ) @ I = 4 Ade Coltlector-Emitter Sustaining Voltage @ 200 mAdc VCEO(sus) = 60 Vde (Min) 2N6667 = 80 Vdc (Min) 2N6668 2N6609 See Page. 3-5 _ 2NG64s. See Page 3-195 2N6667 2N6668 PNP SILICON Low Collector-Emitter Saturation Voltage ~~ VCE(sat) = 2 Vdc (Max) @ Ic = 5 Ade DARLINGTON Monolithic Construction with Built-In Base-Emitter Shunt Resistors POWER TRANSISTORS @ TO-220AB Compact Package Complementary to 2N6387, 2N6388 10 AMPERES 60-80 VOLTS 65 WATTS COLLECTOR 5 1 | | | | { | | a) 6 EMITTER Figure 1. Darlington Schematic CASE 221A-04 TO-220AB *MAXIMUM RATINGS Rating Symbol 2ness7 | zNe66s | Unit Collector-Emitter Voltage VcEO 60 80 | Vde | Collector-Base Voltage VcB 60 80 [ Vde | Emitter-Base Voltage VEB 5 } Vde Collector Current Continuous le 10 Adc Peak 15 Base Current \B 250 mAdc Total Device Dissipation @: Tc = 25C Pp 65 watts Derate above 25C 0.52 WC Total Device Dissipation @ Ta = 25C Pp 2 Watts Derate above 25C 0.016 wre | Operating and Storage Junction Temperature Range Ty, Tstg -65 to +150 C | THERMAL CHARACTERISTICS Characteristics _ Symboi Max Unit 1 Thermal Resistance, Junction to Case Rec 1.92 C/W Thermal Resistance, Junction to Ambient Roa 62.5 C/W * Indicates JEDEC Registered Data 3-2322N6667, 2N6668 *ELECTRICAL CHARACTERISTICS (Tc = 25C unless otherwise noted) Characteristic | Symbol [ Mia Max | Unit OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (1) 2N6667 VCEQ(sus) 60 _ | Vde (Ic = 200 mAde, Ip = 0) 2N6668 80 _ Collector Cutoff Current (VcE = 60 Vdc, Ig = 0) 2N6667 'cEO _ 1 mAdc (VCE = 80 Vdc, Ip = 0) 2N6668 _ 1 Collector Cutoff Current (Vce = 60 Vdc, VeB(off) = 1.5 Vde) 2N6667 iCEx _ 300 pAdc (VcE = 80 Vdc, VEBioff) = 1.5 Vde) 2N6668 _ 300 (VcE = 60 Vdc, Vep(offt) = 1.5 Vde, Te = 125C) 2N6667 - 3 mAdec (VCE = 80 Vde, Veg(oft} = 1.5 Vde, To = 128C) 2N6668 3 Emitter Cutoff Current (VgE = 5 Vde, Ic = 0) lEBo _ 5 mAdc ON CHARACTERISTICS (1) DC Current Gain (Ic = 5 Ade, Voce = 3 Vde) EE 71000 20000 _ (I = 10 Ade, Veg = 3 Vdc) 100 Collector-Emitter Saturation Voltage {ic = 5 Adc, Ig = 0.01 Ade) VeE(sat} _ 2 Vdc (Ic == 10 Adc, Ip = 0.1 Adc) _ 3 Base-Emitter Saturation Voltage (Ic = 5 Adc, Ig = 0.01 Adc} VBE(sat} _ 2.8 Vde (I = 10 Adc, Ig = 0.1 Ade) 45 DYNAMIC CHARACTERISTICS Small-Signal Current Gain (lc = 1 Adc, VcE = 5 Vdc, ftest = 1 MHz) IbFel 20 _ _ Output Capacitance (Vcg = 10 Vdc, IE = 0, f = 1 MHz) Cop 200 pF Small-Signal Current Gain (Ic = 1 Adc, Voge = 5 Vde, f = 1 kHz) Ne 1000 _ _ * Indicates JEDEC Registered Data {1) Pulse Test; Pulse Width < 300 ys, Duty Cycle <= 2%. Rp & Rc VARIED TO OBTAIN DESIRED CURRENT LEVELS 01, MUST BE FAST RECOVERY TYPES, e.g, MBD5300 USED ABOVE Ig = 100 mA V2 MSD6100 USED BELOW Ip = 100 mA APPROX +8V FOR tg AND ty, Dy (S DISCONNECTED AND V2 = 0 4 o ty tf = 10 ns APPROX DUTY CYCLE = 1% 12V = --epe~ 25 ys Figure 2. Switching Times Test Circuit Pp, POWER DISSIPATION {WATTS} t, TIME (es) 60 T, TEMPERATURE (C) 80 400 120 Figure 3. Power Derating 3-233 7 Vec = 30V 5 Icllg = 250 3 'B1 = lg2 Ty = 28C 2 1 07 0.5 03 02 0.1 0.4 0.2 05 07 1 2 Ic, COLLECTOR CURRENT (AMPS} 3 0.3 Figure 4. Typical Switching Times2N6667, 2N6668 Plok) Zasctt) = rt) Ras Rac = 1.92CW MAX D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT ty Tyipk) Te = Pipa Rauclt! PLE ae DUTY CYCLE, D = tyitz {t), NORMALIZED EFFECTIVE TRANSIENT THERMAL RESISTANCE SINGLE 0.01 0.02 0.05 01 0.2 05 1 2 5 19 20 50 t, TIME {ms} 100 200 1000 Figure 5. Thermal Response There are two limitations on the power handling ability 10 : : ; _ of a transistor: average junction temperature and second 5 breakdown. Safe operating area curves indicate Ic~VcE < ; limits of the transistor that must be observed for reliable z operation; i.e., the transistor must not be subjected to = 1 greater dissipation than the curves indicate. 2 + . 2 05 The data of Figure 6 is based on Tj(pk) = 150C; Tc 93 is variable depending on conditions. Second breakdown 2 02 Ty = 150C Neco! Ise limi lid for d | 10% provided =a bs - BONDING WIRE LIMIT as s soe, ay eer wy whe te & fi . Oho d t oO THERMAL LIMIT @ Te = 25C (pk) = Ti(pk) may be calculated trom the cata oO 0.05 SECOND BREAKDOWN LIMIT in Figure 5. At high case temperatures, tnermal limita- 003 CURVES APPLY BELOW RATED VcEg tions will reduce the power that can be handled to values 0.02 less than the limitations imposed by second breakdown. 1 2 3 5 7 10 30 50 Voge, COLLECTOR-EMITTER VOLTAGE (VO_TS) 100 Figure 6. Maximum Safe Operating Area 10,000 5000 Ty = 25C 2000 1000 500 Te = 25C Vee = 4 VOLTS \ = 3 AMPS 200 100 = 50 hee, SMALL-SIGNAL CURRENT GAIN C, CAPACITANCE {pF} 20 1 2 3 57 10 20 30 5070100 200 300 500 1000 0.1 0.2 05 1 2 5 10 20 50 100 f, FREQUENCY (kHz) Figure 7. Typical Smail-Signal Current Gain Vp, REVERSE VOLTAGE (VOLTS) Figure 8. Typical Capacitance 3-2342N6667, 2N6668 10,000 7000F Ty = 150C = & = 3000 2000 & 2 QO Q 1000 700 = 500 Ty = 55C 300 200 0.1 02 03 05 07 1 2 3 5 ic, COLLECTOR CURRENT (AMPS) Figure 9. Typical DC Current Gain 3 eg Qo 2 = w F 8 VBE(sat) Ic'lg = 250 515 Bt = = Vge f@ Vcp = 3V 1 05 Voetsatl 01 0203 05 07 1 2 3 5 Ic, COLLECTOR CURRENT (AMPS) Figure 11. Typical On Voltages 10 @ 104 S = GB 103 Fa 2 oO = 102 GS 2 101 8 0 +06 +04 +02 1 0 -02 -04 -06 08 1 Vpe. BASE-EMITTER VOLTAGE (VOLTS} Figure 13. Typical Collector Cut-Off Region Vee, COLLECTOR-EMITTER VOLTAGE {VOLTS} 0.6 0.3 05 07 1 2 3 5 7 10 20 Jp, BASE CURRENT (mA) Figure 10. Typical Collector Saturation Region +5 hee @ Voge = 3.0V +4 gig = MEG Noe = 30 +3 to 150C +2 58C to +1 * Ove for VcEisat} 25C to 1 Oye for Vee @y, TEMPERATURE COEFFICIENT (m:C) 02 03 05 07 1 2 Ic, COLLECTOR CURRENT (AMP) Figure 12. Typical Temperature Coefficients OUTLINE DIMENSIONS 7) ae - F wy oO Ss 1 STYLE 1: T i PIN 1, BASE __L 2. COLLECTOR 3. EMITTER 4, COLLECTOR | MILLIMETERS i INCHES, J OM MIN) Max | MIN | Max J a { 44a] 1575 | 0570 | 9620 8 | 9.66 | 10.28 | 0380 > o405 cf ag sea | oreo | oto | D lo? cea! oae | ams | oor Fo 381) 373 | asa | 0147 6} 242 ' 266 00% 0105 | H | 240 | 393 | 110 | 0155 NOTES | J! 996 | 065 | oor | 0022 + k | 1270 | 1427 | 0500 | os62 | 1, DIMENSIONING AND TOLERANCING PER ANSI een 11 fads | 05s Y14.5M, 1982. No, 483 | 523 [ 9190 0216 2, CONTROLLING DIMENSION: INCH Q | 254 | 304 | 0160 | 0.120 3. DIMZ DEFINES A ZONE WHERE ALL BODY AND af a Te ene | coe | LEAD IRREGULARITIES ARE ALLOWED. | T 597 gar; 0.235 * 0256 | uw ) ooo | ter | ao * 0.059 CASE 2214-04 Pere, 2 wee || zt baw) | one | TO-220AB 3-235