FN9348 Rev.1.00 Page 1 of 57
Feb 8, 2019
FN9348
Rev.1.00
Feb 8, 2019
RAA210833
Pin-Configurable 33A DC/DC Power Module with PMBus Interface
DATASHEET
The RAA210833 is a pin-strap-configurable 33A
step-down PMBus-compliant DC/DC power supply
module that integrates a digital PWM controller,
synchronous MOSFETs, power inductor, and passive
components. Only input and output capacitors are needed
to finish the design. Because of its thermally enhanced
HDA packaging technology, the module can deliver up
to 33A of continuous output current without the need for
airflow or additional heat sinking. The RAA210833
simplifies configuration and control of Renesas digital
power technology while offering an upgrade path to full
PMBus configuration through the pin-compatible
ISL8278M.
The RAA210833 uses ChargeMode™ control
architecture, which responds to a transient load within a
single switching cycle. The RAA210833 comes with a
preprogrammed configuration for operating in a pin-strap
mode. Output voltage, switching frequency, input
UVLO, soft-start/stop delay and ramp times, and the
device SMBus address can be programmed with external
pin-strap resistors. A standard PMBus interface
addresses fault management, as well as real-time full
telemetry and point-of-load monitoring.
The RAA210833 is available in a 41 Ld compact
17mmx19mm HDA module with a very low profile
height of 3.6mm, suitable for automated assembly by
standard surface mount equipment. The RAA210833 is
RoHS compliant by exemption.
Related Literature
For a full list of related documents, visit our website
RAA210833 product page
Features
33A single channel output current
•Wide V
IN range: 4.5V to 14V
Programmable output voltage
0.6V to 5V output voltage settings
±1.2% accuracy over line/load/temperature
PMBus Interface and/or Pin-strap mode
Pin-strap mode for standard settings
•V
OUT, switching frequency, input UVLO,
soft-start/stop, and external sync
Real time telemetry for VIN, VOUT, IOUT,
temperature, duty cycle, and switching frequency.
ChargeMode control loop architecture
296kHz to 1.06MHz fixed switching frequency
operations
No compensation required
Fast single clock cycle transient response
Complete input and output over/undervoltage, output
current, and temperature protections with fault logging
PowerNavigator supported
Thermally enhanced HDA package
Applications
Server, telecom, storage, and datacom
Industrial/ATE and networking equipment
General purpose power for ASIC, FPGA, DSP, and
memory
Figure 1. A Complete Digital Switch-Mode Power Supply Figure 2. A Small Package for High Power Density
VOUT
VIN
VDD
VOUT
VSEN+
VSEN-
VIN
PMBus
Interface
VDRVIN
VDRVOUT
CIN COUT
10µF
SALRT
SDA
SCL
SGND PGND
10µF
EN
ENABLE
VCC
VR55
10µF
RAA210833
Note:
1. Only bulk input and output capacitors are required to finish the
design.
17mm
3.6mm
19mm
FN9348 Rev.1.00 Page 2 of 57
Feb 8, 2019
RAA210833
Contents
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1 Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 RAA210833 Internal Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2. Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Thermal Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3. Typical Performance Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Efficiency Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Transient Response Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Derating Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1 SMBus Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Output Voltage Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Soft-Start Delay and Ramp Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Power-Good. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 Switching Frequency and PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.6 Loop Compensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.7 Input Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.8 SMBus Module Address Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.9 Output Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.10 Output Prebias Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.11 Output Overcurrent Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.12 Thermal Overload Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.13 Phase Spreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.14 Monitoring Through SMBus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.15 Snapshot Parameter Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5. PCB Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1 Thermal Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Package Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 PCB Layout Pattern Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Thermal Vias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.5 Stencil Pattern Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.6 Reflow Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
FN9348 Rev.1.00 Page 3 of 57
Feb 8, 2019
RAA210833
6. PMBus Command Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1 PMBus Data Formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 PMBus Use Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7. PMBus Commands Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.1 Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.2 Datasheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9. Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
FN9348 Rev.1.00 Page 4 of 57
Feb 8, 2019
RAA210833
1. Overview
1.1 Typical Application Circuit
Figure 3. Typical Single-Phase Application Circuit for 1.2V/33A Output
Table 1. RAA210833 Design Guide Matrix and Output Voltage Response
VIN (V) VOUT (V) Input Capacitors Output Capacitors
ASCR
Gain
(Note 7)
ASCR
Residual
(Note 7)
Frequency
(kHz)
(Note 9)
VOUT Dev
Peak-to-Peak
(mV) (Note 8)
50.7 3x22µF Ceramic + 2x150µF
POS
12x100µF Ceramic + 6x470µF
POS
350 100 296 75
50.7 3x22µF Ceramic + 2x150µF
POS
4x100µF Ceramic + 6x470µF
POS
400 90 615 73
12 0.7 3x22µF Ceramic + 2x150µF
POS
12x100µF Ceramic + 6x470µF
POS
350 100 296 78
12 0.7 3x22µF Ceramic + 2x150µF
POS
4x100µF Ceramic + 6x470µF
POS
500 90 615 72
50.8 3x22µF Ceramic + 2x150µF
POS
12x100µF Ceramic + 6x470µF
POS
350 100 296 74
50.8 3x22µF Ceramic + 2x150µF
POS
4x100µF Ceramic + 6x470µF
POS
400 80 615 73
12 0.8 3x22µF Ceramic +
2x150µF POS
12x100µF Ceramic + 6x470µF
POS
350 100 296 75
5$$
9,1
9''
6*1'
3*1'
9287
96(1
96(1
6$/57
6'$
6&/
30%XV
,QWHUIDFH
9'59,1
9'59287
&
&
[)
[)
&
)
5

&
&
)
)
&&
[)
[)
326&$3
95
95
9
9''&
96:+
3+$6(
5
5
5
555 N
(1
9$8;
9WR9
9,1
9WR9
9287
9$
9&&
95
)
&
3LQ6WUDS5HVLVWRUV
6$
96(7
&)*
$6&5
6<1&
6689/2
55555 5

5
Notes:
2. R3 and R4 are not required if the PMBus host already has I2C pull-up resistors.
3. R2 is optional but recommended to sink possible ~100µA back-flow current from the VSEN+ pin. Back-flow current is present only
when the module is in a disabled state with power still available at the VDD pin.
4. R6 through R11 can be selected according to the tables for the pin-strap resistor setting in this document.
5. Internal reference supply pins (V25, VDDC, VR5, VR6) do not need external capacitors and can be no connect. Refer to PCB
Layout Guidelines” on page 30 for more information.
(Note 2)
(Note 4)
(Note 5)
(Note 3)
FN9348 Rev.1.00 Page 5 of 57
Feb 8, 2019
RAA210833
12 0.8 3x22µF Ceramic + 2x150µF
POS
4x100µF Ceramic + 6x470µF
POS
400 80 615 73
50.9 3x22µF Ceramic + 2x150µF
POS
12x100µF Ceramic + 5x470µF
POS
350 90 364 75
50.9 3x22µF Ceramic + 2x150µF
POS
4x100µF Ceramic + 5x470µF
POS
300 70 615 84
12 0.9 3x22µF Ceramic + 2x150µF
POS
12x100µF Ceramic + 5x470µF
POS
350 80 364 85
12 0.9 3x22µF Ceramic + 2x150µF
POS
4x100µF Ceramic + 5x470µF
POS
400 80 615 84
51 3x22µF Ceramic + 2x150µF
POS
12x100µF Ceramic + 4x470µF
POS
350 90 364 81
51 3x22µF Ceramic + 2x150µF
POS
4x100µF Ceramic + 4x470µF
POS
350 80 615 89
12 1 3x22µF Ceramic + 2x150µF
POS
12x100µF Ceramic + 4x470µF
POS
350 90 364 85
12 1 3x22µF Ceramic + 2x150µF
POS
4x100µF Ceramic + 4x470µF
POS
350 80 615 90
51.2 3x22µF Ceramic + 2x150µF
POS
10x100µF Ceramic + 4x470µF
POS
250 90 364 100
51.2 3x22µF Ceramic + 2x150µF
POS
4x100µF Ceramic + 3x470µF
POS
300 80 727 103
12 1.2 3x22µF Ceramic + 2x150µF
POS
10x100µF Ceramic + 4x470µF
POS
250 90 364 110
12 1.2 3x22µF Ceramic + 2x150µF
POS
4x100µF Ceramic + 3x470µF
POS
300 80 727 110
51.5 3x22µF Ceramic + 2x150µF
POS
7x100µF Ceramic + 2x470µF
POS
250 90 471 130
51.5 3x22µF Ceramic + 2x150µF
POS
4x100µF Ceramic + 2x470µF
POS
350 90 727 125
12 1.5 3x22µF Ceramic + 2x150µF
POS
7x100µF Ceramic + 2x470µF
POS
250 90 471 147
12 1.5 3x22µF Ceramic + 2x150µF
POS
4x100µF Ceramic + 2x470µF
POS
350 90 727 130
51.8 3x22µF Ceramic + 2x150µF
POS
6x100µF Ceramic + 2x470µF
POS
200 90 471 155
51.8 3x22µF Ceramic + 2x150µF
POS
4x100µF Ceramic + 2x470µF
POS
210 80 727 155
12 1.8 3x22µF Ceramic + 2x150µF
POS
6x100µF Ceramic + 2x470µF
POS
200 90 471 160
12 1.8 3x22µF Ceramic + 2x150µF
POS
4x100µF Ceramic + 2x470µF
POS
210 80 727 160
52.5 3x22µF Ceramic + 2x150µF
POS
4x100µF Ceramic + 1x470µF
POS
190 100 615 215
12 2.5 3x22µF Ceramic + 2x150µF
POS
4x100µF Ceramic + 1x470µF
POS
190 100 615 226
Table 1. RAA210833 Design Guide Matrix and Output Voltage Response (Continued)
VIN (V) VOUT (V) Input Capacitors Output Capacitors
ASCR
Gain
(Note 7)
ASCR
Residual
(Note 7)
Frequency
(kHz)
(Note 9)
VOUT Dev
Peak-to-Peak
(mV) (Note 8)
FN9348 Rev.1.00 Page 6 of 57
Feb 8, 2019
RAA210833
12 3.3 3x22µF Ceramic + 2x150µF
POS
4x100µF Ceramic + 1x470µF
POS
190 100 615 236
12 5 3x22µF Ceramic + 2x150µF
POS
4x100µF Ceramic + 1x470µF
POS
160 100 727 278
Notes:
6. CIN bulk capacitor is optional only for energy buffer from the long input power supply cable.
7. ASCR gain and residual are selected to ensure that the phase margin is higher than 60° at ambient room temperature (+25°C).
8. Peak-to-peak voltage deviation is measured under 0% - 50% load transient and slew rate = 15A/µs.
9. Frequency is selected to achieve best efficiency at full load. Higher frequency can be selected because less output capacitance
is required to meet the transient response specification.
Table 2. Recommended I/O Capacitor in Table 1
Vendors Value Part Number
Murata, Input Ceramic 22µF, 25V, 1210 GRM32ER71E226KE15L
Taiyo Yuden, Input Ceramic 22µF, 25V, 1210 TMK325BJ226MM-T
Murata, Output Ceramic 100µF, 6.3V, 1210 GRM32EC80J107ME20L
TDK, Output Ceramic 100µF, 6.3V, 1210 C3225X5R0J107M
Sanyo POSCAP, Input Bulk 150µF, 16V 16TQC150MYF
Sanyo POSCAP, Output Bulk 470µF, 6.3V 6TPE470MI
Table 1. RAA210833 Design Guide Matrix and Output Voltage Response (Continued)
VIN (V) VOUT (V) Input Capacitors Output Capacitors
ASCR
Gain
(Note 7)
ASCR
Residual
(Note 7)
Frequency
(kHz)
(Note 9)
VOUT Dev
Peak-to-Peak
(mV) (Note 8)
FN9348 Rev.1.00 Page 7 of 57
Feb 8, 2019
RAA210833
1.2 RAA210833 Internal Block Diagram
Figure 4. Internal Block Diagram
Digital Controller
SGND
VSET
SCL
SALRT
SA
EN
PG
SYNC
SGND
PWM OUT
PMBus/I2C
Interface
SDA
ADC-10
CSA
VSA
Supervisor
INTERNAL TEMP
SENSOR
Protection
OC/UC
D-PWM
PLL
SYNC
OUT
Power
Management
SS OV/UV Interleave
VDD
Snapshot
OT/UT
VOUT
0.24µH
Logic
VIN
PGND
Regulator
Driver and FETs
VIN
VDRVIN
VDD
VSEN+
VSEN-
CFG
ADC-10
VR55
VR5
LDO
VR6
VDDC
FB
PGND
332
ChargeMode
Control
:
V25
SS/UVLO
ASCR
VCC
VDRVOUT
VDRVOUT
NVM
FN9348 Rev.1.00 Page 8 of 57
Feb 8, 2019
RAA210833
1.3 Ordering Information
Part Number
(Notes 10, 11, 12)
Part
Marking
Temp Range
(°C)
Tape and Reel
(Units) (Note 1)
Package
(RoHS Compliant)
Pkg.
Dwg. #
RAA2108332GLG#AG0 RAA2108332 -40 to +85 - 41 Ld 17x19 HDA Y41.17x19
RAA2108332GLG#HG0 RAA2108332 -40 to +85 500 41 Ld 17x19 HDA Y41.17x19
RAA2108332GLG#MG0 RAA2108332 -40 to +85 100 41 Ld 17x19 HDA Y41.17x19
RTKA2108332H00000BU Evaluation Board
Notes:
10. Refer to TB347 for details about reel specifications.
11. These Pb-free plastic packaged products are RoHS compliant by EU exemption 7C-I and 7A. They employ special Pb-free
material sets; molding compounds/die attach materials and NiPdAu plate-e4 termination finish, which is compatible with both
SnPb and Pb-free soldering operations. Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or
exceed the Pb-free requirements of IPC/JEDEC J STD-020.
12. For Moisture Sensitivity Level (MSL), see the RAA210833 device page. For more information about MSL, see TB363.
Table 3. Key Differences between Family of Parts
Part Number Description VIN Range (V) VOUT Range (V) IOUT (A)
RAA210833 33A DC/DC single channel Power Module 4.5 - 14 0.6 - 5 33
RAA210825 25A DC/DC single channel Power Module 4.5 - 14 0.6 - 5 25
RAA210850 50A DC/DC single channel Power Module 4.5 - 14 0.6 - 5 50
RAA210870 70A DC/DC single channel Power Module 4.5 - 14 0.6 - 2.5 70
RAA210925 25A/25A DC/DC dual channel Power Module 4.5 - 14 0.6 - 5 25/25
Table 4. Comparison of Simple Digital and Full Digital Parts
ISL8278M RAA210833
VIN (V) 4.5 - 14 4.5 - 14
VOUT (V) 0.6 - 5 0.6 - 5
IOUT (Max) (A) 33 33
fSW (kHz) 296 - 1067 296 - 1067
Digital PMBus Programmablility for
Configuration of Modules
All PMBus commands, NVM access to
store module configuration
Configuration of modules supported by
pin-strap resistors. Digital programmability
supports configuration changes during
run-time operation with a subset of PMBus
commands. No NVM access to store module
configuration
Power Navigator Support Yes Yes
SYNC Capability Yes Yes
Current Sharing Multi-Modules No No
DDC Pin (Inter-Device Communication) Yes N o
Note: For a full comparison of all the RAA210XXX and ISL827XM product offerings, visit the simple-digital module family page.
FN9348 Rev.1.00 Page 9 of 57
Feb 8, 2019
RAA210833
1.4 Pin Configuration
1.5 Pin Descriptions
41 LD HDA
Top View
Pin Number Label Type Description
2 ASCR I ChargeMode control ASCR parameters selection pin. Used to set ASCR gain and residual values.
6 VSEN+ I Differential output voltage sense feedback. Connect to the positive output regulation point.
7 VSEN- I Differential output voltage sense feedback. Connect to the negative output regulation point.
8 VDRVOUT PWR Output of internal regulator for powering internal MOSFET driver. Connect a 10µF bypass capacitor
to this pin. The regulator output is dedicated to powering internal MOSFET drivers. Do not use this
regulator for any other purpose. For applications with VIN less than 5.2V, use an external 5V supply
or connect this pad to VIN.
9 VDRVIN PWR Input supply to internal regulator for powering internal MOSFET drivers. Connect this pad to VIN.
10 VCC PWR Bias pin for internal regulator. Connect the VCC pad to the VR55 pin directly with a short loop trace.
Not recommended to power external circuit.
11 VIN PWR Main input supply. Refer to PCB Layout Guidelines” on page 30 for the decoupling capacitor’s
placement from VIN to PGND.
VDRVOUT
VIN
NC
ASCR
VSEN -
NC
NC
VSEN+
NC
PGND
VCC
SYNC
SGND
VOUT
SGND
VSWH
PGND
PG
SS/UVLO
PGND
PHASE
VDRVIN
NC
NC
1
2
3
4
5
6
7
8
9
10
11
12 13
14
15
16
172627
28
29
30
31 32
33
34
35
36
37
38
39
40
1819202122232425
41
VR55
9
SALRT
NC
NC
EN
SCL
SDA
SA
CFG
VSET
SGND
PGND
VDD
VDDCV25 VR5 VR6
FN9348 Rev.1.00 Page 10 of 57
Feb 8, 2019
RAA210833
12, 23, 31, 34 PGND PWR Power ground. Refer to PCB Layout Guidelines” on page 30 for the PGND pad connections and
decoupling capacitor’s placement.
13 VSWH PWR Switch node. Refer to PCB Layout Guidelines” on page 30 for connecting VSWH pads to
electrically isolate the PCB copper island to dissipate internal heat.
14 VOUT PWR Power supply output. Range: 0.6V to 5V. Refer to Derating Curveson page 17 for maximum
recommended output current at various output voltages.
15, 27, 40 SGND PWR Controller signal ground. Refer to PCB Layout Guidelines” on page 30 for the SGND pad
connections.
16 VDD PWR Input supply to digital controller. Connect the VDD pad to the VIN supply.
17 EN I External enable input. Logic high enables the module.
18 SCL I/O Serial clock input. A pull-up resistor is required for this application.
19 SDA I/O Serial data. A pull-up resistor is required for this application.
20 SALRT O Serial alert. A pull-up resistor is required for this application.
21 SA I Serial bus address select pin. Refer to Table 11 on page 25 for list of resistor values to set various
serial bus address.
24 CFG I Clock source configuration. If the clock source is internal, set the internal FREQUENCY_SWITCH
according to the SYNC pin resistor setting. If the clock source is external, the internal
FREQUENCY_SWITCH is set according to CFG pin resistor. Refer to Table 8 on page 23 for more
details.
25 VSET I Output voltage selection pin. Refer to Table 5 on page 19 for list of resistor values to set various
output voltages.
28 PG O Power-good output. The power-good is configured as an open-drain output.
29 SS/UVLO I Soft-start/stop and undervoltage lockout selection pin. Used to set turn on/off delay and ramp time
as well as input UVLO threshold levels. Refer to Table 6 on page 21 and Table 10 on page 24 for a
list of resistors.
30 PHASE PWR Switch node pad for DCR sensing. Electrically shorted inside to VSWH, but for higher current
sensing accuracy connect the PHASE pad to the VSWH pad externally. Refer to PCB Layout
Guidelines” on page 30.
35 VR6 PWR 6V internal reference supply voltage.
36 VR5 PWR 5V internal reference supply voltage.
37 VDDC PWR VDD clean. Noise at the VDD pin is filtered by an internal ferrite bead and capacitor. For VDD > 6V,
leave this pin as no connect. For 5.5 ≤ VDD ≤ 6V, connect the VDDC pin to the VR6 pin.
For 4.5 ≤ VDD < 5.5V, connect the VDDC pin to VR6 and the VR5 pin.
38 V25 PWR 2.5V internal reference supply voltage.
39 SYNC I/O Clock synchronization input. Sets the frequency of the internal switch clock, or synchronizes to an
external clock. If using external synchronization, the external clock must be active before enable.
Refer to Table 7 on page 22 for a list of resistor values to program various switching frequencies.
41 VR55 PWR Internal 5.5V bias for internal regulator use only. Connect the VR55 pin directly to theVCC pin. Not
recommended to power external circuit.
1, 3, 4, 5, 22,
26, 32, 33
NC These are test pins and are not electrically isolated. Leave these pins as no connect.
Pin Number Label Type Description
FN9348 Rev.1.00 Page 11 of 57
Feb 8, 2019
RAA210833
2. Specifications
2.1 Absolute Maximum Ratings
2.2 Thermal Information
Parameter Minimum Maximum Unit
Input Supply Voltage, VIN Pin -0.3 +17 V
Input Supply Voltage for Controller, VDD, VDDC Pin -0.3 +17 V
Input Gate Driver Supply Voltage, VDRVIN Pin -0.3 +17 V
Output Gate Driver Supply Voltage, VDRVOUT Pin -0.3 +6 V
Output Voltage, VOUT Pin -0.3 +6 V
Switch Node Referenced to PGND Pin, VSWH Pin -0.3 +25 V
Switch Node for DCR Sensing Referenced to SGND Pin, PHASE Pin -0.3 +25 V
Input Bias Voltage for Internal Regulator, VCC Pin -0.3 +6.5 V
6V Internal Reference Supply Voltage, VR6 Pin -0.3 +6.6 V
Internal Reference Supply Voltage, VR5, VR55 Pin -0.3 +6.5 V
2.5V Internal Reference Supply Voltage, V25 Pin -0.3 +3 V
Logic I/O Voltage for DDC, EN, CFG, PG, ASCR, SA, SCL, SDA, SALRT,
SYNC, SS/UVLO, VSET
-0.3 +6 V
Analog Input Voltages for
VSEN+, XTEMP+ -0.36V
VSEN-, XTEMP- -0.3 0.3 V
ESD Rating Value Unit
Human Body Model (Tested per JS-001-2017) 2 kV
Machine Model (Tested per JESD22-A115C) 200 V
Charged Device Model (Tested per JS-002-2014) 750 V
Latch-Up (Tested per JESD78E; Class 2, Level A) 100 mA
Thermal Resistance (Typical) JA (°C/W) JC (°C/W)
41 Ld HDA Package (Notes 13, 14)7.5 2.2
Notes:
13. JA is measured in free air with the module mounted on an 8-layer evaluation board 4.7x4.8inch in size with 2oz Cu on all layers
and multiple via interconnects as specified in the RTKA2108332H00000BU evaluation board user guide.
14. For JC, the “case temp” location is the center of the package underside.
Parameter Minimum Maximum Unit
Maximum Junction Temperature (Plastic Package) +125 °C
Storage Temperature Range -55 +150 °C
Pb-Free Reflow Profile Refer to Figure 29 on page 32
FN9348 Rev.1.00 Page 12 of 57
Feb 8, 2019
RAA210833
2.3 Recommended Operating Conditions
2.4 Electrical Specifications
Parameter Minimum Maximum Unit
Input Supply Voltage Range, VIN 4.5 14 V
Input Supply Voltage Range for Controller, VDD 4.5 14 V
Output Voltage Range, VOUT 0.6 5 V
Output Current Range, IOUT(DC) (Note 17)033A
Operating Junction Temperature Range, TJ-40 +125 °C
VIN = VDD = 12V, fSW = 533kHz, COUT = 1340µF, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.
Boldface limits apply across the operating temperature range, -40°C to +85°C.
Parameter Symbol Test Conditions
Min
(Note 15)Typ
Max
(Note 15)Unit
Input and Supply Characteristics
Input Supply Current for Controller IDD VIN = VDD = 12V, VOUT = 0V,
module not enabled
40 50 mA
6V Internal Reference Supply
Voltage
VR6 5.5 6.1 6.6 V
Internal Regulator Output Voltage VDRVOUT VCC connected to VR55 5.2 V
5V Internal Reference Supply
Voltage
VR5 IVR5 < 5mA 4.5 5.2 5.5 V
2.5V Internal Reference Supply
Voltage
V25 2.25 2.50 2.75 V
5.5V Internal Reference Supply
Voltage
VR55 VDD > 6V; 0A to 80mA 5.7 V
Input Supply Voltage for Controller
Read Back Resolution
VDD_READ_RES ±20 mV
Input Supply Voltage for Controller
Read Back Total Error (Note 18)
VDD_READ_ERR PMBus read ±2 %FS
Output Characteristics
Output Voltage Adjustment Range VOUT_RANGE VIN > VOUT + 1.8V 0.54 5.5 V
Output Voltage Set-Point Range VOUT_RES Configured using PMbus ±0.025 %
Output Voltage Set-Point Accuracy
(Notes 16, 18)
VOUT_ACCY Includes line, load, and
temperature (-2C TA
+85°C)
-1.2 +1.2 %FS
Output Voltage Readback
Resolution
VOUT_READ_RES ±20 mV
Output Voltage Readback Total
Error (Note 18)
VOUT_READ_ERR PMBus read -2 +2 %FS
Output Current Readback
Resolution
IOUT_READ_RES 10 Bits
Output Current Range (Note 17)I
OUT_RANGE 33 A
Output Current Readback Total
Error
IOUT_READ_ERR PMBus read at max load at
ambient room temperature
±3 A
Soft-Start and Sequencing
Delay Time From Enable to VOUT
Rise
tON_DELAY Configured using pin-strap
resistor or PMBus
2 300 ms
FN9348 Rev.1.00 Page 13 of 57
Feb 8, 2019
RAA210833
tON_DELAY Accuracy tON_DELAY_ACCY ±2 ms
Output Voltage Ramp-Up Time tON_RISE Configured using pin-strap
resistor or PMBus
0.5 120 ms
Output Voltage Ramp-Up Time
Accuracy
tON_RISE_ACCY ±250 µs
Delay Time From Disable to VOUT
Fall
tOFF_DELAY Configured using pin-strap
resistor or PMBus
2 300 ms
tOFF_DELAY Accuracy tOFF_DELAY_ACCY ±2 ms
Output Voltage Fall Time tOFF_FALL Configured using pin-strap
resistor or PMBus
0.5 120 ms
Output Voltage Fall Time Accuracy tON_FALL_ACCY ±250 µs
Power-Good
Power-Good Delay VPG_DELAY 4ms
Temperature Sense
Temperature Sense Range TSENSE_RANGE Configured using PMBus -50 150 °C
Internal Temperature Sensor
Accuracy
INT_TEMPACCY Tested at +100°C -5 +5 °C
Fault Protection
VDD Undervoltage Threshold Range VDD_UVLO_RANGE Measured internally 4.18 16 V
VDD Undervoltage Threshold
Accuracy (Note 18)
VDD_UVLO_ACCY ±2 %FS
VDD Undervoltage Response Time VDD_UVLO_DELAY 10 µs
VOUT Overvoltage Threshold Range VOUT_OV_RANGE Factory default 1.15 x VOUT %
Configured using pin-strap
resistor or PMBus
1.05VOUT VOUT_MAX %
VOUT Undervoltage Threshold
Range
VOUT_UV_RANGE Factory default 0.85 x VOUT %
Configured using pin-strap
resistor or PMBus
0 0.95VOUT %
VOUT OV/UV Threshold Accuracy
(Note 16)
VOUT_OV/UV_ACCY -2 +2 %
VOUT OV/UV Response Time VOUT_OV/UV_DELAY 10 µs
Output Current Limit Set-Point
Accuracy (Note 18)
ILIMIT_ACCY Tested at
IOUT_OC_FAULT_LIMIT = 40A
±10 %FS
Output Current Fault Response
Time (Note 19)
ILIMIT_DELAY Factory default 3 tSW
Over-Temperature Protection
Threshold
(Controller Junction Temperature)
TJUNCTION Factory default 115 °C
Configured using PMBus -40 125 °C
Thermal Protection Hysteresis TJUNCTION_HYS 15 °C
Oscillator and Switching Characteristics
Switching Frequency Range fSW_RANGE Configured using pin-strap
resistor or PMBus
296 1067 kHz
Switching Frequency Set-Point
Accuracy
fSW_ACCY -5 +5 %
VIN = VDD = 12V, fSW = 533kHz, COUT = 1340µF, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.
Boldface limits apply across the operating temperature range, -40°C to +85°C. (Continued)
Parameter Symbol Test Conditions
Min
(Note 15)Typ
Max
(Note 15)Unit
FN9348 Rev.1.00 Page 14 of 57
Feb 8, 2019
RAA210833
Minimum Pulse Width Required
from External SYNC Clock
EXT_SYNCPW Measured at 50% amplitude 150 ns
Drift Tolerance for External SYNC
Clock
EXT_SYNCDRIFT External SYNC clock equal to
500kHz is not supported
-10 +10 %
Logic Input/Output Characteristics
Bias Current at the Logic Input Pins ILOGIC_BIAS EN, CFG, PG, SA, SCL, SDA,
SALRT, SYNC, UVLO, VSET
-100 +100 nA
Logic Input Low Threshold Voltage VLOGIC_IN_LOW 0.8 V
Logic Input High Threshold Voltage VLOGIC_IN_HIGH 2.0 V
Logic Output Low Threshold Voltage VLOGIC_OUT_LOW 2mA sinking 0.5 V
Logic Output High Threshold
Voltage
VLOGIC_OUT_HIGH 2mA sourcing 2.25 V
PMBus Interface Timing Characteristic
PMBus Operating Frequency fSMB 100 400 kHz
Notes:
15. Compliance to datasheet limits is assured by one or more methods: production test, characterization, and/or design.
16. VOUT measured at the termination of the VSEN+ and VSEN- sense points.
17. The MAX load current is determined by the thermal Derating Curves” on page 17.
18. “FS” stands for Full Scale of recommended maximum operation range.
19. “tSW” stands for time period of operation switching frequency.
VIN = VDD = 12V, fSW = 533kHz, COUT = 1340µF, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.
Boldface limits apply across the operating temperature range, -40°C to +85°C. (Continued)
Parameter Symbol Test Conditions
Min
(Note 15)Typ
Max
(Note 15)Unit
FN9348 Rev.1.00 Page 15 of 57
Feb 8, 2019
RAA210833
3. Typical Performance Curves
3.1 Efficiency Performance
Operating condition: TA = +25°C, No air flow. COUT = 1340µF. Typical values are used unless otherwise noted.
Figure 5. Efficiency vs Output Current at VIN = 12V and
fSW = 364kHz for Various Output Voltages
Figure 6. Efficiency vs Output Current at VIN = 5V and
fSW = 364kHz for Various Output Voltages
Figure 7. Efficiency vs Switching Frequency at VIN = 12V
and IOUT = 33A for Various Output Voltages
Figure 8. Efficiency vs Switching Frequency at VIN = 5V
and IOUT = 33A for Various Output Voltages
60
65
70
75
80
85
90
95
100
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 33
Efficiency (%)
IOUT (A)
5Vout 3.3Vout 2.5Vout
1.8Vout 1.5Vout 1.2Vout
1Vout 0.9Vout 0.8Vout
70
75
80
85
90
95
Efficiency (%)
Switching Frequency (kHz)
0.7Vout 0.8Vout 0.9Vout
1Vout 1.2Vout 1.5Vout
1.8Vout 2.5Vout 3.3Vout
5Vout
70
75
80
85
90
95
Efficiency (%)
Switching Frequency (kHz)
0.7Vout 0.8Vout 0.9Vout
1Vout 1.2Vout 1.5Vout
1.8Vout 2.5Vout 3.3Vout
FN9348 Rev.1.00 Page 16 of 57
Feb 8, 2019
RAA210833
3.2 Transient Response Performance
Operating conditions: Step load = 0 to 16.5A, IOUT slew rate = 15A/µs, TA = +25°C, OLFM airflow. Typical values are used unless otherwise
noted.
Figure 9. 5VIN to 0.9VOUT
, fSW = 364kHz,
COUT = 12x100µF Ceramic + 5x470µF POSCAP
Figure 10. 5VIN to 1.2VOUT
, fSW = 364kHz,
COUT = 10x100µF Ceramic + 4x470µF POSCAP
Figure 11. 12VIN to 1VOUT
, fSW = 615kHz, COUT = 4x100µF
Ceramic + 4x470µF POSCAP
Figure 12. 12VIN to 1.5VOUT
, fSW = 471kHz,
COUT = 7x100µF Ceramic + 2x470µF POSCAP
Figure 13. 12VIN to 1.8VOUT
, fSW = 471kHz,
COUT = 6x100µF Ceramic + 2x470µF POSCAP
Figure 14. 12VIN to 3.3VOUT
, fSW = 615kHz,
COUT = 4x100µF Ceramic + 1x470µF POSCAP
VOUT (50mV/Div)
IOUT (10A/Div)
ASCR Gain = 350
100µs/Div
Residual = 90
VOUT (50mV/Div)
IOUT (10A/Div)
ASCR Gain = 270
100µs/Div
Residual = 90
VOUT (100mV/Div)
IOUT (10A/Div)
100µs/Div
ASCR Gain = 350
Residual = 80
VOUT (50mV/Div)
IOUT (10A/Div)
100µs/Div
ASCR Gain = 250
Residual = 90
VOUT (50mV/Div)
IOUT (10A/Div)
100µs/Div
ASCR Gain = 200
Residual = 90
VOUT (100mV/Div)
IOUT (10A/Div)
100µs/Div
ASCR Gain = 200
Residual = 100
FN9348 Rev.1.00 Page 17 of 57
Feb 8, 2019
RAA210833
3.3 Derating Curves
All of the following curves were plotted at TJ = +120°C
Figure 15. 5VIN to 1VOUT, 364kHz Figure 16. 12VIN to 1VOUT, 364kHz
Figure 17. 5VIN to 1.2VOUT, 364kHz Figure 18. 12VIN to 1.2VOUT, 364kHz
Figure 19. 5VIN to 1.8VOUT, 471kHz Figure 20. 12VIN to 1.8VOUT, 471kHz
0
5
10
15
20
25
30
35
20 30 40 50 60 70 80 90 100 110
Load Current (A)
Temperature (°C)
0 LFM 200 LFM
400 LFM
0
5
10
15
20
25
30
35
20 30 40 50 60 70 80 90 100 110
Load Current (A)
Temperature (°C)
0 LFM 200 LFM
400 LFM
0
5
10
15
20
25
30
35
20 30 40 50 60 70 80 90 100 110
Load Current (A)
Temperature (°C)
0 LFM 200 LFM
400 LFM
0
5
10
15
20
25
30
35
20 30 40 50 60 70 80 90 100
110
Load Current (A)
Temperature (°C)
0 LFM 200 LFM
400 LFM
0
5
10
15
20
25
30
35
20 30 40 50 60 70 80 90 100
110
Load Current (A)
Temperature (°C)
0 LFM 200 LFM
400 LFM
0
5
10
15
20
25
30
35
20 30 40 50 60 70 80 90 100 110
Load Current (A)
Temperature (°C)
0 LFM 200 LFM
400 LFM
FN9348 Rev.1.00 Page 18 of 57
Feb 8, 2019
RAA210833
Figure 21. 5VIN to 2.5VOUT, 615kHz Figure 22. 12VIN to 2.5VOUT, 615kHz
Figure 23. 5VIN to 3.3VOUT, 615kHz Figure 24. 12VIN to 3.3VOUT, 615kHz
Figure 25. 12VIN to 5VOUT, 727kHz
All of the following curves were plotted at TJ = +120°C (Continued)
0
5
10
15
20
25
30
35
20 30 40 50 60 70 80 90 100 110
Load Current (A)
Temperature (°C)
0 LFM 200 LFM
400 LFM
0
5
10
15
20
25
30
35
20 30 40 50 60 70 80 90 100 110
Load Current (A)
Temperature (°C)
0 LFM 200 LFM
400 LFM
0
5
10
15
20
25
30
35
20 30 40 50 60 70 80 90 100 110
Load Current (A)
Temperature (°C)
0 LFM 200 LFM
400 LFM
0
5
10
15
20
25
30
35
20 30 40 50 60 70 80 90 100 110
Load Current (A)
Temperature (°C)
0 LFM 200 LFM
400 LFM
0
5
10
15
20
25
30
35
20 30 40 50 60 70 80 90 100
110
Load Current (A)
Temperature (°C)
0 LFM 200 LFM
400 LFM
FN9348 Rev.1.00 Page 19 of 57
Feb 8, 2019
RAA210833
4. Functional Description
4.1 SMBus Communications
The RAA210833 provides an SMBus digital interface that enables you to configure the module operation and
monitor the input and output parameters. You can use the RAA210833 with any SMBus host device. In addition,
the module is compatible with PMBus Power System Management Protocol Specification Parts I and II
version 1.2. The RAA210833 accepts most standard PMBus commands. When controlling the device with PMBus
commands, it is recommended that the enable pin be tied to SGND.
The SMBus device address is the only parameter that must be set by external pins.
4.2 Output Voltage Selection
The output voltage can be set to a voltage between 0.6V and 5V if the input voltage is higher than the output
voltage by an amount sufficient to maintain regulation.
The VSET pin sets the output voltage to any values between 0.6V and 5V as shown in Table 5. The RSET resistor is
placed between the VSET pin and SGND. A standard 1% resistor is recommended.
Table 5. Output Voltage Resistor Settings
VOUT(V) VSET_GROUP (Set by SA Pin) RSET (kΩ)
0.600 Group 0 10
0.650 Group 0 11
0.675 Group 0 12.1
0.690 Group 0 13.3
0.700 Group 0 14.7
0.710 Group 0 16.2
0.720 Group 0 17.8
0.730 Group 0 19.6
0.740 Group 0 21.5
0.750 Group 0 23.7
0.760 Group 0 26.1
0.770 Group 0 28.7
0.780 Group 0 31.6
0.790 Group 0 34.8
0.800 Group 0 38.3
0.810 Group 0 42.2
0.820 Group 0 46.4
0.830 Group 0 51.1
0.840 Group 0 56.2
0.850 Group 0 61.9
0.860 Group 0 68.1
0.870 Group 0 75
0.880 Group 0 82.5
0.890 Group 0 90.9
0.900 Group 0 100
0.910 Group 0 110
FN9348 Rev.1.00 Page 20 of 57
Feb 8, 2019
RAA210833
0.920 Group 0 121
0.930 Group 0 133
0.940 Group 0 147
0.950 Group 0 162
0.960 Group 0 178
0.970 Group 0 Connect to SGND
0.980 Group 0 OPEN
0.990 Group 0 Connect to V25
1.000 Group 1 Connect to SGND
1.030 Group 1 10
1.050 Group 1 11
1.100 Group 1 12.1
1.120 Group 1 13.3
1.150 Group 1 14.7
1.200 Group 1 OPEN
1.250 Group 1 16.2
1.300 Group 1 17.8
1.350 Group 1 19.6
1.400 Group 1 21.5
1.500 Group 1 23.7
1.600 Group 1 26.1
1.650 Group 1 28.7
1.700 Group 1 31.6
1.800 Group 1 34.8
1.850 Group 1 38.3
1.900 Group 1 42.2
2.000 Group 1 46.4
2.100 Group 1 51.1
2.200 Group 1 56.2
2.300 Group 1 61.9
2.400 Group 1 68.1
2.500 Group 1 Connect to V25
2.600 Group 1 75
2.700 Group 1 82.5
2.800 Group 1 90.9
2.900 Group 1 100
3.000 Group 1 110
3.200 Group 1 121
3.300 Group 1 133
3.400 Group 1 147
3.600 Group 1 162
Table 5. Output Voltage Resistor Settings (Continued)
VOUT(V) VSET_GROUP (Set by SA Pin) RSET (kΩ)
FN9348 Rev.1.00 Page 21 of 57
Feb 8, 2019
RAA210833
By default, VOUT_MAX is set 110% higher than VOUT by the pin-strap resistor, which can be changed to any value
up to 5.5V with the PMBus Command VOUT_MAX.
4.3 Soft-Start Delay and Ramp Times
The RAA210833 follows an internal start-up procedure after power is applied to the VDD pin. The module
requires approximately 60ms to 70ms to check for specific values stored in its internal memory and programmed
by pin-strap resistors. After this process is complete, the device is ready to accept commands through the PMBus
interface and the module is ready to be enabled. If the module is to be synchronized to an external clock source, the
clock frequency must be stable before asserting the EN pin.
It may be necessary to set a delay from when an enable signal is received until the output voltage starts to ramp to
its target value. In addition, you may want to precisely set the time required for VOUT to ramp to its target value
after the delay period has expired. These features can be used as part of an overall inrush current management
strategy or to precisely control how fast a load IC is turned on. The RAA210833 gives the system designer several
options for precisely and independently controlling both the delay and ramp time periods. The soft-start delay
period begins when the EN pin is asserted and ends when the delay time expires.
The soft-start delay (TON_DELAY) and ramp-up time (TON_RISE) can be set to custom values with pin-strap
resistors or PMBUS. When the delay time is set to 0ms, the device begins its ramp-up after the internal circuitry has
initialized (approximately 2ms). When the soft-start ramp period is set to 0ms, the output ramps up as quickly as
the output load capacitance and loop settings allow. It is generally recommended to set the soft-start ramp to a value
greater than 500µs to prevent inadvertent fault conditions due to excessive inrush current.
Similar to the soft-start delay and ramp-up time, the delay (TOFF_DELAY) and ramp-down time (TOFF_FALL)
for soft-stop/off can be set to custom values with pin-strap resistors or PMBUS. In addition, the module can be
configured as “immediate off” with the command ON_OFF_CONFIG, so that the internal MOSFETs are turned off
immediately after the delay time expires.
Use the SS/UVLO pin to set the soft-start/stop delay time and ramp time to some typical values as shown in
Table 6. A standard 1% resistor is required.
5.000 Group 1 178
Table 6. Soft-Start/Stop and Input UVLO Resistor Settings
Resistor (kΩ) UVLO (V) Delay Time (ms) Ramp Time (ms)
Open 4.2 5 5
Connect to V25 4.5 10 10
Connect to SGND 4.5 5 2
12.1 4.5 5 2
13.3 4.5 5 5
14.7 4.5 5 10
16.2 4.5 10 2
17.8 4.5 10 5
19.6 4.5 10 10
21.5 4.5 20 5
23.7 4.5 20 10
26.1 4.2 5 2
28.7 4.59 5 5
31.6 5.06 5 10
Table 5. Output Voltage Resistor Settings (Continued)
VOUT(V) VSET_GROUP (Set by SA Pin) RSET (kΩ)
FN9348 Rev.1.00 Page 22 of 57
Feb 8, 2019
RAA210833
4.4 Power-Good
The RAA210833 provides a Power-Good (PG) signal that indicates that the output voltage is within a specified
tolerance of its target level and no fault condition exists. By default, the PG pin asserts if the output is within 10%
of the target voltage. These limits and the polarity of the pin can be changed with PMBus command
POWER_GOOD_ON.
A PG delay period is defined as the time from when all conditions within the RAA210833 for asserting PG are met
to when the PG pin is actually asserted. This feature is commonly used instead of using an external reset controller
to control external digital logic. A fixed PG delay of 4ms is programmed for the RAA210833.
4.5 Switching Frequency and PLL
Set the device’s switching frequency from 296kHz to 1067kHz using the pin-strap method as shown in Table 7, or
by using the PMBus command FREQUENCY_SWITCH.
34.8 5.57 10 2
38.3 6.13 10 5
42.2 6.75 10 10
46.4 7.42 20 5
51.1 8.18 20 10
56.2 10.8 5 2
61.9 10.8 5 5
68.1 10.8 5 10
75 10.8 10 2
82.5 10.8 10 5
90.9 10.8 10 10
100 10.8 20 5
110 10.8 20 10
Table 7. Switching Frequency Resistor Settings
fSW(kHz) RSET (kΩ)
296 14.7, or connect to SGND
320 16.2
348 17.8
364 19.6
400 21.5
421 23.7
471 26.1
516 28.7
533 31.6, or OPEN
615 34.8
640 38.3
696 42.2
727 46.4
800 51.1
Table 6. Soft-Start/Stop and Input UVLO Resistor Settings (Continued)
Resistor (kΩ) UVLO (V) Delay Time (ms) Ramp Time (ms)
FN9348 Rev.1.00 Page 23 of 57
Feb 8, 2019
RAA210833
The RAA210833 incorporates an internal Phase-Locked Loop (PLL) to clock the internal circuitry. The PLL can
also be driven by an external clock source connected to the SYNC pin. Connect a resistor to the CFG pin to set this
configuration. If the clock source is set to internal, the internal frequency is set according to the SYNC pin resistor
settings. If the clock source is set to external, the internal frequency is set according to the resistor connected to the
CFG pin as shown in Table 8. The external clock frequency should be within ±10% of the listed options.
The external clock signal must not vary more than 10% from its initial value, should be stable, and should have a
minimum pulse-width of 150ns. Note: if the pin-strap method is used, a standard 1% resistor is required.
4.6 Loop Compensation
The module loop response is programmable using the pin-strap method or the PMBus command ASCR_CONFIG
according to Table 9. A standard 1% resistor is required. The RAA210833 uses the ChargeMode control algorithm
that responds to output current changes within a single PWM switching cycle, achieving a smaller total output
voltage variation with less output capacitance than traditional PWM controllers.
842 56.2
889 61.9
1067 68.1,orconnecttoV25
Table 8. External Frequency SYNC Settings
Clock Source Internal Frequency Switch (kHz) RSET (kΩ)
Internal Determined by SYNC resistor 10, or OPEN
External 296 11
External 340 12.1
External 390 13.3
External 444 14.7
External 516 16.2, or connect to SGND
External 593 17.8
External 696 19.6
External 800 21.5
External 941 23.7
External 1067 26.1, or Connect to V25
Table 9. ASCR Resistor Settings
ASCR Gain ASCR Residual RSET (kΩ)
190 60 10
200 60 11
90 65 12.1
80 70 13.3
120 70 Connect to SGND
160 70 14.7
200 70 OPEN
250 70 16.2
300 70 17.8
Table 7. Switching Frequency Resistor Settings (Continued)
fSW(kHz) RSET (kΩ)
FN9348 Rev.1.00 Page 24 of 57
Feb 8, 2019
RAA210833
4.7 Input Undervoltage Lockout (UVLO)
The Input Undervoltage Lockout (UVLO) prevents the RAA210833 from operating when the input falls below a
preset threshold, indicating that the input supply is out of its specified range. The UVLO threshold (VUVLO) can be
set between 4.18V and 16V or by using the pin-strap method as shown in Table 10, or by using the PMBus
command VIN_UV_FAULT_LIMIT. A standard 1% resistor is required.
The module shuts down immediately when the UVLO threshold is reached. The fault needs to be cleared for the
module to restart.
120 80 19.6
190 80 21.5
210 80 23.7
250 80 26.1
300 80 28.7
350 80 31.6
400 80 34.8
110 90 38.3
160 90 42.2
200 90 46.4
250 90 51.1
350 90 56.2
400 90 61.9
500 90 68.1
600 90 75
300 95 82.5
120 100 90.9
160 100 100
190 100 110
220 100 121
250 100 Connect to V25
350 100 133
400 100 147
500 100 162
600 100 178
Table 10. UVLO Resistor Settings
UVLO (V) Resistor (kΩ)
4.2 Open
4.5 Connect to V25
4.5 Connect to SGND
4.5 12.1
4.5 13.3
4.5 14.7
Table 9. ASCR Resistor Settings (Continued)
ASCR Gain ASCR Residual RSET (kΩ)
FN9348 Rev.1.00 Page 25 of 57
Feb 8, 2019
RAA210833
4.8 SMBus Module Address Selection
Each module must have its own unique serial address to distinguish between other devices on the bus. The module
address is set by connecting a resistor between the SA pin and SGND. This pin can also be used to make
VSET_Group selection as shown in Table 11. A standard 1% resistor is required.
4.5 16.2
4.5 17.8
4.5 19.6
4.5 21.5
4.5 23.7
4.2 26.1
4.59 28.7
5.06 31.6
5.57 34.8
6.13 38.3
6.75 42.2
7.42 46.4
8.18 51.1
10.8 56.2
10.8 61.9
10.8 68.1
10.8 75
10.8 82.5
10.8 90.9
10.8 100
10.8 110
Table 11. SMBus Address Resistor Selection
RSET (kΩ) SMBus Address VSET_GROUP
10 19h Group 0
11 1Ah Group 0
12.1 1Bh Group 0
13.3 1Ch Group 0
14.7 1Dh Group 0
16.2 1Eh Group 0
17.8 1Fh Group 0
19.6 20h Group 0
21.5 21h Group 0
23.7 22h Group 0
26.1 23h Group 0
28.7 24h Group 0
31.6 25h Group 0
Table 10. UVLO Resistor Settings (Continued)
UVLO (V) Resistor (kΩ)
FN9348 Rev.1.00 Page 26 of 57
Feb 8, 2019
RAA210833
4.9 Output Overvoltage Protection
The RAA210833 offers an internal output overvoltage protection circuit that can be used to protect sensitive load
circuitry from being subjected to a voltage higher than its prescribed limits. A hardware comparator is used to
compare the actual output voltage (seen at the VSEN+ and VSEN- pins) to a threshold set to 15% higher than the
target output voltage (the default setting). Fault threshold can be programmed to a desired level with PMBus
command VOUT_OV_FAULT_LIMIT. If the VSEN+ voltage exceeds this threshold, the module initiates an
immediate shutdown without retry.
Internal to the module, a 332Ω resistor is populated from VOUT to VSEN+ to protect from overvoltage conditions
in case of open at VSENSE pin and differential remote sense traces due to assembly error. As long as the
differential remote sense traces have low resistance, VOUT regulation accuracy is not sacrificed.
4.10 Output Prebias Protection
An output prebias condition exists when an externally applied voltage is present on a power supply’s output before
the power supply’s control IC is enabled. Certain applications require that the converter not be allowed to sink
current during start-up if a prebias condition exists at the output. The RAA210833 provides prebias protection by
sampling the output voltage before initiating an output ramp.
If a prebias voltage lower than the target voltage exists after the preconfigured delay period has expired, the target
voltage is set to match the existing prebias voltage, and both drivers are enabled. The output voltage is then ramped
to the final regulation value at the preconfigured ramp rate.
The actual time the output takes to ramp from the prebias voltage to the target voltage varies depending on the
prebias voltage. However, the total time elapsed from when the delay period expires and when the output reaches
its target value matches the preconfigured ramp time (see Figure 26 on page 27).
34.8 26h Group 0
38.3 27h Group 0
42.2 28h Group 0
46.4 29h Group 0
51.1 19h Group 1
56.2 1Ah Group 1
61.9 1Bh Group 1
68.1 1Ch Group 1
75 1Dh Group 1
82.5 1Eh Group 1
90.9 1Fh Group 1
100 20h Group 1
110 21h Group 1
121 22h Group 1
133 23h Group 1
147 24h Group 1
162 25h Group 1
Connect to SGND 26h Group 1
178 27h Group 1
OPEN 28h Group 1
Table 11. SMBus Address Resistor Selection (Continued)
RSET (kΩ) SMBus Address VSET_GROUP
FN9348 Rev.1.00 Page 27 of 57
Feb 8, 2019
RAA210833
If the prebias voltage is higher than the target voltage after the preconfigured delay period expires, the target
voltage is set to match the existing prebias voltage, and both drivers are enabled with a PWM duty cycle that would
ideally creates the prebias voltage.
After the preconfigured soft-start ramp period expires, the PG pin is asserted (assuming the prebias voltage is not
higher than the overvoltage limit). The PWM then adjusts its duty cycle to match the original target voltage and the
output ramps down to the preconfigured output voltage.
If a prebias voltage is higher than the overvoltage limit, the device does not initiate a turn-on sequence and declares
an overvoltage fault condition.
4.11 Output Overcurrent Protection
The RAA210833 can protect the power supply from damage if the output is shorted to ground or if an overload
condition is imposed on the output. The average output overcurrent fault threshold can be programmed with the
PMBus command IOUT_OC_FAULT_LIMIT. The module automatically programs the peak inductor current fault
threshold by reading the real-time input voltage, switching frequency, and VOUT_COMMAND to calculate
inductor ripple current.
The default response from an overcurrent fault is an immediate shutdown with a continuous retry of 70ms delay.
Figure 26. Output Responses to Prebias Voltages
Desired Output
Voltage
Prebias Voltage
VOUT
Time
Ton-Delay Ton-Rise
Desired Output
Voltage
Prebias Voltage
VOUT
Time
VPREBIAS < VTARGET
VPREBIAS > VTARGET
Ton-Rise
Ton-Delay
FN9348 Rev.1.00 Page 28 of 57
Feb 8, 2019
RAA210833
4.12 Thermal Overload Protection
The RAA210833 includes a thermal sensor that continuously measures the internal temperature of the module and
shuts down the controller when the temperature exceeds the preset limit. The default temperature limit is set to
+115°C in the factory, but can be changed with PMBus command OT_FAULT_LIMIT.
The response from an over-temperature fault is an immediate shutdown without retry.
4.13 Phase Spreading
When multiple point-of-load converters share a common DC input supply, adjust the clock phase offset of each
device, so that not all devices start to switch simultaneously. Setting each converter to start its switching cycle at a
different point in time can dramatically reduce input capacitance requirements and efficiency losses. Because the
peak current drawn from the input supply is effectively spread out over a period of time, the peak current drawn at
any given moment is reduced and the power losses proportional to the IRMS2 are reduced dramatically.
To enable phase spreading, all converters must be synchronized to the same switching clock. The phase offset
between devices is determined from the lower four bits of the SMBus address of each interleaved device.The phase
offset of each device can be set to any value between 0° and 360° in 22.5° increments by setting the device address
appropriately as shown in Table 12. This functionality can also be accessed using the PMBus command
INTERLEAVE.
4.14 Monitoring Through SMBus
A system controller can monitor a wide variety of different RAA210833 system parameters with PMBus
commands:
READ_VIN
READ_VOUT
READ_IOUT
Table 12. INTERLEAVE Settings from SA
INTERLEAVE vs SA
SA SA in Binary Low 4-Bits INTERLEAVE Phase Shift (°)
19h 00011001 1001 9 202.5
1Ah 00011010 1010 10 225
1Bh 00011011 1011 11 247.5
1Ch 00011100 1100 12 270
1Dh 00011101 1101 13 292.5
1Eh 00011110 1110 14 315
1Fh 00011111 1111 15 337.5
20h 00100000 0000 0 0
21h 00100001 0001 1 22.5
22h 00100010 0010 2 45
23h 00100011 0011 3 67.5
24h 00100100 0100 4 90
25h 00100101 0101 5 112.5
26h 00100110 0110 6 135
27h 00100111 0111 7 157.5
28h 00101000 1000 8 180
29h 00101001 1001 9 202.5
FN9348 Rev.1.00 Page 29 of 57
Feb 8, 2019
RAA210833
READ_INTERNAL_TEMP
READ_DUTY_CYCLE
READ_FREQUENCY
MFR_READ_VMON
4.15 Snapshot Parameter Capture
The RAA210833 offers a special feature to capture parametric data and some fault status following a fault. A detailed
description is provided in PMBus Commands Description” on page 36 under PMBus command SNAPSHOT and
SNAPSHOT_CONTROL.
FN9348 Rev.1.00 Page 30 of 57
Feb 8, 2019
RAA210833
5. PCB Layout Guidelines
To achieve stable operation, low losses, and good thermal performance, some layout considerations are necessary.
•For V
DD > 6V, the recommended PCB layout is shown in Figure 27. Leave V25, VDDC, VR5, and VR6 as “No
Connect”.
For 5.5V ≤ VDD ≤ 6V, connect VDDC pin to VR6 pin. For 4.5 VDD < 5.5V, connect VDDC pin to VR6 and VR5
pin. An RC filter is required at the input of VDRVIN pin if input supply is shared with VIN pin.
Establish a separate SGND plane and PGND plane, then connect SGND to the PGND plane as shown in Figure 28 in
the middle layer. For making connections between SGND/PGND on the top layer and other layers, use multiple vias
for each pin to connect to the inner SGND/PGND layer. Do not connect SGND directly to PGND on a top layer.
Connecting SGND directly to PGND without establishing an SGND plane bypasses the decoupling capacitor at
internal reference supplies, making the controller susceptible to noise.
Place enough ceramic capacitors between VIN and PGND, and VOUT and PGND. Place bypass capacitors between
VDD and the ground plane, as close to the module as possible to minimize high frequency noise.
Use large copper areas for the power path (VIN, PGND, VOUT) to minimize conduction loss and thermal stress. Use
multiple vias to connect the power planes in different layers. Extra ceramic capacitors at VIN and VOUT can be
placed on the bottom layer under the VIN and VOUT pads when multiple vias are used for connecting copper pads on
top and bottom layers.
Connect differential remote-sensing traces to the regulation point to achieve a tight output voltage regulation. Route a
trace from VSEN- and VSEN+ to the point-of-load where the tight output voltage is desired. Avoid routing any
sensitive signal traces such as the VSENSE signal near VSWH pads.
For noise sensitive applications, it is recommended that the user connect the VSWH pads only on the top layer only
(however, thermal performance gets sacrificed). External airflow might be required to keep module heat at desired
level. For applications where switching noise is less critical, an excellent thermal performance can be achieved in the
RAA210833 module by increasing copper mass attached to VSWH pad. To increase copper mass on the VSWH
node, create copper islands in the middle and bottom layers under the VSWH pad, and connect them to the top layer
with multiple vias. Make sure to shield the copper islands with a PGND layer to avoid any interference from noise
sensitive signals.
Figure 27. Recommended Layout - Top PCB Layer Figure 28. Recommended Layout - Connect SGND to
PGND in the Middle PCB Layer after Establishing
Separate SGND and PGND
EN
SYNC
SCL
SDA
SALRT
SA
CFG
VSET
NC
SGND
ASCR
VSEN -
NC
NC
VSEN+
NC
A
B
C
SGND
VDD
VOUT
SGND
VSWH
PGND
VIN
PGND
PG
UVLO
PGND
PHASE
NC NC
VDDCVR25 VR5 VR6
PGND
NC
CVIN
CVDD
SGND
PGND
NC
VDRVOUT
VDRVIN
C
C
VOUT
VR55
VCC
RC
C
PGND
Connect SGND to PGND in the
Middle Layer
SGND
SGND
SGND
SGND
PGND
PGND
PGND
FN9348 Rev.1.00 Page 31 of 57
Feb 8, 2019
RAA210833
5.1 Thermal Considerations
Experimental power loss curves, along with JA from thermal modeling analysis, can be used to evaluate the
thermal consideration for the module. The derating curves are derived from the maximum power allowed while
maintaining the temperature below the maximum junction temperature of +125°C. In actual applications, other heat
sources and design margins should be considered.
5.2 Package Description
The structure of the RAA210833 belongs to the High Density Array (HDA) no-lead package. This package has
advantages, such as good thermal and electrical conductivity, low weight, and small size. The HDA package is
applicable for surface mounting technology and is being more readily used in the industry. The RAA210833
contains several types of devices, including resistors, capacitors, inductors, and control ICs. The RAA210833 is a
copper leadframe based package with exposed copper thermal pads, which have good electrical and thermal
conductivity. The copper leadframe and multi-component assembly is overmolded with polymer mold compound
to protect these devices.
The package outline, a typical PCB land pattern design, and a typical stencil opening edge position are shown in the
Package Outline Drawing section starting on page 50. The module has a small size of 17mmx19mmx3.6mm.
Figure 29 shows typical reflow profile parameters. These guidelines are general design rules. You can modify
parameters according to your application.
5.3 PCB Layout Pattern Design
The bottom of the RAA210833 is a lead-frame footprint, that is attached to the PCB by a surface mounting process.
The PCB land pattern is shown in the Package Outline Drawing section starting on page page 50.
The PCB layout pattern is an array of solder mask defined PCB lands that align with the perimeters of the HDA
exposed pads and I/O termination dimensions. The thermal lands on the PCB layout also feature an array of solder
mask defined lands and should match 1:1 with the package exposed die pad perimeters. The exposed solder mask
defined PCB land area should be 50-80% of the available module I/O area.
5.4 Thermal Vias
A grid of 1.0mm to 1.2mm pitch thermal vias, which drops down and connects to buried copper plane(s), should be
placed under the thermal land. The vias should be about 0.3mm to 0.33mm in diameter with the barrel plated to
about 1.0 ounce copper. Although adding more vias (by decreasing via pitch) improves the thermal performance,
diminishing returns are seen as more and more vias are added. Use as many vias as practical for the thermal land
size and that your board design rules allow.
5.5 Stencil Pattern Design
Reflowed solder joints on the perimeter I/O lands should have about a 50µm to 75µm (2mil to 3mil) standoff
height. The solder paste stencil design is the first step in developing optimized, reliable solder joints.
The stencil aperture size to solder mask defined PCB land size ratio should typically be 1:1. The aperture width can
be reduced slightly to help prevent solder bridging between adjacent I/O lands. A typical solder stencil pattern is
shown in the Package Outline Drawing section starting on page page 50.
Consider the symmetry of the whole stencil pattern when designing its pads. A laser cut, stainless steel stencil with
electropolished trapezoidal walls is recommended. Electropolishing “smooths” the aperture walls resulting in
reduced surface friction and better paste release, which reduces voids. Using a Trapezoidal Section Aperture (TSA)
also promotes paste release and forms a “brick like” paste deposit that assists in firm component placement. A
0.1mm to 0.15mm stencil thickness is recommended for this large pitch (1.3mm) HDA.
FN9348 Rev.1.00 Page 32 of 57
Feb 8, 2019
RAA210833
5.6 Reflow Parameters
Due to the low mount height of the HDA, aNo Clean Type 3 solder paste per ANSI/J-STD-005 is recommended.
Nitrogen purge is also recommended during reflow. A system board reflow profile depends on the thermal mass of
the entire populated board, so it is not practical to define a specific soldering profile just for the HDA. The profile
given in Figure 29 is provided as a guideline to be customized for varying manufacturing practices and
applications.
Figure 29. Typical Reflow Profile
0 300100 150 200 250 350
0
50
100
150
200
250
300
Temperature (°C)
Duration (s)
Slow Ramp (3°C/s Maximum)
and Soak From +150°C
to +200°C for 60s~180s
Ramp Rate 1.5°C from +70°C to +90°C
Peak Temperature ~+245°C;
Typically 60s-150s Above +217°C
Keep Less Than 30s within 5°C of Peak Temperature
FN9348 Rev.1.00 Page 33 of 57
Feb 8, 2019
RAA210833
6. PMBus Command Summary
Command
Code Command Name Description Type
Data
Format Default Value
Default
Setting Page
01h OPERATION Sets Enable and Disable modes. R/W
Byte
BIT 36
02h ON_OFF_CONFIG Configures the EN pin and
PMBus commands to turn the
unit ON and OFF.
R/W
Byte
BIT 16h Hardware
Enable,
soft-off
36
03h CLEAR_FAULTS Clears fault indications. SEND
Byte
36
21h VOUT_COMMAND Sets the nominal value of the
output voltage.
R/W
Word
L16u Pin-strap 37
24h VOUT_MAX Sets the maximum possible
value of VOUT
. 110% of pin-strap
VOUT
.
R/W
Word
L16u 1.1 x VOUT
Pin-strap
37
33h FREQUENCY_SWITCH Sets the switching frequency. R/W
Word
L11 Pin-strap 37
37h INTERLEAVE Configures a phase offset
between devices sharing a
SYNC clock.
R/W
Word
BIT Set based on
PMBus
Address
38
40h VOUT_OV_FAULT_LIMIT Sets the VOUT overvoltage fault
threshold.
R/W
Word
L16u 1.15 x VOUT
Pin-strap
38
44h VOUT_UV_FAULT_LIMIT Sets the VOUT undervoltage fault
threshold.
R/W
Word
L16u 0.85 x VOUT
Pin-strap
38
46h IOUT_OC_FAULT_LIMIT Sets the IOUT average
overcurrent fault threshold.
R/W
Word
L11 E280h 40A 38
4Bh IOUT_UC_FAULT_LIMIT Sets the IOUT average
undercurrent fault threshold.
R/W
Word
L11 E57Fh -40A 39
4Fh OT_FAULT_LIMIT Sets the over-temperature fault
threshold.
R/W
Word
L11 EB98h +115°C 39
53h UT_FAULT_LIMIT Sets the under-temperature fault
threshold.
R/W
Word
L11 E530h -45°C 39
55h VIN_OV_FAULT_LIMIT Sets the VIN overvoltage fault
threshold.
R/W
Word
L11 D3A0h 14.5V 39
59h VIN_UV_FAULT_LIMIT Sets the VIN undervoltage fault
threshold.
R/W
Word
L11 Pin-strap 40
5Eh POWER_GOOD_ON Sets the voltage threshold for
Power-Good indication.
R/W
Word
L16u 0.9 x VOUT
Pin-strap
40
60h TON_DELAY Sets the delay time from
ENABLE to start of VOUT rise.
R/W
Word
L11 Pin-strap 40
61h TON_RISE Sets the rise time of VOUT after
ENABLE and TON_DELAY.
R/W
Word
L11 Pin-strap 40
64h TOFF_DELAY Sets the delay time from
DISABLE to start of VOUT fall.
R/W
Word
L11 Pin-strap 41
65h TOFF_FALL Sets the fall time for VOUT after
DISABLE and TOFF_DELAY.
R/W
Word
L11 Pin-strap 41
78h STATUS_BYTE Returns an abbreviated status
for fast reads.
Read
Byte
BIT 00h No Faults 41
79h STATUS_WORD Returns information with a
summary of the units's fault
condition.
Read
Word
BIT 0000h No Faults 42
FN9348 Rev.1.00 Page 34 of 57
Feb 8, 2019
RAA210833
7Ah STATUS_VOUT Returns the VOUT specific
status.
Read
Byte
BIT 00h No Faults 42
7Bh STATUS_IOUT Returns the IOUT specific status. Read
Byte
BIT 00h No Faults 43
7Ch STATUS_INPUT Returns status specific to the
input.
Read
Byte
BIT 00h No Faults 43
7Dh STATUS_TEMPERATURE Returns the temperature specific
status.
Read
Byte
BIT 00h No Faults 43
7Eh STATUS_CML Returns the Communication,
Logic, and Memory specific
status.
Read
Byte
BIT 00h No Faults 44
80h STATUS_MFR_SPECIFIC Returns the VMON and External
Sync clock specific status.
Read
Byte
BIT 00h No Faults 44
88h READ_VIN Returns the input voltage
reading.
Read
Word
L11 44
8Bh READ_VOUT Returns the output voltage
reading.
Read
Word
L16u 45
8Ch READ_IOUT Returns the output current
reading.
Read
Word
L11 45
8Dh READ_INTERNAL_TEMP Returns the temperature reading
internal to the device.
Read
Word
L11 45
94h READ_DUTY_CYCLE Returns the duty cycle reading
during the ENABLE state.
Read
Word
L11 45
95h READ_FREQUENCY Returns the measured operating
switch frequency.
Read
Word
L11 45
DFh ASCR_CONFIG Configures the ASCR control
loop.
R/W
Block
CUS Pin-strap 46
E4h DEVICE_ID Returns the 16-byte (character)
device identifier string.
Read
Block
ASCII Reads Device
Version
46
E5h MFR_IOUT_OC_FAULT_
RESPONSE
Configures the IOUT overcurrent
fault response.
R/W
Byte
BIT B9h Disable and
Retry with
70ms delay
46
E6h MFR_IOUT_UC_FAULT_
RESPONSE
Configures the IOUT
undercurrent fault response.
R/W
Byte
BIT B9h Disable and
Retry with
70ms delay
47
EAh SNAPSHOT Returns 32-byte read-back of
parametric and status values.
Read
Block
BIT 47
F3h SNAPSHOT_CONTROL Snapshot feature control
command.
R/W
Byte
BIT 48
F5h MFR_VMON_OV_FAULT_
LIMIT
Returns the VMON overvoltage
threshold.
Read
Word
L11 CB00h 6V 48
F6h MFR_VMON_UV_FAULT_
LIMIT
Returns the VMON undervoltage
threshold.
Read
Word
L11 CA00h 4V 48
F7h MFR_READ_VMON Returns the VMON voltage
reading. VMON is used to
monitor VDRVOUT (Pin 8)
voltage through an internal 16:1
resistor divider.
Read
Word
L11 48
Command
Code Command Name Description Type
Data
Format Default Value
Default
Setting Page
FN9348 Rev.1.00 Page 35 of 57
Feb 8, 2019
RAA210833
6.1 PMBus Data Formats
Linear-11 (L11) - The L11 data format uses a 5-bit two’s complement exponent (N) and 11-bit two’s complement
mantissa (Y) to represent a real world decimal value (X). The relation between the real world decimal value (X),
N, and Y is: X = Y • 2N
Linear-16 Unsigned (L16u) - The L16u data format uses a fixed exponent (hard-coded to N = -13h) and a 16-bit
unsigned integer mantissa (Y) to represent the real world decimal value (X). The relation between the real world
decimal value (X), N and Y is: X = Y • 2-13
Linear-16 Signed (L16s) - The L16s data format uses a fixed exponent (hardcoded to N = -13h) and a 16-bit
two’s complement mantissa (Y) to represent the real world decimal value (X).
The relation between the real world decimal value (X), N, and Y is: X = Y • 2-13
Bit Field (BIT) - An explanation of the Bit Field format is provided in PMBus on PMBus Commands
Description” on page 36.
Custom (CUS) - An explanation of the custom data format is provided in PMBus PMBus Commands
Description” on page 36. A combination of Bit Field and integer are common type of Custom data format.
ASCII (ASC) - A variable length string of text characters that uses the ASCII data format.
6.2 PMBus Use Guidelines
The PMBus is a powerful tool that allows you to optimize circuit performance by configuring devices for your
application. When configuring a device in a circuit, the device should be disabled whenever most settings are
changed with PMBus commands. Some exceptions to this recommendation are OPERATION, ON_OFF_CONFIG,
CLEAR_FAULTS, VOUT_COMMAND, and ASCR_CONFIG. While the device is enabled any command can be
read. Many commands do not take effect until after the device has been re-enabled, hence the recommendation that
commands that change device settings are written while the device is disabled.
In addition, there should be a 2ms delay between repeated READ commands sent to the same device. When
sending any other command, a 5ms delay is recommended between repeated commands sent to the same device.
Commands not listed in the PMBus command summary are not allowed for customer use, and are reserved for
factory use only. Issuing reserved commands may result in unexpected operation.
Data Byte High Data Byte Low
Exponent (N) Mantissa (Y)
76543210 76543210
FN9348 Rev.1.00 Page 36 of 57
Feb 8, 2019
RAA210833
7. PMBus Commands Description
OPERATION (01h)
Definition: Sets Enable and Disable settings.
Data Length in Bytes: 1
Data Format: BIT
Type: R/W
Default Value: 40h
Units: N/A
ON_OFF_CONFIG (02h)
Definition: Configures the interpretation and coordination of the OPERATION command and the ENABLE pin (EN).
Data Length in Bytes: 1
Data Format: BIT
Type: R/W
Default Value: 16h (Device starts from ENABLE pin with soft off)
Units: N/A
CLEAR_FAULTS (03h)
Definition: Clears all fault bits in all registers and releases the SALRT pin (if asserted) simultaneously. If a fault
condition still exists, the bit reasserts immediately. This command does not restart a device if it has shut down, it only
clears the faults.
Data Length in Bytes: 0 Byte
Data Format: N/A
Type: Send only
Default Value: N/A
Units: N/A
Reference: N/A
Settings Actions
00h Immediate off
40h Soft off
80h On.
Settings Actions
16h Device starts from ENABLE pin with soft off
17h Device starts from ENABLE pin with immediate off
1Ah Device starts from OPERATION command with soft off
1Bh Device starts from OPERATION command with immediate off
FN9348 Rev.1.00 Page 37 of 57
Feb 8, 2019
RAA210833
VOUT_COMMAND (21h)
Definition: Sets or reports the target output voltage. This command cannot set a value higher than either VOUT_MAX
or 110% of the pin-strap VOUT setting.
Data Length in Bytes: 2
Data Format: L16u
Type: R/W
Default Value: Pin-strap setting
Units: Volts
Range: 0V to VOUT_MAX
VOUT_MAX (24h)
Definition: Sets an upper limit on the output voltage the unit can command regardless of any other commands or
combinations. This command provides a safeguard against a user accidentally setting the output voltage to a possibly
destructive level rather than to be the primary output overprotection. The default value can be changed through
PMBus.
Data Length in Bytes: 2
Data Format: L16u
Type: R/W
Default Value: 1.10 x VOUT pin-strap setting
Units: Volts
Range: 0V to 5.5V
FREQUENCY_SWITCH (33h)
Definition: Sets the switching frequency of the device. The initial default value is defined by a pin-strap and this value
can be overridden by writing this command through PMBus. If an external SYNC is used, this value should be set as
close as possible to the external clock value. The output must be disabled when writing this command.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: Pin-strap setting
Units: kHz
Range: 296kHz to 1067kHz
FN9348 Rev.1.00 Page 38 of 57
Feb 8, 2019
RAA210833
INTERLEAVE (37h)
Definition: Configures the phase offset of a device that is sharing a common SYNC clock with other devices. The
phase offset of each device can be set to any value between 0° and 360° in 22.5° increments.
Data Length in Bytes: 2
Data Format: BIT
Type: R/W
Default Value: Pin-strap setting of SA
Units: kHz
VOUT_OV_FAULT_LIMIT (40h)
Definition: Sets the VOUT overvoltage fault threshold.
Data Length in Bytes: 2
Data Format: L16u
Type: R/W
Default Value: 1.15 x VOUT pin-strap setting
Units: V
Range: 0V to VOUT_MAX
VOUT_UV_FAULT_LIMIT (44h)
Definition: Sets the VOUT undervoltage fault threshold. This fault is masked during ramp or when disabled.
Data Length in Bytes: 2
Data Format: L16u
Type: R/W
Default Value: 0.85 x VOUT pin-strap setting
Units: V
Range: 0V to VOUT_MAX
IOUT_OC_FAULT_LIMIT (46h)
Definition: Sets the IOUT average overcurrent fault threshold. The device automatically calculates the peak inductor
overcurrent fault limit.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: E280h (40A)
Units: A
Range: -100A to 100A
Bits Purpose Value Description
15:8 Reserved 0 Reserved
7:4 Group Number 0 to 15 Sets the number of rails in the group. A value of 0 is interpreted as 16.
3:0 Position in Group 0 to 15 Sets position of the device's rail within the group.
FN9348 Rev.1.00 Page 39 of 57
Feb 8, 2019
RAA210833
IOUT_UC_FAULT_LIMIT (4Bh)
Definition: Sets the IOUT average undercurrent fault threshold. The device automatically calculates the valley inductor
undercurrent fault limit.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: E57Fh (-40A)
Units: A
Range: -100A to 100A
OT_FAULT_LIMIT (4Fh)
Definition: Sets the temperature at which the device should indicate an over-temperature fault. Note that the
temperature must drop below OT_FAULT_LIMIT to clear this fault.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: EB98h (+115˚C)
Units: Celsius
Range: 0°C to +150°C
UT_FAULT_LIMIT (53h)
Definition: Sets the temperature, in degrees Celsius, of the unit where it should indicate an under-temperature fault.
Note that the temperature must rise above UT_FAULT_LIMIT to clear this fault.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: E530h (-45°C)
Units: Celsius
Range: -55°C to +25°C
VIN_OV_FAULT_LIMIT (55h)
Definition: Sets the VIN overvoltage fault threshold.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: D3A0h (14.5V)
Units: V
Range: 0V to 16V
FN9348 Rev.1.00 Page 40 of 57
Feb 8, 2019
RAA210833
VIN_UV_FAULT_LIMIT (59h)
Definition: Sets the VIN undervoltage fault threshold.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: Pin-strap setting
Units: V
Range: 0V to 12V
POWER_GOOD_ON (5Eh)
Definition: Sets the voltage threshold for Power-good indication. Power-good asserts after the output voltage exceeds
POWER_GOOD_ON and deasserts when the output voltage is less than the VOUT_UV_FAULT_LIMIT. Renesas
recommends setting POWER_GOOD_ON higher than the VOUT_UV_FAULT_LIMIT.
Data Length in Bytes: 2
Data Format: L16u
Type: R/W
Default Value: 0.9 x VOUT pin-strap setting
Units: V
TON_DELAY (60h)
Definition: Sets the delay time from when the device is enabled to the start of VOUT rise.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: Pin-strap setting
Units: ms
Range: 2ms to 300ms
TON_RISE (61h)
Definition: Sets the rise time of VOUT after ENABLE and TON_DELAY.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: Pin-strap setting
Units: ms
Range: 1ms to 120ms
FN9348 Rev.1.00 Page 41 of 57
Feb 8, 2019
RAA210833
TOFF_DELAY (64h)
Definition: Sets the delay time from DISABLE to the start of VOUT fall.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: Pin-strap setting
Units: ms
Range: 2ms to 300ms
TOFF_FALL (65h)
Definition: Sets the fall time for VOUT after DISABLE and TOFF_DELAY.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: Pin-strap setting
Units: ms
Range: 0ms to 120ms
STATUS_BYTE (78h)
Definition: Returns one byte of information with a summary of the most critical faults.
Data Length in Bytes: 1
Data Format: BIT
Type: Read only
Default Value: 00h
Units: N/A
Bit Number Status Bit Name Meaning
7 BUSY A fault was declared because the device was busy and unable to respond.
6 OFF This bit is asserted if the unit is not providing power to the output, regardless of the
reason, including simply not being enabled.
5 VOUT_OV_FAULT An output overvoltage fault occurred.
4 IOUT_OC_FAULT An output overcurrent fault occurred.
3 VIN_UV_FAULT An input undervoltage fault occurred.
2 TEMPERATURE A temperature fault occurred.
1 CML A communications, memory, or logic fault occurred.
0 NONE OF THE ABOVE A fault not listed in Bits 7:1 occurred.
FN9348 Rev.1.00 Page 42 of 57
Feb 8, 2019
RAA210833
STATUS_WORD (79h)
Definition: Returns two bytes of information with a summary of the unit's fault condition. Based on the information in
these bytes, the host can get more information by reading the appropriate status registers. The low byte of the
STATUS_WORD is the same register as the STATUS_BYTE (78h) command.
Data Length in Bytes: 2
Data Format: BIT
Type: Read only
Default Value: 0000h
Units: N/A
STATUS_VOUT (7Ah)
Definition: Returns one data byte with the status of the output voltage.
Data Length in Bytes: 1
Data Format: BIT
Type: Read only
Default Value: 00h
Units: N/A
Bit Number Status Bit Name Meaning
15 VOUT An output voltage fault has occurred.
14 IOUT/POUT An output current or output power fault occurred.
13 INPUT An input voltage, input current, or input power fault occurred.
12 MFG_SPECIFIC A manufacturer specific fault occurred.
11 POWER_GOOD# The POWER_GOOD signal, if present, is negated.
10 Reserved Reserved
9 OTHER A bit in STATUS_OTHER is set.
8 UNKNOWN A fault type not given in Bits 15:1 of the STATUS_WORD detected.
7 BUSY A fault was declared because the device was busy and unable to respond.
6 OFF This bit is asserted if the unit is not providing power to the output, regardless of the
reason, including simply not being enabled.
5 VOUT_OV_FAULT An output overvoltage fault occurred.
4 IOUT_OC_FAULT An output overcurrent fault occurred.
3 VIN_UV_FAULT An input undervoltage fault occurred.
2 TEMPERATURE A temperature fault occurred.
1 CML A communications, memory, or logic fault occurred.
0 NONE OF THE ABOVE A fault not listed in Bits 7:1 occurred.
BIT NUMBER STATUS BIT NAME MEANING
7 VOUT_OV_FAULT Indicates an output overvoltage fault.
6:5 Reserved Reserved
4 VOUT_UV_FAULT Indicates an output undervoltage fault.
3:0 N/A These bits are not used.
FN9348 Rev.1.00 Page 43 of 57
Feb 8, 2019
RAA210833
STATUS_IOUT (7Bh)
Definition: Returns one data byte with the status of the output current.
Data Length in Bytes: 1
Data Format: BIT
Type: Read only
Default Value: 00h
Units: N/A
STATUS_INPUT (7Ch)
Definition: Returns input voltage and input current status information.
Data Length in Bytes: 1
Data Format: BIT
Type: Read only
Default Value: 00h
Units: N/A
STATUS_TEMPERATURE (7Dh)
Definition: Returns one byte of information with a summary of any temperature related faults.
Data Length in Bytes: 1
Data Format: BIT
Type: Read only
Default Value: 00h
Units: N/A
Bit Number Status Bit Name Meaning
7 IOUT_OC_FAULT An output overcurrent fault has occurred.
6:5 Reserved Reserved
4 IOUT_UC_FAULT An output undercurrent fault has occurred.
3:0 N/A Not used.
Bit Number Status Bit Name Meaning
7 VIN_OV_FAULT An input overvoltage fault has occurred.
6:5 Reserved Reserved
4 VIN_UV_FAULT An input undervoltage fault has occurred.
3:0 N/A Not used.
Bit Number Status Bit Name Meaning
7 OT_FAULT An over-temperature fault has occurred.
6:5 Reserved Reserved
4 UT_FAULT An under-temperature fault has occurred.
3:0 N/A These bits are not used.
FN9348 Rev.1.00 Page 44 of 57
Feb 8, 2019
RAA210833
STATUS_CML (7Eh)
Definition: Returns one byte of information with a summary of any Communications, Logic, and/or Memory errors.
Data Length in Bytes: 1
Data Format: BIT
Type: Read only
Default Value: 00h
Units: N/A
STATUS_MFR_SPECIFIC (80h)
Definition: Returns one byte of information providing the status of the device's voltage monitoring and clock
synchronization faults.
Data Length in Bytes: 1
Data Format: BIT
Type: Read only
Default Value: 00h
Units: N/A
READ_VIN (88h)
Definition: Returns the input voltage reading.
Data Length in Bytes: 2
Data Format: L11
Type: Read only
Units: V
Bit Number Meaning
7 Invalid or unsupported PMBus command was received.
6 The PMBus command was sent with invalid or unsupported data.
5 Packet error was detected in the PMBus command.
4 Memory/logic fault has occurred.
3:2 Reserved
1 A PMBus command tried to write to a read only or protected command, or a communication fault other than the
ones listed in this table has occurred.
0 Not used
Bit Number Field Name Meaning
7:4 Reserved Reserved
3 External Switching Period Fault Loss of external clock synchronization occurred.
2 Reserved Reserved
1 VMON UV Fault The voltage on the VMON pin dropped below the level set by
VMON_UV_FAULT.
0 VMON OV Fault The voltage on the VMON pin rose above the level set by VMON_OV_FAULT.
FN9348 Rev.1.00 Page 45 of 57
Feb 8, 2019
RAA210833
READ_VOUT (8Bh)
Definition: Returns the output voltage reading.
Data Length in Bytes: 2
Data Format: L16u
Type: Read only
Units: V
READ_IOUT (8Ch)
Definition: Returns the output current reading.
Data Length in Bytes: 2
Data Format: L11
Type: Read only
Default Value: N/A
Units: A
READ_INTERNAL_TEMP (8Dh)
Definition: Returns the controller junction temperature reading from the internal temperature sensor.
Data Length in Bytes: 2
Data Format: L11
Type: Read only
Units: °C
READ_DUTY_CYCLE (94h)
Definition: Reports the actual duty cycle of the converter during the enable state.
Data Length in Bytes: 2
Data Format: L11
Type: Read only
Units: %
READ_FREQUENCY (95h)
Definition: Reports the actual switching frequency of the converter during the enable state.
Data Length in Bytes: 2
Data Format: L11
Type: Read only
Units: kHz
FN9348 Rev.1.00 Page 46 of 57
Feb 8, 2019
RAA210833
ASCR_CONFIG (DFh)
Definition: Allows you to configure the ASCR settings. ASCR gain is analogous to bandwidth and ASCR residual is
analogous to damping. To improve load transient response performance, increase ASCR gain. To decrease transient
response overshoot, increase ASCR residual. Increasing ASCR gain can result in increased PWM jitter and should be
evaluated in the application circuit. Excessive ASCR gain can lead to excessive output voltage ripple. Increasing
ASCR residual to improve transient response damping can result in slower recovery times, but does not affect the peak
output voltage deviation.
Data Length in Bytes: 4
Data Format: CUS
Type: R/W
Default Value: Pin-strap setting
DEVICE_ID (E4h)
Definition: Returns the 16-byte (character) device identifier string.
Data Length in Bytes: 16
Data Format: ASCII
Type: Block Read
Default Value: Part number/Die revision/Firmware revision
MFR_IOUT_OC_FAULT_RESPONSE (E5h)
Definition: Configures the IOUT overcurrent fault response as defined by the following table. The command format is
the same as the PMBus standard fault responses except that it sets the overcurrent status bit in STATUS_IOUT.
Data Length in Bytes: 1
Data Format: BIT
Type: R/W
Default Value: B9h (Disable and continuous retry with 70ms delay)
Units: N/A
Bit Purpose Data Format Value Description
31:25 Not Used 0000000h Not used
24 Reserved Reserved
23:16 ASCR Residual Setting Integer
15:0 ASCR Gain Setting Integer
Settings Actions
80h Disable with no retry.
B9h Disable and continuous retry with 70ms delay.
FN9348 Rev.1.00 Page 47 of 57
Feb 8, 2019
RAA210833
MFR_IOUT_UC_FAULT_RESPONSE (E6h)
Definition: Configures the IOUT undercurrent fault response as defined by the following table. The command format is
the same as the PMBus standard fault responses except that it sets the undercurrent status bit in STATUS_IOUT.
Data Length in Bytes: 1
Data Format: BIT
Type: R/W
Default Value: B9h (Disable and continuous retry with 70ms delay)
Units: N/A
SNAPSHOT (EAh)
Definition: A 32-byte readback of parametric and status values. It allows monitoring and status data to be stored to
flash following a fault condition. In case of a fault, the most recently updated values are stored to the flash memory.
When SNAPSHOT STATUS Byte 22 is set stored, the device will no longer automatically captures parametric and
status values following a fault until stored data are erased. Use the SNAPSHOT_CONTROL command to erase stored
data and clear the status bit before the next ramp up. Data erased are not allowed when the module is enabled.
Data Length in Bytes: 32
Data Format: Bit field
Type: Block Read
Settings Actions
80h Disable with no retry.
B9h Disable and continuous retry with 70ms delay.
Byte Number Value Pmbus Command Format
31:23 Reserved Reserved 00h
22 Flash Memory Status Byte
FF - Not Stored
00 - Stored
NVM Status Byte Bit
21 Manufacturer Specific Status Byte STATUS_MFR_SPECIFIC (80h) Byte
20 CML Status Byte STATUS_CML (7Eh) Byte
19 Temperature Status Byte STATUS_TEMPERATURE (7Dh) Byte
18 Input Status Byte STATUS_INPUT (7Ch) Byte
17 IOUT Status Byte STATUS_IOUT (7Bh) Byte
16 VOUT Status Byte STATUS_VOUT (7Ah) Byte
15:14 Switching Frequency READ_FREQUENCY (95h) L11
13:12 Reserved Reserved
11:10 Internal Temperature READ_INTERNAL_TEMP (8Dh) L11
9:8 Duty Cycle READ_DUTY_CYCLE (94h) L11
7:6 Reserved Reserved L11
5:4 Output Current READ_IOUT (8Ch) L11
3:2 Output Voltage READ_VOUT (8Bh) L16u
1:0 Input Voltage READ_VIN (88h) L11
FN9348 Rev.1.00 Page 48 of 57
Feb 8, 2019
RAA210833
SNAPSHOT_CONTROL (F3h)
Definition: Writing a 01h causes the device to copy the current Snapshot values from NVRAM to the 32-byte
Snapshot command parameter. Writing a 02h causes the device to write the current Snapshot values to NVRAM.
Writing a 03h erases all Snapshot values from NVRAM. Write (02h) and Erase (03h) can only be used when the device
is disabled. All other values are ignored.
Data Length in Bytes: 1
Data Format: Bit field
Type: R/W byte
MFR_VMON_OV_FAULT_LIMIT (F5h)
Definition: Reads the VMON OV fault threshold.
Data Length in Bytes: 2
Data Format: L11
Type: Read only
Default Value: CB00h (6V)
Units: V
Range: 4V to 6V
MFR_VMON_UV_FAULT_LIMIT (F6h)
Definition: Reads the VMON UV fault threshold.
Data Length in Bytes: 2
Data Format: L11
Type: Read only
Default Value: CA00h (4V)
Units: V
Range: 4V to 6V
MFR_READ_VMON (F7h)
Definition: Reads the VMON voltage.
Data Length in Bytes: 2
Data Format: L11
Type: Read only
Default Value: N/A
Units: V
Range: 4V to 6V
Value Description
01h Read Snapshot values from NVRAM.
02h Write Snapshot values to NVRAM.
03h Erase Snapshot values stored in NVRAM.
FN9348 Rev.1.00 Page 49 of 57
Feb 8, 2019
RAA210833
8. Revision History
8.1 Firmware
8.2 Datasheet
Firmware Revision Code Change Description Note
RAA210833--G0100 Initial release
Rev. Date Description
1.00 Feb 8, 2019 Updated the description for PG pin 28 on page 10.
Updated 80h action under OPERATION (01h) command on page 36.
0.00 Aug 31, 2018 Initial release
FN9348 Rev.1.00 Page 50 of 57
Feb 8, 2019
RAA210833
9. Package Outline Drawing
Y41.17x19
41 I/O 17.0mm x 19.0mmx3.6mm HDA Module
Rev 1, 5/16
2X0.10 C
3.6 ±0.1
0.025 MAX
// 0.10 C
C
SIDE VIEW
0.08 CSEATING
DETAIL A
TERMINAL #A1
INDEX AREA
B
TOP VIEW
0.20 REF
21 x 0.60 ±0.05
3
3
0.05 C
TERMINAL TIP
BOTTOM VIEW
PIN 1 INDICATOR
DATUM B
DATUM A
0.30 REF
SEE
0.30 REF
21 x 0.60 ±0.05
0.20 REF
1.00 BSC
1.00 BSC
2
2
DETAIL A
PLANE
2X
0.10 C
17.00 BSC
19.00 BSC
A
18.50 ±0.15
16.50 ±0.15
M0.10 C A B
M0.10 C A B
12.00
M0.10 C A B
M
NOTES:
1. All dimensions are in millimeters.
2. Represents the basic land grid pitch.
3. The total number of I/O (excluding dummy pads).
4. Unless otherwise specified, tolerance: decimal ±0.10.
5. Dimensioning and tolerancing per ASME Y14.M-2009.
6. The configuration of the pin #1 identifier is optional, but must be located within the zone indicated.
The pin #1 identifier may be either a mold or mark feature.
2.975
1.350
0.20 REF
0.475
1.300
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
12345678910111213141516
17
9.00
For the most recent package outline drawing, see Y41.17x19.
FN9348 Rev.1.00 Page 51 of 57
Feb 8, 2019
RAA210833
SIZE DETAILS FOR THE 16 EXPOSED DAPS
BOTTOM VIEW
2.50
0.60
1.50
4X
0.60
0.80
2.00
0.70
0.70
1.30
0.60
1.00
0.60
1.00 0.60
0.60
1.60
2X 1.60
2X 0.60
1.50
0.60
0.80
5.10
7.60
4.90
2.00
8.20
8.20
5.10
1.50
1.80
3.00 1.50
1.40
2.00
2.70
3.05
4.805.80
10.00
3.00
3.50
4X 1.60
FN9348 Rev.1.00 Page 52 of 57
Feb 8, 2019
RAA210833
SIZE DETAILS FOR THE 16 EXPOSED DAPS
TOP VIEW
2.50
0.60
1.50
4X
0.60
0.80
2.00
0.70
0.70
1.30
0.60
1.00
0.60
1.00
0.60
0.60
1.60
2X 1.60
2X 0.60
1.50
0.60
0.80
5.10
7.60
4.90
2.00
8.20 8.20
5.10
1.50
1.80
3.00
1.50
1.40
2.00
2.70
3.05
4.80 5.80
10.00
3.00 3.50
4X 1.60
FN9348 Rev.1.00 Page 53 of 57
Feb 8, 2019
RAA210833
RECOMMENDED SOLDER MASK DEFINED PCB LAND PATTERN (1)
TOP VIEW
0.00
0.000 0.000
0.000
8.500
8.200
7.050
6.850
6.700
5.700
5.300
4.700
4.300
3.700
3.300
2.700
2.300
1.700
1.300
0.700
0.300
0.300
0.700
1.300
1.700
2.300
2.700
3.300
3.700
4.300
4.700
5.300
5.700
6.700
8.300
8.500
0.775
0.175
6.300
7.700
9.500
9.300
8.700
8.300
7.700
7.300
6.700
6.300
5.700
5.300
4.700
4.300
3.700
3.300
2.700
0.044
0.556
0.400
1.400
2.000
6.150
7.575
7.775
5.900
7.900
8.500
9.200
9.500
1.000
2.675
3.275
4.625
8.500
8.300
7.600
7.400
5.550
5.350
5.100
4.900
3.500
3.000
2.800
1.600
0.200
1.400
1.600
3.000
4.700
6.350
6.550
8.200
6.300
1.000
2.700
1.400
8.500
9.500
9.200
7.300
7.100
5.200
5.000
3.100
2.900
1.000
0.300
1.450
1.650
3.400
3.600
5.350
5.550
7.300
8.700
9.300
9.500
8.300
7.700
5.900
7.450
7.650
4.400
5.400
4.025
0.600
FN9348 Rev.1.00 Page 54 of 57
Feb 8, 2019
RAA210833
RECOMMENDED SOLDER MASK DEFINED PCB LAND PATTERN (2)
TOP VIEW
0.000
0.000
0.000
0.000
6.000
5.200
2.200
0.633
0.433
1.133
1.333
2.550
2.900
7.300
6.800
7.100
6.750
5.533
5.333
3.767
3.567
2.000
2.300
1.700
1.100
0.900
0.300
0.900
2.500
3.500
3.700
5.200
5.300
4.700
2.900
1.300
1.700
3.300
3.700
5.300
5.700
6.900
6.700
0.300
7.300
6.300
FN9348 Rev.1.00 Page 55 of 57
Feb 8, 2019
RAA210833
RECOMMENDED STENCIL PATTERN (90% PASTE TO PAD) (1)
TOP VIEW
0.000
0.000 0.000
0.000
8.500
8.180
7.070
6.830
5.720
5.280
4.720
4.285
3.715
3.285
2.715
2.285
1.715
1.285
0.715
0.285
0.285
0.715
1.285
1.715
2.285
2.715
3.285
3.715
4.285
4.715
5.285
5.715
6.285
6.720
8.280
8.500
6.740
7.715
0.760
0.190
9.500
9.280
8.720
8.280
7.720
7.285
6.715
6.285
5.715
5.285
4.715
4.285
3.715
3.285
2.715
1.420
5.940
6.180
7.545
7.805
7.860
8.530
9.170
9.500
0.980
0.420
0.536
0.024
8.500
8.270
7.630
7.370
6.960
5.580
5.320
5.140
4.860
3.530
3.040
0.040
1.360
1.640
2.960
4.740
6.310
6.590
8.160
8.500
5.380
4.420
2.680
1.420
9.500
8.720
7.720
7.260
5.590
3.640
3.360
1.690
1.410
0.260
1.040
2.860
3.140
4.960
5.240
7.060
7.340
9.160
8.285
6.320
5.310
0.585
1.980
8.280
0.015
FN9348 Rev.1.00 Page 56 of 57
Feb 8, 2019
RAA210833
RECOMMENDED STENCIL PATTERN (90% PASTE TO PAD) (2)
TOP VIEW
0.000
5.970
5.230
2.160
0.673
0.393
1.093
1.373
2.533
2.860
6.330
8.270
7.270
7.730
2.270
1.730
0.930
1.070
0.270
0.870
3.740
5.160
4.610
4.040
3.260
2.690
2.770
1.630
1.370
0.230
1.015
1.585
5.730
7.270
5.270
3.730
3.270
1.730
1.270
0.270
6.733
5.573
5.293
3.807
3.527
2.040
2.940
4.660
6.660
6.940
5.340
8.260
6.330
6.830
7.060
2.530
3.470
5.930
7.420
7.680
9.170
5HQHVDV(OHFWURQLFV&RUSRUDWLRQ$OOULJKWVUHVHUYHG
1RWLFH
 'HVFULSWLRQVRIFLUFXLWVVRIWZDUHDQGRWKHUUHODWHGLQIRUPDWLRQLQWKLVGRFXPHQWDUHSURYLGHGRQO\WRLOOXVWUDWHWKHRSHUDWLRQRIVHPLFRQGXFWRUSURGXFWV
DQGDSSOLFDWLRQH[DPSOHV<RXDUHIXOO\UHVSRQVLEOHIRUWKHLQFRUSRUDWLRQRUDQ\RWKHUXVHRIWKHFLUFXLWVVRIWZDUHDQGLQIRUPDWLRQLQWKHGHVLJQRI\RXU
SURGXFWRUV\VWHP5HQHVDV(OHFWURQLFVGLVFODLPVDQ\DQGDOOOLDELOLW\IRUDQ\ORVVHVDQGGDPDJHVLQFXUUHGE\\RXRUWKLUGSDUWLHVDULVLQJIURPWKHXVHRI
WKHVHFLUFXLWVVRIWZDUHRULQIRUPDWLRQ
 5HQHVDV(OHFWURQLFVKHUHE\H[SUHVVO\GLVFODLPVDQ\ZDUUDQWLHVDJDLQVWDQGOLDELOLW\IRULQIULQJHPHQWRUDQ\RWKHUFODLPVLQYROYLQJSDWHQWVFRS\ULJKWVRU
RWKHULQWHOOHFWXDOSURSHUW\ULJKWVRIWKLUGSDUWLHVE\RUDULVLQJIURPWKHXVHRI5HQHVDV(OHFWURQLFVSURGXFWVRUWHFKQLFDOLQIRUPDWLRQGHVFULEHGLQWKLV
GRFXPHQWLQFOXGLQJEXWQRWOLPLWHGWRWKHSURGXFWGDWDGUDZLQJVFKDUWVSURJUDPVDOJRULWKPVDQGDSSOLFDWLRQH[DPSOHV
 1ROLFHQVHH[SUHVVLPSOLHGRURWKHUZLVHLVJUDQWHGKHUHE\XQGHUDQ\SDWHQWVFRS\ULJKWVRURWKHULQWHOOHFWXDOSURSHUW\ULJKWVRI5HQHVDV(OHFWURQLFVRU
RWKHUV
 <RXVKDOOQRWDOWHUPRGLI\FRS\RUUHYHUVHHQJLQHHUDQ\5HQHVDV(OHFWURQLFVSURGXFWZKHWKHULQZKROHRULQSDUW5HQHVDV(OHFWURQLFVGLVFODLPVDQ\
DQGDOOOLDELOLW\IRUDQ\ORVVHVRUGDPDJHVLQFXUUHGE\\RXRUWKLUGSDUWLHVDULVLQJIURPVXFKDOWHUDWLRQPRGLILFDWLRQFRS\LQJRUUHYHUVHHQJLQHHULQJ
 5HQHVDV(OHFWURQLFVSURGXFWVDUHFODVVLILHGDFFRUGLQJWRWKHIROORZLQJWZRTXDOLW\JUDGHV6WDQGDUGDQG+LJK4XDOLW\7KHLQWHQGHGDSSOLFDWLRQVIRU
HDFK5HQHVDV(OHFWURQLFVSURGXFWGHSHQGVRQWKHSURGXFWVTXDOLW\JUDGHDVLQGLFDWHGEHORZ
6WDQGDUG &RPSXWHUVRIILFHHTXLSPHQWFRPPXQLFDWLRQVHTXLSPHQWWHVWDQGPHDVXUHPHQWHTXLSPHQWDXGLRDQGYLVXDOHTXLSPHQWKRPH
HOHFWURQLFDSSOLDQFHVPDFKLQHWRROVSHUVRQDOHOHFWURQLFHTXLSPHQWLQGXVWULDOURERWVHWF
+LJK4XDOLW\ 7UDQVSRUWDWLRQHTXLSPHQWDXWRPRELOHVWUDLQVVKLSVHWFWUDIILFFRQWUROWUDIILFOLJKWVODUJHVFDOHFRPPXQLFDWLRQHTXLSPHQWNH\
ILQDQFLDOWHUPLQDOV\VWHPVVDIHW\FRQWUROHTXLSPHQWHWF
8QOHVVH[SUHVVO\GHVLJQDWHGDVDKLJKUHOLDELOLW\SURGXFWRUDSURGXFWIRUKDUVKHQYLURQPHQWVLQD5HQHVDV(OHFWURQLFVGDWDVKHHWRURWKHU5HQHVDV
(OHFWURQLFVGRFXPHQW5HQHVDV(OHFWURQLFVSURGXFWVDUHQRWLQWHQGHGRUDXWKRUL]HGIRUXVHLQSURGXFWVRUV\VWHPVWKDWPD\SRVHDGLUHFWWKUHDWWR
KXPDQOLIHRUERGLO\LQMXU\DUWLILFLDOOLIHVXSSRUWGHYLFHVRUV\VWHPVVXUJLFDOLPSODQWDWLRQVHWFRUPD\FDXVHVHULRXVSURSHUW\GDPDJHVSDFHV\VWHP
XQGHUVHDUHSHDWHUVQXFOHDUSRZHUFRQWUROV\VWHPVDLUFUDIWFRQWUROV\VWHPVNH\SODQWV\VWHPVPLOLWDU\HTXLSPHQWHWF5HQHVDV(OHFWURQLFVGLVFODLPV
DQ\DQGDOOOLDELOLW\IRUDQ\GDPDJHVRUORVVHVLQFXUUHGE\\RXRUDQ\WKLUGSDUWLHVDULVLQJIURPWKHXVHRIDQ\5HQHVDV(OHFWURQLFVSURGXFWWKDWLV
LQFRQVLVWHQWZLWKDQ\5HQHVDV(OHFWURQLFVGDWDVKHHWXVHUVPDQXDORURWKHU5HQHVDV(OHFWURQLFVGRFXPHQW
 :KHQXVLQJ5HQHVDV(OHFWURQLFVSURGXFWVUHIHUWRWKHODWHVWSURGXFWLQIRUPDWLRQGDWDVKHHWVXVHUVPDQXDOVDSSOLFDWLRQQRWHV*HQHUDO1RWHVIRU
+DQGOLQJDQG8VLQJ6HPLFRQGXFWRU'HYLFHVLQWKHUHOLDELOLW\KDQGERRNHWFDQGHQVXUHWKDWXVDJHFRQGLWLRQVDUHZLWKLQWKHUDQJHVVSHFLILHGE\
5HQHVDV(OHFWURQLFVZLWKUHVSHFWWRPD[LPXPUDWLQJVRSHUDWLQJSRZHUVXSSO\YROWDJHUDQJHKHDWGLVVLSDWLRQFKDUDFWHULVWLFVLQVWDOODWLRQHWF5HQHVDV
(OHFWURQLFVGLVFODLPVDQ\DQGDOOOLDELOLW\IRUDQ\PDOIXQFWLRQVIDLOXUHRUDFFLGHQWDULVLQJRXWRIWKHXVHRI5HQHVDV(OHFWURQLFVSURGXFWVRXWVLGHRIVXFK
VSHFLILHGUDQJHV
 $OWKRXJK5HQHVDV(OHFWURQLFVHQGHDYRUVWRLPSURYHWKHTXDOLW\DQGUHOLDELOLW\RI5HQHVDV(OHFWURQLFVSURGXFWVVHPLFRQGXFWRUSURGXFWVKDYHVSHFLILF
FKDUDFWHULVWLFVVXFKDVWKHRFFXUUHQFHRIIDLOXUHDWDFHUWDLQUDWHDQGPDOIXQFWLRQVXQGHUFHUWDLQXVHFRQGLWLRQV8QOHVVGHVLJQDWHGDVDKLJKUHOLDELOLW\
SURGXFWRUDSURGXFWIRUKDUVKHQYLURQPHQWVLQD5HQHVDV(OHFWURQLFVGDWDVKHHWRURWKHU5HQHVDV(OHFWURQLFVGRFXPHQW5HQHVDV(OHFWURQLFVSURGXFWV
DUHQRWVXEMHFWWRUDGLDWLRQUHVLVWDQFHGHVLJQ<RXDUHUHVSRQVLEOHIRULPSOHPHQWLQJVDIHW\PHDVXUHVWRJXDUGDJDLQVWWKHSRVVLELOLW\RIERGLO\LQMXU\
LQMXU\RUGDPDJHFDXVHGE\ILUHDQGRUGDQJHUWRWKHSXEOLFLQWKHHYHQWRIDIDLOXUHRUPDOIXQFWLRQRI5HQHVDV(OHFWURQLFVSURGXFWVVXFKDVVDIHW\
GHVLJQIRUKDUGZDUHDQGVRIWZDUHLQFOXGLQJEXWQRWOLPLWHGWRUHGXQGDQF\ILUHFRQWURODQGPDOIXQFWLRQSUHYHQWLRQDSSURSULDWHWUHDWPHQWIRUDJLQJ
GHJUDGDWLRQRUDQ\RWKHUDSSURSULDWHPHDVXUHV%HFDXVHWKHHYDOXDWLRQRIPLFURFRPSXWHUVRIWZDUHDORQHLVYHU\GLIILFXOWDQGLPSUDFWLFDO\RXDUH
UHVSRQVLEOHIRUHYDOXDWLQJWKHVDIHW\RIWKHILQDOSURGXFWVRUV\VWHPVPDQXIDFWXUHGE\\RX
 3OHDVHFRQWDFWD5HQHVDV(OHFWURQLFVVDOHVRIILFHIRUGHWDLOVDVWRHQYLURQPHQWDOPDWWHUVVXFKDVWKHHQYLURQPHQWDOFRPSDWLELOLW\RIHDFK5HQHVDV
(OHFWURQLFVSURGXFW<RXDUHUHVSRQVLEOHIRUFDUHIXOO\DQGVXIILFLHQWO\LQYHVWLJDWLQJDSSOLFDEOHODZVDQGUHJXODWLRQVWKDWUHJXODWHWKHLQFOXVLRQRUXVHRI
FRQWUROOHGVXEVWDQFHVLQFOXGLQJZLWKRXWOLPLWDWLRQWKH(85R+6'LUHFWLYHDQGXVLQJ5HQHVDV(OHFWURQLFVSURGXFWVLQFRPSOLDQFHZLWKDOOWKHVH
DSSOLFDEOHODZVDQGUHJXODWLRQV5HQHVDV(OHFWURQLFVGLVFODLPVDQ\DQGDOOOLDELOLW\IRUGDPDJHVRUORVVHVRFFXUULQJDVDUHVXOWRI\RXUQRQFRPSOLDQFH
ZLWKDSSOLFDEOHODZVDQGUHJXODWLRQV
 5HQHVDV(OHFWURQLFVSURGXFWVDQGWHFKQRORJLHVVKDOOQRWEHXVHGIRURULQFRUSRUDWHGLQWRDQ\SURGXFWVRUV\VWHPVZKRVHPDQXIDFWXUHXVHRUVDOHLV
SURKLELWHGXQGHUDQ\DSSOLFDEOHGRPHVWLFRUIRUHLJQODZVRUUHJXODWLRQV<RXVKDOOFRPSO\ZLWKDQ\DSSOLFDEOHH[SRUWFRQWUROODZVDQGUHJXODWLRQV
SURPXOJDWHGDQGDGPLQLVWHUHGE\WKHJRYHUQPHQWVRIDQ\FRXQWULHVDVVHUWLQJMXULVGLFWLRQRYHUWKHSDUWLHVRUWUDQVDFWLRQV
 ,WLVWKHUHVSRQVLELOLW\RIWKHEX\HURUGLVWULEXWRURI5HQHVDV(OHFWURQLFVSURGXFWVRUDQ\RWKHUSDUW\ZKRGLVWULEXWHVGLVSRVHVRIRURWKHUZLVHVHOOVRU
WUDQVIHUVWKHSURGXFWWRDWKLUGSDUW\WRQRWLI\VXFKWKLUGSDUW\LQDGYDQFHRIWKHFRQWHQWVDQGFRQGLWLRQVVHWIRUWKLQWKLVGRFXPHQW
 7KLVGRFXPHQWVKDOOQRWEHUHSULQWHGUHSURGXFHGRUGXSOLFDWHGLQDQ\IRUPLQZKROHRULQSDUWZLWKRXWSULRUZULWWHQFRQVHQWRI5HQHVDV(OHFWURQLFV
 3OHDVHFRQWDFWD5HQHVDV(OHFWURQLFVVDOHVRIILFHLI\RXKDYHDQ\TXHVWLRQVUHJDUGLQJWKHLQIRUPDWLRQFRQWDLQHGLQWKLVGRFXPHQWRU5HQHVDV
(OHFWURQLFVSURGXFWV
1RWH 5HQHVDV(OHFWURQLFVDVXVHGLQWKLVGRFXPHQWPHDQV5HQHVDV(OHFWURQLFV&RUSRUDWLRQDQGDOVRLQFOXGHVLWVGLUHFWO\RULQGLUHFWO\FRQWUROOHG
VXEVLGLDULHV
1RWH 5HQHVDV(OHFWURQLFVSURGXFWVPHDQVDQ\SURGXFWGHYHORSHGRUPDQXIDFWXUHGE\RUIRU5HQHVDV(OHFWURQLFV
5HY1RYHPEHU
&RUSRUDWH+HDGTXDUWHUV &RQWDFW,QIRUPDWLRQ
72<268)25(6,$7R\RVX
.RWRNX7RN\R-DSDQ
ZZZUHQHVDVFRP
)RUIXUWKHULQIRUPDWLRQRQDSURGXFWWHFKQRORJ\WKHPRVWXSWRGDWH
YHUVLRQRIDGRFXPHQWRU\RXUQHDUHVWVDOHVRIILFHSOHDVHYLVLW
ZZZUHQHVDVFRPFRQWDFW
7UDGHPDUNV
5HQHVDVDQGWKH5HQHVDVORJRDUHWUDGHPDUNVRI5HQHVDV(OHFWURQLFV
&RUSRUDWLRQ$OOWUDGHPDUNVDQGUHJLVWHUHGWUDGHPDUNVDUHWKHSURSHUW\
RIWKHLUUHVSHFWLYHRZQHUV
Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com
Contact Information
For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/
Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.