DMV1500M (R) DAMPER + MODULATION DIODE FOR VIDEO Table 1: Main Product Characteristics IF(AV) DAMPER 6A MODUL. 3A VRRM 1500 V 600 V trr (max) 135 ns 50 ns VF (max) 1.65V 1.4 V DAMPER 1 MODULATION 2 3 FEATURES AND BENEFITS 1 ) s t( TO-220FPAB DMV1500MFD e t le o s b O - u d o DESCRIPTION 3 c u d Full kit in one package High breakdown voltage capability Very fast recovery diode Specified turn on switching characteristics Low static and peak forward voltage drop for low dissipation Insulated version: Insulated voltage = 2000 VRMS Capacitance = 7 pF Planar technology allowing high quality and best electrical characteristics Outstanding performance of well proven DTV as damper and new faster Turbo 2 600V technology as modulation ) s ( ct 2 o r P 2 1 3 TO-220FPAB F5 Bending DMV1500MFD5 (optional) High voltage semiconductor especially designed for horizontal deflection stage in standard and high resolution video display with E/W correction. The insulated TO-220FPAB package includes both the DAMPER diode and the MODULATION diode, thanks to a dedicated design. Assembled on automated line, it offers very low dispersion values on insulating and thermal performances. r P e t e l o s b O Table 2: Order Codes Part Number DMV1500MFD DMV1500MFD5 September 2004 Marking DMV1500M DMV1500M REV. 1 1/8 DMV1500M Table 3: Absolute Maximum Ratings Symbol VRRM Repetitive peak reverse voltage IFSM Surge non repetitive forward current Tstg Storage temperature range Tj Value Damper Modul. Parameter Unit 1500 600 V 75 35 A tp = 10ms sinusoidal -40 to +150 C 150 C Maximum operating junction temperature Table 4: Thermal Resistance Symbol Rth(j-c) Parameter Value Unit 3.7 C/W Junction to case thermal resistance Table 5: Static Electrical Characteristics Value Symbol Parameter Test conditions Tj = 25C Typ. IR * Reverse leakage current VF ** Pulse test: Forward voltage drop Damper VR = 1500 V Modulation VR = 600 V Damper IF = 6 A Modulation IF = 3 A * tp = 5 ms, < 2% o s b O - uc Max. Typ. 100 100 1000 20 d o r Max. 3 50 2.2 1.2 1.65 1.8 1.1 1.4 P e let 1.4 ) s t( Tj = 125C Unit A V ** tp = 380 s, < 2% To evaluate the maximum conduction losses of the DAMPER and MODULATION diodes use the following equations : 2 ) s ( ct DAMPER: P = 1.37 x IF(AV) + 0.047 x IF (RMS) 2 MODULATION: P = 1.12 x IF(AV) + 0.092 x IF (RMS) u d o Table 6: Recovery Characteristics r P e Symbol Parameter t e l o bs O 2/8 trr Reverse recovery time Value Test conditions Damper Typ. IF = 100mA IR =100mA IRR = 10mA Tj = 25C IF = 1A dIF/dt = -50 A/s VR =30V Tj = 25C Max. 750 Modul. Typ. Max. 110 350 Unit ns 110 135 35 50 DMV1500M Table 7: Turn-On Switching Characteristics Symbol Parameter Value Test conditions Forward recovery time Damper IF = 6 A dIF/dt = 80 A/s VFR = 3 V Tj = 100C Modul. IF = 3 A dIF/dt = 80 A/s VFR = 2 V Tj = 100C Damper IF = 6 A dIF/dt = 80 A/s Tj = 100C Modul. IF = 3 A dIF/dt = 80 A/s Tj = 100C tfr Peak forward voltage Typ. VFP Figure 1: Power dissipation versus peak forward current (triangular waveform, =0.45) IF(AV)(A) 2.0 e t le Rth(j-a)=Rth(j-c) 6 1.6 o s b O 5 DAMPER diode 1.4 ns 240 21 28 V 8 c u d 7 1.8 570 ) s t( Figure 2: Average forward current versus ambient temperature PF(AV)(W) 2.2 Unit Max. o r P DAMPER diode 4 1.2 Rth(j-a)=Rth(j-c) 1.0 3 MODULATION diode 0.8 0.6 0.4 0.2 IP(A) 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 c u d 3.5 o r P e 4.0 4.5 (t s) 5.0 5.5 2 1 =tp/T t e l o IFM(A) bs Tamb(C) tp 0 0 6.0 Figure 3: Forward voltage drop versus forward current (damper diode) 15 MODULATION diode T 25 50 75 100 125 150 Figure 4: Forward voltage drop versus forward current (modulation diode) IFM(A) 10 Tj=125C (maximum values) 9 Tj=125C (maximum values) 8 7 O 10 Tj=125C (typical values) Tj=125C (typical values) 6 5 4 5 Tj=25C (maximum values) Tj=25C (maximum values) 3 2 1 VFM(V) VFM(V) 0 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3/8 DMV1500M Figure 5: Relative variation of thermal impedance junction to case versus pulse duration Figure 6: Non repetitive peak forward current versus overload duration (damper diode) Zth(j-c)/Rth(j-c) IM(A) 1.0 40 0.9 35 0.8 DAMPER diode 30 0.7 0.6 25 MODULATION diode TC=25C 0.5 20 0.4 TC=75C 15 0.3 10 IM 0.2 TC=125C 5 0.1 tp(s) Single pulse 1.E-02 1.E-01 t(s) 0 0.0 1.E-03 t =0.5 1.E+00 1.E+01 1.E+02 Figure 7: Non repetitive peak forward current versus overload duration (modulation diode) 1.E-03 1.E-02 1.E-01 c u d Qrr(nC) 1000 IF=IP Tj=125C 90% confidence 900 25 800 700 20 e t le 600 TC=25C 500 15 TC=75C o s b O 400 10 300 TC=125C IM t 100 t(s) 0 1.E-03 1.E-02 (s) 1.E-01 t c u d o r P e Qrr(nC) IF=IP Tj=125C 90% confidence 1.0 10.0 Figure 10: Peak reverse recovery current versus dIF/dt (damper diode) IRM(A) IF=IP Tj=125C 90% confidence 1.8 1.6 1.4 1.2 bs 100 0.1 2.0 t e l o 150 dIF/dt(A/s) 0 1.E+00 Figure 9: Reverse recovery charges versus dIF /dt (modulation diode) 200 o r P 200 5 =0.5 ) s t( Figure 8: Reverse recovery charges versus dIF/dt (damper diode) IM(A) 30 1.E+00 1.0 0.8 O 0.6 50 0.4 0.2 dIF/dt(A/s) 0.1 4/8 dIF/dt(A/s) 0.0 0 1.0 10.0 100.0 0.1 1.0 10.0 DMV1500M Figure 11: Peak reverse recovery current versus dIF/dt (modulation diode) Figure 12: Transient peak forward voltage versus dIF/dt (damper diode) IRM(A) VFP(V) 6.0 40 IF=IP Tj=125C 90% confidence 5.0 IF=IP Tj=125C 90% confidence 35 30 4.0 25 3.0 20 15 2.0 10 1.0 5 dIF/dt(A/s) dIF/dt(A/s) 0 0.0 1 10 100 0 1000 Figure 13: Transient peak forward voltage versus dIF/dt (modulation diode) 20 40 60 80 100 c u d tfr(ns) 800 IF=IP Tj=125C 90% confidence 11 10 750 700 9 8 e t le 650 7 600 6 5 o s b O 550 4 3 500 2 140 ) s t( Figure 14: Forward recovery time versus dIF/dt (damper diode) VFP(V) 12 120 o r P IF=IP Tj=125C VFR=3V 90% confidence 450 1 dIF/dt(A/s) 0 dIF/dt(A/s) 400 0 20 40 60 80 100 120 ) s ( ct 140 160 180 200 Figure 15: Forward recovery time versus dIF/dt (modulation diode) u d o tfr(ns) r P e 200 175 t e l o 150 125 75 20 40 60 80 100 120 140 Figure 16: Relative variation of dynamic parameters versus junction temperature IRM, VFP, QRR [Tj]/ IRM, VFP, QRR [Tj=125C] 1.2 IF=IP Tj=125C VFR=2V 90% confidence 1.0 0.8 bs 100 0 VFP 0.6 IRM O 0.4 QRR 50 0.2 25 Tj(C) dIF/dt(A/s) 0 0.0 0 20 40 60 80 100 120 140 160 180 200 25 50 75 100 125 5/8 DMV1500M Figure 17: Junction capacitance versus reverse voltage applied (typical values) C(pF) 100 F=1MHz VOSC=30mVRMS Tj=25C DAMPER diode or MODULATION diode 10 VR(V) 1 1 10 100 1000 c u d Figure 18: TO-220FPAB Package Mechanical Data REF. ) s ( ct u d o r P e t e l o s b O 6/8 DIMENSIONS Millimeters Inches Min. Max. Min. Max. 4.4 4.9 0.173 0.192 2.5 2.9 0.098 0.114 2.45 2.75 0.096 0.108 0.4 0.7 0.016 0.027 0.6 1 0.024 0.039 1.15 1.7 0.045 0.067 1.15 1.7 0.045 0.067 4.95 5.2 0.195 0.205 2.4 2.7 0.094 0.106 10 10.7 0.393 0.421 16 Typ. 0.630 Typ. 28.6 30.6 1.126 1.205 9.8 10.7 0.385 0.421 15.8 16.4 0.622 0.646 9 9.9 0.354 0.390 2.9 3.5 0.114 0.138 e t le o s b O A B D E F F1 F2 G G1 H L2 L3 L4 L6 L7 Dia. o r P ) s t( DMV1500M Figure 19: TO-220FPAB F5 Bending (option) Package Mechanical Data REF. A B D E F F1 F2 G G1 H L2 L3 L4 L6 L7 M1 R Dia. Table 8: Ordering Information Part Number Marking DMV1500MFD DMV1500MFD5 DMV1500M DMV1500M Date 07-Sep-2004 r P e Revision 1 c u d e t le o s b O - ) s t( o r P Package Weight Base qty TO-220FPAB TO-220FPAB F5 2.4 g 2.4 g 50 45 ) s ( ct u d o Table 9: Revision History DIMENSIONS Millimeters Inches Min. Max. Min. Max. 4.4 4.9 0.173 0.192 2.5 2.9 0.098 0.114 2.45 2.75 0.096 0.108 0.4 0.7 0.016 0.027 0.6 1 0.024 0.039 1.15 1.7 0.045 0.067 1.15 1.7 0.045 0.067 4.95 5.2 0.195 0.205 2.4 2.7 0.094 0.106 10 10.7 0.393 0.421 16 Typ. 0.630 Typ. 24.16 26.9 0.951 1.059 1.65 2.41 0.065 0.095 15.8 16.4 0.622 0.646 9 9.9 0.354 0.390 2.92 3.3 0.115 0.130 1.4 Typ. 0.055 Typ. 2.9 3.5 0.114 0.138 Delivery mode Tube Tube Description of Changes First issue t e l o s b O 7/8 DMV1500M c u d e t le ) s ( ct ) s t( o r P o s b O - u d o r P e t e l o s b O Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners (c) 2004 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 8/8