Oct. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM50B5LA060
FLAT-BASE TYPE
INSULATED PACKAGE
PM50B5LA060
FEATURE
a) Adopting new 5th generation IGBT (CSTBT
TM
) chip, which
performance is improved by 1µm fine rule process.
For example, typical Vce(sat)=1.55V @Tj=125°C
b) Over-temperature protection by detecting Tj of the CSTBT
TM
chips and error output is possible from all each conserva-
tion upper and lower arm of IPM.
c) New small package
Reduce the package size by 10%, thickness by 22% from
S-DASH series.
•2φ 50A, 600V Current-sense IGBT type inverter
50A, 600V Current-sense Chopper IGBT
Monolithic gate drive & protection logic
Detection, protection & status indication circuits for, short-
circuit, over-temperature & under-voltage (P-Fo available
from upper arm devices)
UL Recognized Yellow Card No.E80276(N)
File No.E80271
APPLICATION
Photo voltaic power conditioner
PACKAGE OUTLINES Dimensions in mm
1. VUPC
2. UFO
3. UP
4. VUP1
5. VVPC
6. VFO
7. VP
15. NC
16. UN
17. VN
18. WN
19. Fo
8. VVP1
9. NC
10. NC
11. NC
12. NC
13. VNC
14. VN1
Te r minal code
106
19.75 3.25
7
16 15.25
2-φ5.5
6-M5 NUTS
MOUNTING HOLES
L A B E L
6-23-23-23-2
B
NP
UVW
10.75
7
12 (SCREWING DEPTH)
19-0.5
32.75 23 23 23
13
31
5511.75
32
13.5
3
16
17.5 17.5
(19.75)
12
14.5
1616
12011
1591319
12 22
+
1
0.5
2-φ2.5
MITSUBISHI <INTELLIGENT POWER MODULES>
PM50B5LA060
FLAT-BASE TYPE
INSULATED PACKAGE
Oct. 2005
VCES
±IC
±ICP
PC
Tj
Collector-Emitter Voltage
Collector Current
Collector Current (Peak)
Collector Dissipation
Junction Temperature
VD = 15V, VCIN = 15V
TC = 25°C
TC = 25°C
TC = 25°C
V
A
A
W
°C
MAXIMUM RATINGS (Tj = 25°C, unless otherwise noted)
INVERTER PART
Symbol Parameter Condition Ratings Unit
600
50
100
131
–20 ~ +150
INTERNAL FUNCTIONS BLOCK DIAGRAM
VCES
IC
ICP
PC
IF
VR(DC)
Tj
CONVERTER PART
Collector-Emitter Voltage
Collector Current
Collector Current (Peak)
Collector Dissipation
FWDi Forward Current
FWDi Rated DC Reverse Voltage
Junction Temperature
VD = 15V, VCIN = 15V
TC = 25°C
TC = 25°C
TC = 25°C(Note-1)
TC = 25°C
TC = 25°C
V
A
A
W
A
V
°C
Symbol Parameter Condition Ratings Unit
600
50
100
131
50
600
–20 ~ +150
IFO
CONTROL PART
V
mA
20
20
Supply Voltage
Input Voltage
Fault Output Supply Voltage
Fault Output Current
Symbol Parameter Condition Ratings Unit
Applied between : VUP1-VUPC
VVP1-VVPC, VN1-VNC
Applied between : UP-VUPC, VP-VVPC
UN • VN • WN-VNC
Applied between : UFO-VUPC, VFO-VVPC, FO-VNC
Sink current at UFO, VFO, FO terminals
20
20
VD
VCIN
VFO
V
V
GND IN Fo Vcc
GND SC OUTOT
UP
GND IN Fo Vcc
GND SC OUTOT
N
GND IN Fo Vcc
GND SC OUTOT
GND IN Fo Vcc
GND SC OUTOT
W
GND IN Fo Vcc
GND SC OUTOT
VB
UP VUP1
UFOVUPC
UNVNVN1WNVNC
VP VVP1
VFOFONC VVPCNCNCNCNC
1.5k
1.5k 1.5k
MITSUBISHI <INTELLIGENT POWER MODULES>
PM50B5LA060
FLAT-BASE TYPE
INSULATED PACKAGE
Oct. 2005
Parameter
Symbol
Supply Voltage Protected by
SC
Supply Voltage (Surge)
Storage Temperature
Isolation Voltage
Condition
VCC(surge)
Tstg
Viso
Ratings
VCC(PROT) 450
500
–40 ~ +125
2500
Unit
V
°C
Vrms
V
VD = 13.5 ~ 16.5V, Inverter Part,
Tj = +125°C Start
Applied between : P-N, Surge value
60Hz, Sinusoidal, Charged part to Base, AC 1 min.
2.3
2.0
3.3
1.4
0.2
0.4
1.8
0.4
1
10
Min. Typ. Max.
Collector-Emitter
Saturation Voltage
Collector-Emitter
Cutoff Current
–IC = 50A, VD = 15V, VCIN = 15V (Fig. 2)
Tj = 25°C
Tj = 125°C
ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted)
INVERTER PART
Parameter
Symbol Condition
VCE(sat)
ICES
VEC
ton
trr
tc(on)
toff
tc(off)
Limits
0.3
1.7
1.55
2.2
0.7
0.1
0.2
0.9
0.2
Tj = 25°C
Tj = 125°C
FWDi Forward Voltage
Switching Time
VD = 15V, VCIN = 0V15V
VCC = 300V, IC = 50A
Tj = 125°C
Inductive Load (Fig. 3,4)
V
CE
= V
CES
, V
CIN
= 15V
(Fig. 5)
VD = 15V, IC = 50A
VCIN = 0V (Fig. 1)
TOTAL SYSTEM
V
mA
V
µs
Unit
0.95
1.61
0.95
0.95
1.61
0.038
°C/W
Rth(j-c)Q
Rth(j-c)F
Rth(j-c)Q
Rth(j-c)F
Rth(j-c)F
Rth(c-f)
Inverter IGBT part (per 1/4 module) (Note-1)
Inverter FWDi part (per 1/4 module) (Note-1)
Converter IGBT part (Note-1)
Converter FWDi upper part (Note-1)
Converter FWDi lower part (Note-1)
Case to fin, (per 1 module)
Thermal grease applied (Note-1)
Symbol Condition Unit
Min.
Junction to case Thermal
Resistances
THERMAL RESISTANCES
Contact Thermal Resistance
(Note-1) Tc (under the chip) measurement point is below.
Parameter Limits
Typ. Max.
UP
IGBT
32.7
–10.0
VP WP UN VN WN
FWDi
32.2
–0.2
IGBT
62.8
–8.8
FWDi
63.3
–2.0
FWDi
82.9
–8.4
IGBT
38.8
8.0
FWDi
39.3
0.8
IGBT
53.0
3.8
FWDi
52.5
–2.8
IGBT
75.6
3.8
FWDi
75.1
–2.8
arm
axis
X
Y
(unit : mm)
Bottom view
MITSUBISHI <INTELLIGENT POWER MODULES>
PM50B5LA060
FLAT-BASE TYPE
INSULATED PACKAGE
Oct. 2005
3.5
3.5
Main terminal screw : M5
Mounting part screw : M5
Symbol Parameter
Mounting torque
Mounting torque
Weight
Condition Unit
N • m
N • m
g
Limits
Min. Typ. Max.
2.5
2.5
3.0
3.0
380
MECHANICAL RATINGS AND CHARACTERISTICS
0.3
VCE(sat)
ICES
VEC
VFM
ton
trr
tc(on)
toff
tc(off)
V
mA
Min. Typ. Max.
V
V
Collector-Emitter
Saturation Voltage
FWDi Forward Voltage
Forward Voltage
Collector-Emitter
Cutoff Current
–IC = 50A, VCIN = 15V, VD = 15V (Fig. 2)
IF = 50A
Tj = 25°C
Tj = 125°C
Unit
Parameter
Symbol Condition Limits
2.3
2.0
3.3
3.0
1.4
0.2
0.4
1.8
0.4
1
10
1.7
1.55
2.2
1.9
0.7
0.1
0.2
0.9
0.2
Tj = 25°C
Tj = 125°C
CONVERTER PART
VD = 15V, IC = 50A
VCIN = 0V, Pulsed (Fig. 1)
V
CE
= V
CES
, V
D
= 15V
(Fig. 5)
VD = 15V, VCIN = 15V
Applied between : UP-VUPC, VP-VVPC
UN • VN • WN-VNC
ID
°C
V
mA
ms
25
10
1.8
2.3
12.5
0.01
15
mA
Circuit Current
Input ON Threshold Voltage
Input OFF Threshold Voltage
Short Circuit Trip Level
Short Circuit Current Delay
Time
Over Temperature Protection
Supply Circuit Under-Voltage
Protection
Fault Output Current
Minimum Fault Output Pulse
Width
Vth(ON)
Vth(OFF)
SC
toff(SC)
OT
OTr
UV
UVr
IFO(H)
IFO(L)
tFO
Trip level
Reset level
Trip level
Reset level
CONTROL PART
1.2
1.7
100
100
135
11.5
1.0
Parameter
Symbol Condition Max.
Min. Typ. Unit
Limits
15
5
1.5
2.0
0.2
145
125
12.0
12.5
10
1.8
(Note-2) Fault output is given only when the internal SC, OT & UV protections schemes of either upper or lower arm device operate to
protect it.
VD = 15V
Detect Tj of IGBT chip
–20 Tj 125°C
VD = 15V, VFO = 15V (Note-2)
VD = 15V (Note-2)
V
µs
VN1-VNC
V*P1-V*PC
A
RECOMMENDED CONDITIONS FOR USE
Recommended value Unit
Condition
Symbol Parameter
V
Applied across P-N terminals
Applied between : VUP1-VUPC, VVP1-VVPC
VN1-VNC (Note-3)
Applied between : UP-VUPC, VP-VVPC
UN • VN • WN-VNC
Using Application Circuit of Fig. 8
For IPM’s each input signals (Fig. 7)
Supply Voltage
Control Supply Voltage
Input ON Voltage
Input OFF Voltage
PWM Input Frequency
Arm Shoot-through
Blocking Time
450
15 ±1.5
0.8
9.0
20
2.0
VCC
VCIN(ON)
VCIN(OFF)
fPWM
tdead
VDV
kHz
µs
V
(Note-3) With ripple satisfying the following conditions : dv/dt swing ±5V/µs, Variation 2V peak to peak
–20 Tj 125°C, VD = 15V (Fig. 3,6)
VD = 15V (Fig. 3,6)
Inverter part
Converter part
VD = 15V, VCIN = 0V15V
VCC = 300V, IC = 50A
Tj = 125°C
Inductive Load (Fig. 3,4)
Switching Time µs
MITSUBISHI <INTELLIGENT POWER MODULES>
PM50B5LA060
FLAT-BASE TYPE
INSULATED PACKAGE
Oct. 2005
PRECAUTIONS FOR TESTING
1. Before appling any control supply voltage (VD), the input terminals should be pulled up by resistores, etc. to their corre-
sponding supply voltage and each input signal should be kept off state.
After this, the specified ON and OFF level setting for each input signal should be done.
2. When performing “SC” tests, the turn-off surge voltage spike at the corresponding protection operation should not be al-
lowed to rise above VCES rating of the device.
(These test should not be done by using a curve tracer or its equivalent.)
P, (U,V,W)
U,V, (N) U,V,W, (N)
VD (all)
IN
Fo
IN
Fo
VD (all)
VCIN
(0V)
Ic
V V
P, (U,V,W)
VCIN
(15V)
Ic
Fig. 7 Dead Time Measurement Point Example
Fig. 1 VCE(sat) Test Fig. 2 VEC, (VFM) Test
0V 1.5V 1.5V
1.5V
2V
2V
2V
0V
t
t
tdeadtdeadtdead
1.5V: Input on threshold voltage Vth(on) typical value, 2V: Input off threshold voltage Vth(off) typical value
IPM’ input signal VCIN
(Upper Arm)
IPM’ input signal VCIN
(Lower Arm)
10%
90%
trr
Irr
trtd(on)
tc(on) tc(off)
td(off)
VCIN
Ic
VCE
10%
10% 10%
90%
tf
(ton= td(on) + tr) (toff= td(off) + tf)
Fo
Fo
P
N
N
CS
CS
U,V,W
Vcc
Vcc
Ic
Ic
VD (all)
VD (all)
P
U,V
VCIN
VCIN
VCIN
(15V)
VCIN
(15V)
Fo
Fo
Fig. 3 Switching Time and SC Test Circuit Fig. 4 Switching Time Test Waveform
a) Lower Arm Switching
Signal input
(Upper Arm)
Signal input
(Lower Arm)
Signal input
(Upper Arm)
Signal input
(Lower Arm)
b) Upper Arm Switching
VCIN
Fig. 5 ICES Test
Fig. 6 SC Test Waveform
SC Trip
Short Circuit Current
toff(SC)
VD (all) U,V,W, (N)
P, (U,V,W) A
Pulse VCE
VCIN
(15V) Ic
Fo
IN
Fo
Constant Current
MITSUBISHI <INTELLIGENT POWER MODULES>
PM50B5LA060
FLAT-BASE TYPE
INSULATED PACKAGE
Oct. 2005
NOTES FOR STABLE AND SAFE OPERATION ;
Design the PCB pattern to minimize wiring length between opto-coupler and IPM’s input terminal, and also to minimize the
stray capacity between the input and output wirings of opto-coupler.
Connect low impedance capacitor between the Vcc and GND terminal of each fast switching opto-coupler.
Fast switching opto-couplers: tPLH, tPHL 0.8µs, Use High CMR type.
Slow switching opto-coupler: CTR > 100%
Use 3 isolated control power supplies (VD). Also, care should be taken to minimize the instantaneous voltage charge of the
power supply.
Make inductance of DC bus line as small as possible, and minimize surge voltage using snubber capacitor between P and N
terminal.
OUT
SC
OT
GND
GND
IN
Vcc
U
AC Output
V
W
N
B
P
~
IF
Fo
OUT
SC
OT
GND
GND
IN
Vcc
Fo
OUT
SC
OT
GND
GND
IN
Vcc
Fo
OUT
SC
OT
GND
GND
IN
Vcc
Fo
OUT
SC
OT
GND
GND
IN
Vcc
Fo
20k
0.1µ10µ
UFO
VUP1
UP
VUPC
IF
20k
20k
0.1µ10µ
IF
0.1µ10µ
VFO
VVP1
VP
UN
20k
IF
0.1µ10µ
VN
VN1
20k
IF
0.1µ10µ
WN
VNC
FO
NC
VVPC
NC
NC
NC
NC
Fig. 8 Application Example Circuit
1.5k
1.5k
1.5k
MITSUBISHI <INTELLIGENT POWER MODULES>
PM50B5LA060
FLAT-BASE TYPE
INSULATED PACKAGE
Oct. 2005
PERFORMANCE CURVES (INVERTER PART)
10
0
23 5710
1
23 5710
2
30
40
20
60
50
10
0010.5 1.5 2
Tj = 25°C15V 13V
VD = 17V
2
1.5
1
0.5
0010 20 30 40 50 60
VD = 15V
Tj = 25°C
Tj = 125°C
2
1.5
1
0.5
018
1312 1514 1716
IC = 50A
Tj = 25°C
Tj = 125°C
10
–2
10
0
7
5
3
2
10
0
10
–1
7
5
3
2
23 57
10
1
23 5710
2
tc(on)
VCC = 300V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
tc(off)
tc(off)
10
–1
10
1
7
5
3
2
10
0
7
5
3
2
t
off
VCC = 300V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
ton
ton
toff
10
0
23 5710
1
23 5710
2
10
–2
10
1
10
–1
10
0
7
5
3
2
7
5
3
2
7
5
3
2
E
SW(on)
ESW(off)
ESW(off)
VCC = 300V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
COLLECTOR-EMITTER
SATURATION VOLTAGE V
CE (sat)
(V)
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. Ic) CHARACTERISTICS
(TYPICAL)
COLLECTOR CURRENT I
C
(A)
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. VD) CHARACTERISTICS
(TYPICAL)
OUTPUT CHARACTERISTICS
(TYPICAL)
COLLECTOR CURRENT I
C
(A)
COLLECTOR-EMITTER SATURATION VOLTAGE V
CE (sat)
(V)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (sat)
(V)
CONTROL SUPPLY VOLTAGE V
D
(V)
SWITCHING TIME CHARACTERISTICS
(TYPICAL)
SWITCHING TIME tc(on), tc(off) (µs)
COLLECTOR CURRENT I
C
(A)
SWITCHING TIME ton, toff (µs)
SWITCHING TIME CHARACTERISTICS
(TYPICAL)
COLLECTOR CURRENT I
C
(A) COLLECTOR CURRENT I
C
(A)
SWITCHING LOSS CHARACTERISTICS
(TYPICAL)
SWITCHING LOSS ESW(on), ESW(off) (mJ/Pulse)
MITSUBISHI <INTELLIGENT POWER MODULES>
PM50B5LA060
FLAT-BASE TYPE
INSULATED PACKAGE
Oct. 2005
10
–3
10
0
7
5
3
2
10
–2
7
5
3
2
10
–1
7
5
3
2
10
–3
23 57
10
–2
23 57
10
–1
10
–5
23 57
10
–4
23 57 23 57
10
0
23 57
10
1
10
–3
10
0
7
5
3
2
10
–2
7
5
3
2
10
–1
7
5
3
2
10
–3
23 57
10
–2
23 57
10
–1
10
–5
23 57
10
–4
23 57 23 57
10
0
23 57
10
1
10
0
23 5710
1
23 5710
2
10
–2
10
–1
7
5
3
2
10
0
7
5
3
2
10
1
7
5
3
2
10
–1
10
0
7
5
3
2
10
1
7
5
3
2
10
2
7
5
3
2
10
0
10
2
7
5
3
2
0
10
1
7
5
3
2
0.5 1 1.5 2 2.5
V
D = 15V
Tj = 25°C
Tj = 125°C
Irr
VCC = 300V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
trr
10
0
23 5710
1
23 5710
2
10
–3
10
–2
7
5
3
2
10
–1
7
5
3
2
10
0
7
5
3
2
V
CC = 300V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
Err
Single Pulse
Per unit base = Rth(j – c)Q = 0.95°C/W
Single Pulse
Per unit base = Rth(j – c)F = 1.61°C/W
COLLECTOR REVERSE CURRENT –I
C
(A)
EMITTER-COLLECTOR VOLTAGE V
EC
(V)
FWDi FORWARD VOLTAGE CHARACTERISTICS
(TYPICAL)
REVERSE RECOVERY LOSS E
rr
(mJ/Pulse)
COLLECTOR REVERSE CURRENT I
C
(A)
FWDi REVERSE RECOVERY LOSS CHARACTERISTICS
(TYPICAL)
FWDi REVERSE RECOVERY CHARACTERISTICS
(TYPICAL)
COLLECTOR CURRENT I
C
(A)
REVERSE RECOVERY TIME t
rr
(µs)
REVERSE RECOVERY CURRENT l
rr
(A)
TIME
(s)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(IGBT PART)
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Z
th (j – c)
TIME
(s)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(FWDi PART)
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Z
th (j – c)
MITSUBISHI <INTELLIGENT POWER MODULES>
PM50B5LA060
FLAT-BASE TYPE
INSULATED PACKAGE
Oct. 2005
(CONVERTER PART)
10
–2
10
0
7
5
3
2
10
0
10
–1
7
5
3
2
23 57
10
1
23 5710
2
tc(on)
VCC = 300V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
tc(off)
tc(off)
10
0
23 5710
1
23 5710
2
10
–1
10
1
7
5
3
2
10
0
7
5
3
2
t
off
VCC = 300V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
ton
10
0
23 5710
1
23 5710
2
10
–2
10
1
10
–1
10
0
7
5
3
2
7
5
3
2
7
5
3
2
E
SW(on)
ESW(off)
ESW(off)
VCC = 300V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
30
40
20
60
50
10
0010.5 1.5 2
Tj = 25°C15V 13V
VD = 17V
2
1.5
1
0.5
0010 20 30 40 50 60
VD = 15V
Tj = 25°C
Tj = 125°C
2
1.5
1
0.5
018
1312 1514 1716
IC = 50A
Tj = 25°C
Tj = 125°C
COLLECTOR-EMITTER
SATURATION VOLTAGE V
CE (sat)
(V)
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. Ic) CHARACTERISTICS
(TYPICAL)
COLLECTOR CURRENT I
C
(A)
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. VD) CHARACTERISTICS
(TYPICAL)
OUTPUT CHARACTERISTICS
(TYPICAL)
COLLECTOR CURRENT I
C
(A)
COLLECTOR-EMITTER SATURATION VOLTAGE V
CE (sat)
(V)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (sat)
(V)
CONTROL SUPPLY VOLTAGE V
D
(V)
SWITCHING TIME CHARACTERISTICS
(Lower Arm · TYPICAL)
SWITCHING TIME tc(on), tc(off) (µs)
COLLECTOR CURRENT I
C
(A)
SWITCHING TIME ton, toff (µs)
SWITCHING TIME CHARACTERISTICS
(Lower Arm · TYPICAL)
COLLECTOR CURRENT I
C
(A) COLLECTOR CURRENT I
C
(A)
SWITCHING LOSS CHARACTERISTICS
(Lower Arm · TYPICAL)
SWITCHING LOSS ESW(on), ESW(off) (mJ/Pulse)
MITSUBISHI <INTELLIGENT POWER MODULES>
PM50B5LA060
FLAT-BASE TYPE
INSULATED PACKAGE
Oct. 2005
10
–3
10
0
7
5
3
2
10
–2
7
5
3
2
10
–1
7
5
3
2
10
–3
23 57
10
–2
23 57
10
–1
10
–5
23 57
10
–4
23 57 23 57
10
0
23 57
10
1
10
–3
10
0
7
5
3
2
10
–2
7
5
3
2
10
–1
7
5
3
2
10
–3
23 57
10
–2
23 57
10
–1
10
–5
23 57
10
–4
23 57 23 57
10
0
23 57
10
1
10
–3
10
0
7
5
3
2
10
–2
7
5
3
2
10
–1
7
5
3
2
10
–3
23 57
10
–2
23 57
10
–1
10
–5
23 57
10
–4
23 57 23 57
10
0
23 57
10
1
0 0.5 1 1.5 2 2.5
10
0
10
2
7
5
3
2
10
1
7
5
3
2
Tj = 25°C
Tj = 125°C
VD = 15V
10
0
23 57
10
1
23 57
10
2
10
–2
10
–1
7
5
3
2
10
0
7
5
3
2
10
1
7
5
3
2
10
–1
10
0
7
5
3
2
10
1
7
5
3
2
10
2
7
5
3
2
Irr
VCC = 300V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
trr
10
0
23 57
10
1
23 57
10
2
10
–3
10
–2
7
5
3
2
10
–1
7
5
3
2
10
0
7
5
3
2
Err
VCC = 300V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
Single Pulse
Per unit base = Rth(j – c)Q = 0.95°C/W
Single Pulse
Per unit base = Rth(j – c)F = 0.95°C/W
Single Pulse
Per unit base = Rth(j – c)F = 1.61°C/W
FWDi FORWARD CURRENT I
F
(A)
FWDi FORWARD VOLTAGE V
FM
(V)
FWDi FORWARD VOLTAGE CHARACTERISTICS
(Upper Arm · TYPICAL)
FWDi REVERSE RECOVERY CHARACTERISTICS
(Upper Arm · TYPICAL)
FWDi FORWARD CURRENT I
F
(A)
REVERSE RECOVERY TIME t
rr
(µs)
REVERSE RECOVERY CURRENT l
rr
(A)
FWDi REVERSE RECOVERY LOSS CHARACTERISTICS
(Upper Arm · TYPICAL)
FWDi FORWARD CURRENT I
F
(A)
REVERSE RECOVERY LOSS E
rr
(mJ/Pulse)
TIME
(s)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(IGBT PART)
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Z
th (j – c)
TIME
(s)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(FWDi PART · Upper Arm)
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Z
th (j – c)
TIME
(s)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(FWDi PART · Lower Arm)
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Z
th (j – c)