1. General description
The 74LVC126A consists of four non-inverting buffers/line drivers with 3-state outputs,
which are controlled by the output enable inp ut (nOE). A LOW at nOE causes the ou tput s
to assume a high-impedance OFF-state.
Inputs can be driven from either 3.3 V or 5 V devices. When disabled, up to 5.5 V can be
applied to the outputs.
2. Features and benefits
5 V tolerant inputs/outputs for interfacing with 5 V logic
Wide supply voltage range from 1.2 V to 3.6 V
CMOS low power consumption
Direct interface with TTL levels
Complies with JEDEC standard:
JESD8-7A (1.65 V to 1.95 V)
JESD8-5A (2.3 V to 2.7 V)
JESD8-C/JESD36 (2.7 V to 3.6 V)
ESD protection:
HBM JESD22-A114F exceeds 2000 V
MM JESD22-A115B exceeds 200 V
CDM JESD22-C101E exceeds 1000 V
Specified from 40 C to +85 C and 40 C to +125 C
3. Ordering information
74LVC126A
Quad buffer/line driver with 5 V tolerant input/outputs; 3-state
Rev. 7 — 9 December 2011 Product data sheet
Table 1. Ordering information
Type number Package
Temp erature range Name Description Version
74LVC126AD 40 Cto+125C SO14 plastic small outline package; 14 leads;
body width 3.9 mm SOT108-1
74LVC126ADB 40 Cto+125C SSOP14 plastic shrink small outline package; 14 leads;
body width 5.3 mm SOT337-1
74LVC126APW 40 Cto+125C TSSOP14 plastic thin small outline package; 14 leads;
body width 4.4 mm SOT402-1
74LVC126ABQ 40 Cto+125C DHVQFN14 plastic dual in-line compatible thermal enhanced very
thin quad flat package; no leads; 14 terminals;
body 2.5 30.85 mm
SOT762-1
74LVC126A All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 7 — 9 December 2011 2 of 16
NXP Semiconductors 74LVC126A
Quad buffer/line driver with 5 V tolerant input/outputs; 3-state
4. Functional diagram
Fig 1. Logic symbol Fig 2. IEC logic symbol
mna235
1A 1Y
2
1
3
1OE
2A 2Y
5
4
6
2OE
3A 3Y
9
10
8
3OE
4A 4Y
12
13
11
4OE
mna236
1EN1
13
2
46
5
10 8
9
13 11
12
Fig 3. Logic diagra m
mna234
nOE
nA nY
74LVC126A All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 7 — 9 December 2011 3 of 16
NXP Semiconductors 74LVC126A
Quad buffer/line driver with 5 V tolerant input/outputs; 3-state
5. Pinning information
5.1 Pinning
5.2 Pin description
(1) This is not a supply pin. The substrate is attached to this
pad using conductive die attach material. There is no
electrical or mechanical requirement to solder this pad.
However, if it is soldered, the solder land should remain
floating or be connected to GND.
Fig 4. Pin configuration for SO14 and (T)SSOP14 Fig 5. Pin configuration for DHVQFN14
74AHC126
74AHCT126
1OE V
CC
1A 4OE
1Y 4A
2OE 4Y
2A 3OE
2Y 3A
GND 3Y
001aac982
1
2
3
4
5
6
7 8
10
9
12
11
14
13
001aac983
126
Transparent top view
2Y 3A
2A 3OE
2OE 4Y
1Y 4A
1A 4OE
GND
3Y
1OE
VCC
6 9
5 10
4 11
3 12
2 13
7
8
1
14
terminal 1
index area
GND(1)
Table 2. Pin description
Symbol Pin Description
1OE 1 data enable input (active HIGH)
1A 2 data input
1Y 3 data output
2OE 4 data enable input (active HIGH)
2A 5 data input
2Y 6 data output
GND 7 ground (0 V)
3Y 8 data output
3A 9 data input
3OE 10 data enable input (active HIGH)
4Y 11 data output
4A 12 data input
4OE 13 data enable input (active HIGH)
VCC 14 supply voltage
74LVC126A All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 7 — 9 December 2011 4 of 16
NXP Semiconductors 74LVC126A
Quad buffer/line driver with 5 V tolerant input/outputs; 3-state
6. Functional description
[1] H = HIGH voltage level
L = LOW voltage level
X = don’t care
Z = high-impedance OFF-state
7. Limiting values
[1] The minimum input voltage ratings may be exceeded if the input current ratings are observed.
[2] The output voltage ratings may be exceeded if the output current ratings are observed.
[3] For SO14 packages: above 70 C the value of Ptot derates linearly with 8 mW/K.
For (T)SSOP14 packages: above 60 C the value of Ptot derates linearly with 5.5 mW/K.
For DHVQFN14 packages: above 60 C the value of Ptot derates linearly with 4.5 mW/K.
8. Recommended operating conditions
Table 3. Function selection[1]
Inputs Output
nOE nA nY
HLL
HHH
LXZ
Table 4. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol Parameter Conditions Min Max Unit
VCC supply voltage 0.5 +6.5 V
IIK input clamping current VI < 0 V 50 - mA
VIinput voltage [1] 0.5 +6.5 V
IOK output clamping current VO > VCC or VO < 0 V - 50 mA
VOoutput voltage output HIGH or LOW-state [2] 0.5 VCC + 0.5 V
output 3-state [2] 0.5 +6.5 V
IOoutput current VO = 0 V to VCC -50 mA
ICC supply current - 100 mA
IGND ground current 100 - mA
Tstg storage temperature [3] 65 +150 C
Ptot total power dissipation Tamb = 40 C to +125 C - 500 mW
Table 5. Recommended operating con ditions
Symbol Parameter Conditions Min Typ Max Unit
VCC supply voltage 1.65 - 3.6 V
functional 1.2 - - V
VIinput voltage 0 - 5.5 V
VOoutput voltage output HIGH or LOW state 0 - VCC V
output 3-state 0 - 5.5 V
74LVC126A All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 7 — 9 December 2011 5 of 16
NXP Semiconductors 74LVC126A
Quad buffer/line driver with 5 V tolerant input/outputs; 3-state
9. Static characteristics
Tamb ambient temperature in free air 40 - +125 C
t/V input transition rise
and fall rate VCC = 1.65 V to 2.7 V 0 - 20 ns/V
VCC = 2.7 V to 3.6 V 0 - 10 ns/V
Table 5. Recommended operating con ditions …continued
Symbol Parameter Conditions Min Typ Max Unit
Table 6. Static characteristics
At recommended operating conditions. V oltages are referenced to GND (ground = 0 V).
Symbol Parameter Conditions 40 C to +85 C40 C to +125 CUnit
Min Typ[1] Max Min Max
VIH HIGH-level
input voltage VCC = 1.2 V 1.08 - - 1.08 - V
VCC = 1.65 V to 1.95 V 0.65 VCC - - 0.65 VCC -V
VCC = 2.3 V to 2.7 V 1.7 - - 1.7 - V
VCC = 2.7 V to 3.6 V 2.0 - - 2.0 - V
VIL LOW-level
input voltage VCC = 1.2 V - - 0.12 - 0.12 V
VCC = 1.65 V to 1.95 V - - 0.35 VCC -0.35 VCC V
VCC = 2.3 V to 2.7 V - - 0.7 - 0.7 V
VCC = 2.7 V to 3.6 V - - 0.8 - 0.8 V
VOH HIGH-level
output
voltage
VI=V
IH or VIL
IO=100 A;
VCC =1.65Vto3.6V VCC 0.2 - - VCC 0.3 - V
IO=4mA; V
CC = 1.65 V 1.2 - - 1.05 - V
IO=8mA; V
CC = 2.3 V 1.8 - - 1.65 - V
IO=12 mA; VCC = 2.7 V 2.2 - - 2.05 - V
IO=18 mA; VCC = 3.0 V 2.4 - - 2.25 - V
IO=24 mA; VCC = 3.0 V 2.2 - - 2.0 - V
VOL LOW-level
output
voltage
VI=V
IH or VIL
IO= 100 A;
VCC = 1.65 V to 3.6 V - - 0.2 - 0.3 V
IO=4mA; V
CC = 1.65 V - - 0.45 - 0.65 V
IO=8mA; V
CC = 2.3 V - - 0.6 - 0.8 V
IO=12mA; V
CC = 2.7 V - - 0.4 - 0.6 V
IO=24mA; V
CC = 3.0 V - - 0.55 - 0.8 V
IIinput leakage
current VCC = 3.6 V; VI=5.5VorGND - 0.1 5- 20 A
IOZ OFF-state
output
current
VI=V
IH or VIL; VCC = 3.6 V;
VO=5.5VorGND; -0.1 5- 20 A
IOFF power-off
leakage
current
VCC = 0 V; VIor VO= 5.5 V - 0.1 10 - 20 A
74LVC126A All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 7 — 9 December 2011 6 of 16
NXP Semiconductors 74LVC126A
Quad buffer/line driver with 5 V tolerant input/outputs; 3-state
[1] All typical values are measured at VCC = 3.3 V (unless stated otherwise) and Tamb =25C.
10. Dynamic characteristics
[1] Typical values are measured at Tamb =25C and VCC = 1.2 V, 1.8 V, 2.5 V, 2.7 V, and 3.3 V respectively.
[2] tpd is the same as tPLH and tPHL.
ICC supply
current VCC = 3.6 V; VI=V
CC or GND;
IO=0A -0.110-40A
ICC additional
supply
current
per input pin;
VCC = 1.65 V to 3.6 V;
VI=V
CC 0.6 V; IO=0A
- 5 500 - 5000 A
CIinput
capacitance VCC = 0 V to 3.6 V;
VI=GNDtoV
CC
-4.0---pF
Table 6. Static characteristics …continued
At recommended operating conditions. V oltages are referenced to GND (ground = 0 V).
Symbol Parameter Conditions 40 C to +85 C40 C to +125 CUnit
Min Typ[1] Max Min Max
Table 7. Dy namic characteristics
Vo ltages are referenced to GND (ground = 0 V). For test circuit see Figure 8.
Symbol Parameter Conditions 40 C to +85 C40 C to +125 CUnit
Min Typ[1] Max Min Max
tpd propagation delay nA to nY; see Figure 6 [2]
VCC = 1.2 V - 11.0 - - - ns
VCC = 1.65 V to 1.95 V 1.5 5.2 10.8 1.5 12.6 ns
VCC = 2.3 V to 2.7 V 1.0 2.8 5.6 1.0 6.6 ns
VCC = 2.7 V 1.5 2.7 5.2 1.5 6.5 ns
VCC = 3.0 V to 3.6 V 1.0 2.4 4.7 1.0 6.0 ns
ten enable time nOE to nY; see Figure 7 [2]
VCC = 1.2 V - 15.0 - - - ns
VCC = 1.65 V to 1.95 V 2.4 6.7 12.9 2.4 15.0 ns
VCC = 2.3 V to 2.7 V 2.0 3.8 7.1 2.0 8.3 ns
VCC = 2.7 V 1.5 3.1 6.3 1.5 8.0 ns
VCC = 3.0 V to 3.6 V 1.0 3.1 5.7 1.0 7.5 ns
tdis disable time nOE to nY; see Figure 7 [2]
VCC = 1.2 V - 8.0 - - - ns
VCC = 1.65 V to 1.95 V 1.0 3.3 10.0 1.0 11.5 ns
VCC = 2.3 V to 2.7 V 0.5 1.8 5.6 0.5 6.5 ns
VCC = 2.7 V 1.5 3.4 6.7 1.5 8.5 ns
VCC = 3.0 V to 3.6 V 1.3 2.5 6.0 1.3 7.5 ns
tsk(o) output skew time VCC = 3.0 V to 3.6 V [3] - - 1.0 - 1.5 ns
CPD power dissipation
capacitance per buffer; VI = GND to VCC [4]
VCC = 1.65 V to 1.95 V - 6.0 - - - pF
VCC = 2.3 V to 2.7 V - 9.3 - - - pF
VCC = 3.0 V to 3.6 V - 12.2 - - - pF
74LVC126A All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 7 — 9 December 2011 7 of 16
NXP Semiconductors 74LVC126A
Quad buffer/line driver with 5 V tolerant input/outputs; 3-state
ten is the same as tPZL and tPZH.
tdis is the same as tPLZ and tPHZ.
[3] Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.
[4] CPD is used to determine the dynamic power dissipation (PDin W).
PD=C
PD VCC2fiN+(CLVCC2fo) where:
fi= input frequency in MHz; fo= output frequency in MHz
CL= output load capacitance in pF
VCC = supply voltage in Volts
N = number of inputs switching
(CLVCC2fo) = sum of the outputs
11. AC waveforms
VM=1.5VatV
CC 2.7 V;
VM=0.5 VCC at VCC <2.7V;
VOL and VOH are typical output voltage levels that occur with the output load.
Fig 6. The input nA to output nY propagation delays
mna237
t
PHL
t
PLH
VM
V
M
nA input
nY output
GND
V
I
V
OH
V
OL
Measurement points are given in Table 8.
VOL and VOH are typical output voltage levels that occur with the output load.
Fig 7. 3-state enable and disa ble times
mna684
t
PLZ
t
PHZ
outputs
disabled outputs
enabled
V
Y
V
X
outputs
enabled
output
LOW-to-OFF
OFF-to-LOW
output
HIGH-to-OFF
OFF-to-HIGH
nOE input
V
I
V
CC
V
M
V
OL
V
OH
GND
GND
t
PZL
t
PZH
V
M
V
M
74LVC126A All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 7 — 9 December 2011 8 of 16
NXP Semiconductors 74LVC126A
Quad buffer/line driver with 5 V tolerant input/outputs; 3-state
Table 8. Measurement points
Supply voltage Input Output
VCC VMVMVXVY
VCC <2.7V 0.5 VCC 0.5 VCC VOL +0.15V V
OH 0.15 V
VCC 2.7 V 1.5 V 1.5 V VOL +0.3V V
OH 0.3 V
Test data is given in Table 9.
Definitions for test circuit:
RL = Load resistance.
CL = Load capacitance including jig and probe capacitance.
RT = Termination resistance should be equal to output impedance Zo of the pulse generator.
VEXT = External voltage for measuring switching times.
Fig 8. Test circuit for measuring switching times
V
M
V
M
t
W
t
W
10 %
90 %
0 V
V
I
V
I
negative
pulse
positive
pulse
0 V
V
M
V
M
90 %
10 %
t
f
t
r
t
r
t
f
001aae331
V
EXT
V
CC
V
I
V
O
DUT
CL
RT
RL
RL
G
Table 9. Test data
Supply voltage Input Load VEXT
VItr, tfCLRLtPLH, tPHL tPLZ, tPZL tPHZ, tPZH
1.2 V VCC 2 ns 30 pF 1 kopen 2 VCC GND
1.65 V to 1.95 V VCC 2 ns 30 pF 1 kopen 2 VCC GND
2.3 V to 2.7 V VCC 2 ns 30 pF 500 open 2 VCC GND
2.7V 2.7V 2.5 ns 50 pF 500 open 2 VCC GND
3.0Vto3.6V 2.7V 2.5 ns 50 pF 500 open 2 VCC GND
74LVC126A All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 7 — 9 December 2011 9 of 16
NXP Semiconductors 74LVC126A
Quad buffer/line driver with 5 V tolerant input/outputs; 3-state
12. Package outline
Fig 9. Package outline SOT108-1 (SO14)
74LVC126A All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 7 — 9 December 2011 10 of 16
NXP Semiconductors 74LVC126A
Quad buffer/line driver with 5 V tolerant input/outputs; 3-state
Fig 10. Package outline SOT337-1 (SSOP14)
UNIT A1A2A3bpcD
(1) E(1) eH
ELL
pQZywv θ
REFERENCES
OUTLINE
VERSION EUROPEAN
PROJECTION ISSUE DATE
IEC JEDEC JEITA
mm 0.21
0.05 1.80
1.65 0.25 0.38
0.25 0.20
0.09 6.4
6.0 5.4
5.2 0.65 1.25 0.2
7.9
7.6 1.03
0.63 0.9
0.7 1.4
0.9 8
0
o
o
0.13 0.1
DIMENSIONS (mm are the original dimensions)
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
SOT337-1 99-12-27
03-02-19
(1)
wM
bp
D
HE
E
Z
e
c
vMA
X
A
y
17
14 8
θ
A
A1
A2
Lp
Q
detail X
L
(A )
3
MO-150
pin 1 index
0 2.5 5 mm
scale
SSOP14: plastic shrink small outline package; 14 leads; body width 5.3 mm SOT337-1
A
max.
2
74LVC126A All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 7 — 9 December 2011 11 of 16
NXP Semiconductors 74LVC126A
Quad buffer/line driver with 5 V tolerant input/outputs; 3-state
Fig 11. Package outline SOT402-1 (TSSOP14)
UNIT A1A2A3bpcD
(1) E(2) (1)
eH
ELL
pQZywv θ
REFERENCES
OUTLINE
VERSION EUROPEAN
PROJECTION ISSUE DATE
IEC JEDEC JEITA
mm 0.15
0.05 0.95
0.80 0.30
0.19 0.2
0.1 5.1
4.9 4.5
4.3 0.65 6.6
6.2 0.4
0.3 0.72
0.38 8
0
o
o
0.13 0.10.21
DIMENSIONS (mm are the original dimensions)
Notes
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.
0.75
0.50
SOT402-1 MO-153 99-12-27
03-02-18
wM
bp
D
Z
e
0.25
17
14 8
θ
A
A1
A2
Lp
Q
detail X
L
(A )
3
HE
E
c
vMA
X
A
y
0 2.5 5 mm
scale
TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm SOT402-1
A
max.
1.1
pin 1 index
74LVC126A All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 7 — 9 December 2011 12 of 16
NXP Semiconductors 74LVC126A
Quad buffer/line driver with 5 V tolerant input/outputs; 3-state
Fig 12. Package outline SOT762-1 (DHVQFN14)
terminal 1
index area
0.51
A1Eh
b
UNIT ye
0.2
c
REFERENCES
OUTLINE
VERSION EUROPEAN
PROJECTION ISSUE DATE
IEC JEDEC JEITA
mm 3.1
2.9
Dh
1.65
1.35
y1
2.6
2.4 1.15
0.85
e1
2
0.30
0.18
0.05
0.00 0.05 0.1
DIMENSIONS (mm are the original dimensions)
SOT762-1 MO-241 - - -- - -
0.5
0.3
L
0.1
v
0.05
w
0 2.5 5 mm
scale
SOT762-1
DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads;
14 terminals; body 2.5 x 3 x 0.85 mm
A(1)
max.
AA1c
detail X
y
y1C
e
L
Eh
Dh
e
e1
b
26
13 9
8
7
1
14
X
D
E
C
BA
02-10-17
03-01-27
terminal 1
index area
AC
CB
vM
wM
E(1)
Note
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.
D(1)
74LVC126A All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 7 — 9 December 2011 13 of 16
NXP Semiconductors 74LVC126A
Quad buffer/line driver with 5 V tolerant input/outputs; 3-state
13. Abbreviations
14. Revision history
Table 10. Abbreviations
Acronym Description
CDM Charged Device Mo del
DUT Device Under Test
ESD ElectroStatic Discharge
HBM Human Body Model
MM Machine Model
TTL Transistor-Transistor Logic
Table 11. Revision history
Document ID Release date Data she et status Cha nge notice Supersedes
74LVC126A v.7 20111209 Product data sheet - 74LVC126A v.6
Modifications: Legal pages updated.
74LVC126A v.6 20110926 Product data sheet - 74LVC126A v.5
74LVC126A v.5 20030228 Product specification - 74LVC126A v.4
74LVC126A v.4 20020308 Product specification - 74LVC126A v.3
74LVC126A v.3 19980428 Product specification - 74LVC126A v.2
74LVC126A v.2 19970801 Product specification - 74LVC126A v.1
74LVC126A v.1----
74LVC126A All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 7 — 9 December 2011 14 of 16
NXP Semiconductors 74LVC126A
Quad buffer/line driver with 5 V tolerant input/outputs; 3-state
15. Legal information
15.1 Data sheet status
[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term ‘short data sheet’ is explained in section “Definitions”.
[3] The product status of device (s) descr ibed in th is docume nt may have cha nged since this docume nt was publis hed and ma y dif fer in case of multiple devices. The latest product status
information is available on the Internet at URL http://www.nxp.com.
15.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liab ility for the consequences of
use of such information.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and tit le. A short data sh eet is intended
for quick reference only and shou ld not be rel ied u pon to cont ain det ailed and
full information. For detailed and full informatio n see the relevant full data
sheet, which is available on request via the local NXP Semiconductors sales
office. In case of any inconsisten cy or conf lict with the short data sheet, the
full data sheet shall pre vail.
Product specificatio nThe information and data provided in a Product
data sheet shall define the specification of the product as agr eed between
NXP Semiconductors and its customer, unless NXP Semiconductors and
customer have explicitly agreed otherwise in writing. In no event however,
shall an agreement be valid in which the NXP Semiconductors product is
deemed to off er functions and qualities beyond those described in the
Product data sheet.
15.3 Disclaimers
Limited warr a nty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information.
In no event shall NXP Semiconductors be liable for any indirect , incidental,
punitive, special or consequ ential damages (including - wit hout limitatio n - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ ag gregate and cumulati ve liability toward s
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of NXP Semiconductors.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all informa tion supplied prior
to the publication hereof .
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suit able for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors pro duct can reasonably be expected
to result in perso nal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liab ility for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty tha t such application s will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and ope ration of their applications
and products using NXP Semiconductors product s, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suit able and fit for the custome r’s applications and
products planned, as well as fo r the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with t heir
applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessa ry
testing for th e customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress ratings only and (proper)
operation of the device at these or any other conditions above those given in
the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanent ly and irreversibly affect
the quality and reliability of the device.
Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individua l agreement. In case an individual
agreement is concluded only the ter ms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly object s to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.
No offer to sell or license — Nothing i n this document may be interpreted or
construed as an of fer t o sell product s that is open for accept ance or t he grant,
conveyance or implication of any license under any copyrights, patents or
other industrial or intellectual property right s.
Export control — This document as well as the item(s) described herein
may be subject to export control regulatio ns. Export might require a prior
authorization from competent authorities.
Document status[1][2] Product status[3] Definition
Objective [short] data sheet Development This document contains data from the objective specification for product development.
Preliminary [short] dat a sheet Qualification This document contains data from the preliminary specification.
Product [short] dat a sheet Production This document contains the product specification.
74LVC126A All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 7 — 9 December 2011 15 of 16
NXP Semiconductors 74LVC126A
Quad buffer/line driver with 5 V tolerant input/outputs; 3-state
Non-automotive qualified products — Unless this data sheet expressly
states that this specific NXP Semiconductors product is automotive qualified,
the product is not suitable for automotive use. It i s neit her qualif ied nor tested
in accordance with automotive testing or application requirements. NXP
Semiconductors accepts no liability for inclusion and/or use of
non-automotive qualified products in automotive equipment or applicati ons.
In the event that customer uses the product for design-in and use in
automotive applications to automot ive specifications and standard s, customer
(a) shall use the product without NXP Semiconductors’ warranty of the
product for such automotive applications, use and specifications, and (b)
whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from custome r design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.
15.4 Trademarks
Notice: All referenced b rands, produc t names, service names and trademarks
are the property of their respect i ve ow ners.
16. Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
NXP Semiconductors 74LVC126A
Quad buffer/line driver with 5 V tolerant input/outputs; 3-state
© NXP B.V. 2011. All rights reserved.
For more information, please visit: http://www.nxp.co m
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 9 December 2011
Document identifier : 7 4LV C1 26 A
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.
17. Contents
1 General description. . . . . . . . . . . . . . . . . . . . . . 1
2 Features and benefits . . . . . . . . . . . . . . . . . . . . 1
3 Ordering information. . . . . . . . . . . . . . . . . . . . . 1
4 Functional diagram . . . . . . . . . . . . . . . . . . . . . . 2
5 Pinning information. . . . . . . . . . . . . . . . . . . . . . 3
5.1 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
5.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3
6 Functional description . . . . . . . . . . . . . . . . . . . 4
7 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 4
8 Recommended operating conditio ns. . . . . . . . 4
9 Static characteristics. . . . . . . . . . . . . . . . . . . . . 5
10 Dynamic characteristics . . . . . . . . . . . . . . . . . . 6
11 AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . 7
12 Package outline . . . . . . . . . . . . . . . . . . . . . . . . . 9
13 Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 13
14 Revision history. . . . . . . . . . . . . . . . . . . . . . . . 13
15 Legal information. . . . . . . . . . . . . . . . . . . . . . . 14
15.1 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 14
15.2 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
15.3 Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 14
15.4 Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 15
16 Contact information. . . . . . . . . . . . . . . . . . . . . 15
17 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16