®
1/8
Table 1: Main Product Characteristics
DAMPER MODUL.
IF(AV) 6 A 3 A
VRRM 1500 V 600 V
trr (max) 135 ns 50 ns
VF (max) 1.65V 1.4 V
DMV1500M
DAMPER + MODULATION DIODE FOR VIDEO
123
TO-220FPAB
DMV1500MFD
DAMPER
123
MODULATION
1
2
3
TO-220FPAB F5 Bending
DMV1500MFD5
(optional)
September 2004 REV. 1
FEATURES AND BENEFITS
Full kit in one package
High breakdown voltage capability
Very fast recovery diode
Specified turn on switching characteristics
Low static and peak forward voltage drop for
low dissipation
Insulated version:
Insulated voltage = 2000 VRMS
Capacitance = 7 pF
Planar technology allowing high quality and
best electrical characteristics
Outstanding performance of well proven DTV
as damper and new faster Turbo 2 600V
technology as modulation
DESCRIPTION
High voltage semiconductor especially designed
for horizontal deflection stage in standard and high
resolution video display with E/W correction.
The insulated TO-220FPAB package includes
both the DAMPER diode and the MODULATION
diode, thanks to a dedicated design.
Assembled on automated line, it offers very low
dispersion values on insulating and thermal
performances.
Table 2: Order Codes
Part Number Marking
DMV1500MFD DMV1500M
DMV1500MFD5 DMV1500M
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s)
DMV1500M
2/8
Table 3: Absolute Maximum Ratings
Table 4: Thermal Resistance
Table 5: Static Electrical Characteristics
Pulse test: * tp = 5 ms, δ < 2%
** tp = 380 µs, δ < 2%
To evaluate the maximum conduction losses of the DAMPER and MODULATION diodes use the following equations :
DAMPER: P = 1.37 x IF(AV) + 0.047 x IF2(RMS)
MODULATION: P = 1.12 x IF(AV) + 0.092 x IF2(RMS)
Table 6: Recovery Characteristics
Symbol Parameter Value Unit
Damper Modul.
VRRM Repetitive peak reverse voltage 1500 600 V
IFSM Surge non repetitive forward current tp = 10ms sinusoidal 75 35 A
Tstg Storage temperature range -40 to +150 °C
TjMaximum operating junction temperature 150 °C
Symbol Parameter Value Unit
Rth(j-c) Junction to case thermal resistance 3.7 °C/W
Symbol Parameter Test conditions
Value
Unit
Tj = 25°C Tj = 125°C
Typ. Max. Typ. Max.
IR * Reverse leakage current Damper VR = 1500 V 100 100 1000 µA
Modulation VR = 600 V 20350
VF ** Forward voltage drop Damper IF = 6 A 1.4 2.2 1.2 1.65 V
Modulation IF = 3 A 1.8 1.1 1.4
Symbol Parameter Test conditions
Value
UnitDamper Modul.
Typ. Max. Typ. Max.
trr Reverse recovery time
IF = 100mA
IR =100mA
IRR = 10mA
Tj = 25°C 750 110 350
ns
IF = 1A
dIF/dt = -50 A/µs
VR =30V
Tj = 25°C 110 135 35 50
Obsolete Product(s) - Obsolete Product(s)
DMV1500M
3/8
Table 7: Turn-On Switching Characteristics
Symbol Parameter Test conditions Value Unit
Typ. Max.
tfr
Forward recovery time Damper
IF = 6 A
dIF/dt = 80 A/µs
VFR = 3 V
Tj = 100°C 570 ns
Modul.
IF = 3 A
dIF/dt = 80 A/µs
VFR = 2 V
Tj = 100°C 240
VFP
Peak forward voltage Damper IF = 6 A
dIF/dt = 80 A/µs Tj = 100°C 21 28 V
Modul. IF = 3 A
dIF/dt = 80 A/µs Tj = 100°C 8
Figure 1: Power dissipation versus peak
forward current (triangular waveform, δ=0.45)
Figure 2: Average forward current versus
ambient temperature
Figure 3: Forward voltage drop versus forward
current (damper diode)
Figure 4: Forward voltage drop versus forward
current (modulation diode)
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
P (W)
F(AV)
DAMPER diode
MODULATION diode
I (A)
P
0
1
2
3
4
5
6
7
0 25 50 75 100 125 150
I (A)
F(AV)
DAMPER diode
MODULATION diode
T
δ=tp/T tp T (°C)
amb
R=
th(j-a) Rth(j-c)
R=
th(j-a) Rth(j-c)
0
5
10
15
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
I (A)
FM
V (V)
FM
T =125°C
(typical values)
j
T =125°C
(maximum values)
j
T =25°C
(maximum values)
j
0
1
2
3
4
5
6
7
8
9
10
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
I (A)
FM
V (V)
FM
T =125°C
(typical values)
j
T =125°C
(maximum values)
j
T =25°C
(maximum values)
j
Obsolete Product(s) - Obsolete Product(s)
DMV1500M
4/8
Figure 5: Relative variation of thermal
impedance junction to case versus pulse
duration
Figure 6: Non repetitive peak forward current
versus overload duration (damper diode)
Figure 7: Non repetitive peak forward current
versus overload duration (modulation diode)
Figure 8: Reverse recovery charges versus
dIF/dt (damper diode)
Figure 9: Reverse recovery charges versus
dIF/dt (modulation diode)
Figure 10: Peak reverse recovery current
versus dIF/dt (damper diode)
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
Z/R
th(j-c) th(j-c)
t (s)
p
DAMPER diode
MODULATION diode
Single pulse
0
5
10
15
20
25
30
35
40
1.E-03 1.E-02 1.E-01 1.E+00
I (A)
M
T =25°C
C
T =75°C
C
T =125°C
C
t(s)
I
M
t
δ=0.5
0
5
10
15
20
25
30
1.E-03 1.E-02 1.E-01 1.E+00
I (A)
M
T =25°C
C
T =75°C
C
T =125°C
C
t(s)
I
M
t
δ=0.5
0
100
200
300
400
500
600
700
800
900
1000
0.1 1.0 10.0
Q (nC)
rr
dI /dt(A/µs)
F
I=
T =125°C
90% confidence
F
j
IP
0
50
100
150
200
0.1 1.0 10.0 100.0
Q (nC)
rr
dI /dt(A/µs)
F
I=
T =125°C
90% confidence
F
j
I
P
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
0.1 1.0 10.0
I (A)
RM
dI /dt(A/µs)
F
I=
T =125°C
90% confidence
F
j
IP
Obsolete Product(s) - Obsolete Product(s)
DMV1500M
5/8
Figure 11: Peak reverse recovery current
versus dIF/dt (modulation diode)
Figure 12: Transient peak forward voltage
versus dIF/dt (damper diode)
Figure 13: Transient peak forward voltage
versus dIF/dt (modulation diode)
Figure 14: Forward recovery time versus dIF/dt
(damper diode)
Figure 15: Forward recovery time versus dIF/dt
(modulation diode)
Figure 16: Relative variation of dynamic
parameters versus junction temperature
0.0
1.0
2.0
3.0
4.0
5.0
6.0
1 10 100 1000
I (A)
RM
dI /dt(A/µs)
F
I=
T =125°C
90% confidence
F
j
I
P
0
5
10
15
20
25
30
35
40
0 20 40 60 80 100 120 140
V (V)
FP
dI /dt(A/µs)
F
I=
T =125°C
90% confidence
F
j
IP
0
1
2
3
4
5
6
7
8
9
10
11
12
0 20 40 60 80 100 120 140 160 180 200
V (V)
FP
dI /dt(A/µs)
F
I=
T =125°C
90% confidence
F
j
IP
400
450
500
550
600
650
700
750
800
0 20 40 60 80 100 120 140
t (ns)
fr
I=
T =125°C
V
90% confidence
F
j
I
=3V
P
FR
dI /dt(A/µs)
F
0
25
50
75
100
125
150
175
200
0 20 40 60 80 100 120 140 160 180 200
t (ns)
fr
I=
T =125°C
V
90% confidence
F
j
I
=2V
P
FR
dI /dt(A/µs)
F
0.0
0.2
0.4
0.6
0.8
1.0
1.2
25 50 75 100 125
QRR
T (°C)
j
VFP
IRM
I,V,Q [T]/
RM FP RR j I , V , Q [T =125°C]
RM FP RR j
Obsolete Product(s) - Obsolete Product(s)
DMV1500M
6/8
Figure 18: TO-220FPAB Package Mechanical Data
Figure 17: Junction capacitance versus
reverse voltage applied (typical values)
1
10
100
1 10 100 1000
C(pF)
V (V)
R
F=1MHz
V =30mV
T =25°C
OSC RMS
j
DAMPER diode or MODULATION diode
REF. DIMENSIONS
Millimeters Inches
Min. Max. Min. Max.
A 4.4 4.9 0.173 0.192
B 2.5 2.9 0.098 0.114
D 2.45 2.75 0.096 0.108
E 0.4 0.7 0.016 0.027
F 0.6 1 0.024 0.039
F1 1.15 1.7 0.045 0.067
F2 1.15 1.7 0.045 0.067
G 4.95 5.2 0.195 0.205
G1 2.4 2.7 0.094 0.106
H 10 10.7 0.393 0.421
L2 16 Typ. 0.630 Typ.
L3 28.6 30.6 1.126 1.205
L4 9.8 10.7 0.385 0.421
L6 15.8 16.4 0.622 0.646
L7 9 9.9 0.354 0.390
Dia. 2.9 3.5 0.114 0.138
Obsolete Product(s) - Obsolete Product(s)
DMV1500M
7/8
Figure 19: TO-220FPAB F5 Bending (option) Package Mechanical Data
Table 8: Ordering Information
Part Number Marking Package Weight Base qty Delivery
mode
DMV1500MFD DMV1500M TO-220FPAB 2.4 g 50 Tube
DMV1500MFD5 DMV1500M TO-220FPAB F5 2.4 g 45 Tube
Table 9: Revision History
Date Revision Description of Changes
07-Sep-2004 1 First issue
REF. DIMENSIONS
Millimeters Inches
Min. Max. Min. Max.
A 4.4 4.9 0.173 0.192
B 2.5 2.9 0.098 0.114
D 2.45 2.75 0.096 0.108
E 0.4 0.7 0.016 0.027
F 0.6 1 0.024 0.039
F1 1.15 1.7 0.045 0.067
F2 1.15 1.7 0.045 0.067
G 4.95 5.2 0.195 0.205
G1 2.4 2.7 0.094 0.106
H 10 10.7 0.393 0.421
L2 16 Typ. 0.630 Typ.
L3 24.16 26.9 0.951 1.059
L4 1.65 2.41 0.065 0.095
L6 15.8 16.4 0.622 0.646
L7 9 9.9 0.354 0.390
M1 2.92 3.3 0.115 0.130
R 1.4 Typ. 0.055 Typ.
Dia. 2.9 3.5 0.114 0.138
Obsolete Product(s) - Obsolete Product(s)
DMV1500M
8/8
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2004 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com