E / 11815 / D 1/13
LDE Series
Digital low differential pressure sensors
www.first-sensor.com
FEATURES
· Pressure ranges from 25 to 500 Pa (0.1 to 2 inH2O)
·Pressure sensor based on thermal micro-flow
measurement
·High flow impedance
very low flow-through leakage
high immunity to dust and humidity
no loss in sensitivity using long tubing
·Calibrated and temperature compensated
·Unique offset autozeroing feature ensuring
superb long-term stability
·Offset accuracy better than 0.2 %FS
·Total accuracy better than 0.5 %FS typical
·On-chip temperature sensor
·Analog output and digital SPI interface
·No position sensitivity
·RoHS and REACH compliant
·Quality Management System according to EN
ISO 13485 and EN ISO 9001
ELECTRICAL CONNECTION3
MEDIA COMP A TIBILITY
Air and other non-corrosive gases
SPECIFICATIONS
Maximum ratings
Supply voltage VS
LDE...3... 2.70 ... 3.60 VDC
LDE...6... 4.75 ... 5.25 VDC
Output current 1 mA
Soldering recommendations
Reflow soldering, peak temperature 235...245 °C
Wave soldering, pot temperature 260 °C
Hand soldering, tip temperature 370...425 °C
T emperature ranges
Compensated 0 ... +70 °C
Operating -20 ... +80 °C
Storage -40 ... +80 °C
Humidity limits (non-condensing) 97 %RH
Vibration120 g
Mechanical shock2500 g
10 9 8 7 6
1 2 3 4 5
Specification notes:
1. Sweep 20 to 2000 Hz, 8 min, 4 cycles per axis, MIL-STD-883, Method 2007.
2. 5 shocks, 3 axes, MIL-STD-883E, Method 2002.4.
3. The maximum voltage applied to pin 1 and pins 6 through 10 should not exceed VS+0.3 V.
There are three use cases that will change
the manner in which the LDE sensor is
connected in-circuit. For detailed pin
connections see page 12.
niPnoitcnuF
1devreseR
2V
S
3DNG
4tuoV
5tuoV
6KLCS
7ISOM
8OSIM
9SC/
01devreseR
Top-down view
E / 11815 / D 2/13
LDE Series
Digital low differential pressure sensors
www.first-sensor.com
PRESSURE SENSOR CHARACTERISTICS
.ontraPerusserpgnitarepOerusserpfoorP
4
erusserptsruB
4
...U520SEDLaP52...0/ rabm52.0...0Hni1.0(
2
)O
rab2 )isp03( rab5 )isp57(
...U050SEDLaP05...0/ rabm5.0...0Hni2.0(
2
)O
...U001SEDLaP001...0/rabm1...0Hni4.0(
2
)O
...U052SEDLaP052...0/ rabm5.2...0Hni1(
2
)O
...U005SEDLaP005...0/rabm5...0Hni2(
2
)O
...B520SEDLaP52±...0/ rabm52.0±...0Hni1.0±(
2
)O
...B050SEDLaP05±...0/ rabm5.0±...0Hni2.0±(
2
)O
...B001SEDLaP001±...0/ rabm1±...0Hni4.0±(
2
)O
...B052SEDLaP052±...0/ rabm5.2±...0Hni1±(
2
)O
...B005SEDLaP005±...0/ rabm5±...0Hni2±(
2
)O
Specification notes:
4. The max. common mode pressure is 5 bar.
5. For example with a LDES500... sensor measuring CO2 gas, at full-scale output the actual pressure will be 500 Pa x 0.56 = 280 Pa.
facto
r
correctiongasPP sensoreff ×= Peff = True differential pressure
Psensor = Differential pressure as indicated by output voltage
epytsaGrotcafnoitcerroC
riayrD0.1
O(negyxO
2
)70.1
N(negortiN
2
)79.0
)rA(nogrA89.0
OC(edixoidnobraC
2
)65.0
GAS CORRECTION FACTORS5
E / 11815 / D 3/13
LDE Series
Digital low differential pressure sensors
www.first-sensor.com
scitsiretcarahC.niM.pyT.xaMtinU
)SMR(levelesioN10.0±aP
tfihspu-mrawtesffO esionnahtssel
ytilibatsmretgnoltesffO
7
50.0±1.0±raey/aP
ytilibataepertesffO10.0±aP
ytilibataepernapS
11,01
52.0±
g
nidaerfo%
)daolon(noitpmusnoctnerruC
8
78Am
t(emitesnopseR
36
)5
sm
emitno-rewoP 52
Analog output (unidirectional devices)
scitsiretcarahC.niM.pyT.xaMtinU
tesffoerusserporeZ94.005.015.0 V
tuptuoelacslluF 05.4
ycaruccanapS
11,01
4.0±57.0±gnidaerfo%
stceffelamrehTtesffOC°55...551± Vm
C°07...003±
napSC°55...552.1±2±gnidaerfo%
C°07...02±57.2±
Analog output (bidirectional devices)
scitsiretcarahC.niM.pyT.xaMtinU
tesffoerusserporeZ94.205.215.2 VtuptuOerusserpdeificeps.xamta05.4
erusserpdeificeps.nimta05.0
ycaruccanapS
11,01
4.0±57.0±gnidaerfo%
stceffelamrehTtesffOC°55...551± Vm
C°07...003±
napSC°55...552.1±2±gnidaerfo%
C°07...02±57.2±
PERFORMANCE CHARACTERISTICS6
LDE...6...
(VS=5.0 VDC, TA=20 °C, PAbs=1 bara, calibrated in air , output signals analog and digital are non-ratiometric to VS)
all 25 Pa and 50 Pa devices
Digital output
scitsiretcarahC.niM.pyT.xaMtinU
rotcafelacS)tuptuolatigid(
9
...0/52...0aP52±0021 aP/stnuoc
...0/05...0aP05±006
ycaruccatesffoerusserporeZ
01
1.0±2.0±SSF%
ycaruccanapS
11,01
4.0±57.0±gnidaerfo%
stceffelamrehTtesffOC°55...52.0± SSF%
C°07...04.0±
napSC°55...51±57.1± gnidaerfo%
C°07...02±57.2±
E / 11815 / D 4/13
LDE Series
Digital low differential pressure sensors
www.first-sensor.com
PERFORMANCE CHARACTERISTICS6
LDE...6...
(VS=5.0 VDC, TA=20 °C, PAbs=1 bara, calibrated in air , output signals analog and digital are non-ratiometric to VS)
all 100 Pa, 250 Pa and 500 Pa devices
scitsiretcarahC.niM.pyT.xaMtinU
)SMR(levelesioN10.0±SSF%
tfihspu-mrawtesffO esionnahtssel
ytilibatsmretgnoltesffO
7
50.0±1.0±raey/SSF%
ytilibataepertesffO
21
20.0±aP
ytilibataepernapS
11,01
52.0±
g
nidaerfo%
)daolon(noitpmusnoctnerruC
8
78Am
t(emitesnopseR
36
)5
sm
emitno-rewoP 52
Analog output (unidirectional devices)
scitsiretcarahC.niM.pyT.xaMtinU
tesffoerusserporeZ94.005.015.0 V
tuptuoelacslluF 05.4
ycaruccanapS
11,01
4.0±57.0±gnidaerfo%
stceffelamrehTtesffOC°55...501± Vm
C°07...021±
napSC°55...51±57.1± gnidaerfo%
C°07...02±57.2±
Analog output (bidirectional devices)
scitsiretcarahC.niM.pyT.xaMtinU
tesffoerusserporeZ94.205.215.2 VtuptuOerusserpdeificeps.xamta05.4
erusserpdeificeps.nimta05.0
ycaruccanapS
11,01
4.0±57.0±gnidaerfo%
stceffelamrehTtesffOC°55...501± Vm
C°07...021±
napSC°55...51±57.1± gnidaerfo%
C°07...02±57.2±
Digital output
scitsiretcarahC.niM.pyT.xaMtinU
rotcafelacS)tuptuolatigid(
9
...0/001...0aP001±003 aP/stnuoc
...0/052...0aP052±021
...0/005...0aP005±06
ycaruccatesffoerusserporeZ
01
50.0±1.0±SSF%
ycaruccanapS
11,01
4.0±57.0±gnidaerfo%
stceffelamrehTtesffOC°55...51.0± SSF%
C°07...02.0±
napSC°55...51±57.1± gnidaerfo%
C°07...02±57.2±
E / 11815 / D 5/13
LDE Series
Digital low differential pressure sensors
www.first-sensor.com
PERFORMANCE CHARACTERISTICS6
LDE...3...
(VS=3.0 VDC, TA=20 °C, PAbs=1 bara, calibrated in air , output signals analog and digital are non-ratiometric to VS)
all 25 Pa and 50 Pa devices
scitsiretcarahC.niM.pyT.xaMtinU
)SMR(levelesioN10.0±aP
tfihspu-mrawtesffO esionnahtssel
ytilibatsmretgnoltesffO
7
50.0±1.0±raey/aP
ytilibataepertesffO10.0±aP
ytilibataepernapS
11,01
52.0±
g
nidaerfo%
)daolon(noitpmusnoctnerruC
8
4161Am
t(emitesnopseR
36
)5
sm
emitno-rewoP 52
Analog output (unidirectional devices)
Analog output (bidirectional devices)
scitsiretcarahC.niM.pyT.xaMtinU
tesffoerusserporeZ94.105.115.1 VtuptuOerusserpdeificeps.xamta07.2
erusserpdeificeps.nimta03.0
ycaruccanapS
11,01
4.0±57.0±gnidaerfo%
stceffelamrehTtesffOC°55...551± Vm
C°07...003±
napSC°55...552.1±2±gnidaerfo%
C°07...02±57.2±
Digital output
scitsiretcarahC.niM.pyT.xaMtinU
rotcafelacS)tuptuolatigid(
9
...0/52...0aP52±0021 aP/stnuoc
...0/05...0aP05±006
ycaruccatesffoerusserporeZ
01
1.0±2.0±SSF%
ycaruccanapS
11,01
4.0±57.0±gnidaerfo%
stceffelamrehTtesffOC°55...52.0± SSF%
C°07...04.0±
napSC°55...51±57.1± gnidaerfo%
C°07...02±57.2±
scitsiretcarahC.niM.pyT.xaMtinU
tesffoerusserporeZ92.003.013.0 V
tuptuoelacslluF 07.2
ycaruccanapS
11,01
4.0±57.0±gnidaerfo%
stceffelamrehTtesffOC°55...551± Vm
C°07...003±
napSC°55...552.1±2±gnidaerfo%
C°07...02±57.2±
E / 11815 / D 6/13
LDE Series
Digital low differential pressure sensors
www.first-sensor.com
PERFORMANCE CHARACTERISTICS6
LDE...3...
(VS=3.0 VDC, TA=20 °C, PAbs=1 bara, calibrated in air , output signals analog and digital are non-ratiometric to VS)
all 100 Pa, 250 Pa and 500 Pa devices
scitsiretcarahC.niM.pyT.xaMtinU
)SMR(levelesioN10.0±SSF%
tfihspu-mrawtesffO esionnahtssel
ytilibatsmretgnoltesffO
7
50.0±1.0±raey/SSF%
ytilibataepertesffO
21
20.0±aP
ytilibataepernapS
11,01
52.0±
g
nidaerfo%
)daolon(noitpmusnoctnerruC
8
4161Am
t(emitesnopseR
36
)5
sm
emitno-rewoP 52
Analog output (unidirectional devices)
scitsiretcarahC.niM.pyT.xaMtinU
tesffoerusserporeZ92.003.013.0 V
tuptuoelacslluF 07.2
ycaruccanapS
11,01
4.0±57.0±gnidaerfo%
stceffelamrehTtesffOC°55...501± Vm
C°07...021±
napSC°55...51±57.1± gnidaerfo%
C°07...02±57.2±
Analog output (bidirectional devices)
scitsiretcarahC.niM.pyT.xaMtinU
tesffoerusserporeZ94.105.115.1 VtuptuOerusserpdeificeps.xamta07.2
erusserpdeificeps.nimta03.0
ycaruccanapS
11,01
4.0±57.0±gnidaerfo%
stceffelamrehTtesffOC°55...501± Vm
C°07...021±
napSC°55...51±57.1± gnidaerfo%
C°07...02±57.2±
Digital output
scitsiretcarahC.niM.pyT.xaMtinU
rotcafelacS)tuptuolatigid(
9
...0/001...0aP001±003 aP/stnuoc
...0/052...0aP052±021
...0/005...0aP005±06
ycaruccatesffoerusserporeZ
01
50.0±1.0±SSF%
ycaruccanapS
11,01
4.0±57.0±gnidaerfo%
stceffelamrehTtesffOC°55...51.0± SSF%
C°07...02.0±
napSC°55...51±57.1± gnidaerfo%
C°07...02±57.2±
E / 11815 / D 7/13
LDE Series
Digital low differential pressure sensors
www.first-sensor.com
To tal accuracy13
Fig. 1: T ypical tot al accuracy plot of 16 LDE 50 Pa sensors @ 25 °C (typical total accuracy better than 0.5 %FS)
PERFORMANCE CHARACTERISTICS
Offset long term stability
Fig. 2: Offset long term stability for LDE 250 Pa sensors after 10 000 hours @ 85°C powered, equivalent to over
43.5 years @ 25 °C (better than ±2 mV / ±0.125 Pa)
T emperature sensor
scitsiretcarahC.niM.pyT.xaMtinU
rotcafelacS)tuptuolatigid(59C°/stnuoc
ytiraenil-noN 5.0± SF%
siseretsyH 1.0±
E / 11815 / D 8/13
LDE Series
Digital low differential pressure sensors
www.first-sensor.com
Fig. 3: Resistors at both ends of the SPI lines
SPI - SERIAL PERIPHERAL INTERFACE
Introduction
The LDE serial interface is a high-speed synchronous
data input and output communication port. The serial
interface operates using a standard 4-wire SPI bus.
The LDE device runs in SPI mode 0, which requires the
clock line SCLK to idle low (CPOL = 0), and for data to
be sampled on the leading clock edge (CPHA = 0).
Figure 5 illustrates this mode of operation.
Care should be taken to ensure that the sensor is
properly connected to the master microcontroller.
Refer to the manufacturer's datasheet for more
information regarding physical connections.
Application circuit
The use of pull-up resistors is generally unnecessary
for SPI as most master devices are configured for
push-pull mode. If pull-up resistors are required for
use with 3 V LDE devices, however , they should be
greater than 50 k.
Note: It is import ant to adhere to the communication protocol in order to avoid damage to the sensor.
There are, however, some cases where it may be
helpful to use 33 series resistors at both ends of the
SPI lines, as shown in Figure 3. Signal quality may be
further improved by the addition of a buffer as shown in
Figure 4. These cases include multiple slave devices
on the same bus segment, using a master device
with limited driving capability and long SPI bus lines.
If these series resistors are used, they must be
physically placed as close as possible to the pins of
the master and slave devices.
Signal control
The serial interface is enabled by asserting /CS low .
The serial input clock, SCLK, is gated internally to
begin accepting the input data at MOSI, or sending
the output data on MISO. When /CS rises, the data
clocked into MOSI is loaded into an internal register .
Fig. 4: Addition of a buffer
SCLK
MOSI
MISO
/CS
SCLK
MOSI
MISO
/CS
Sensor
33
33
33
33
33
33
33
33
SCLK
MOSI
MISO
/CS
SCLK
MOSI
MISO
/CS
Sensor
33 3333
33 3333
33 3333
33 3333
/OE
/OE
/OE
/OE
E / 11815 / D 9/13
LDE Series
Digital low differential pressure sensors
www.first-sensor.com
Data read – pressure
When powered on, the sensor begins to continuously
measure pressure. To initiate data transfer from the
sensor, the following three unique bytes must be written
sequentially , MSB first, to the MOSI pin (see Figure 5):
petSlamicedaxeHyraniBnoitpircseD
1D2x010110100B
t
nemerusaemerusserptnerruclloP
241x000101000BretsigeratadottluserdneS
389x000011001BretsigerataddaeR
The entire 16 bit content of the LDE register is then
read out on the MISO pin, MSB first, by applying 16
successive clock pulses to SCLK with /CS asserted
low . Note that the value of the LSB is held at zero for
internal signal processing purposes. This is below the
noise threshold of the sensor and thus its fixed value
does not affect sensor performance and accuracy .
From the digital sensor output the actual pressure
value can be calculated as follows:
[] []
=
Pa
counts
factorscale
countsoutputdigital
Pa
p
ressure
Fig. 5: SPI data transfer
For example, for a ±250 Pa sensor (LDES250B...)
with a scale factor of 120 a digital output of 30 000
counts (7530’h) calculates to a positive pressure of
250 Pa. Similarly, a digital output of -30 000 counts
(8AD0’h) calculates to a negative pressure of -250 Pa.
Data read – temperature
The on-chip temperature sensor changes 95 counts/°C
over the operating range. The temperature data format
is 15-bit plus sign in two’s complement format. To
read temperature, use the following sequence:
petSlamicedaxeHyraniBnoitpircseD
10x2AB00101010
tn
emerusaemerutarepmettnerruclloP
241x000101000BretsigeratadottluserdneS
389x000011001BretsigerataddaeR
From the digital sensor output, the actual temperature
can be calculated as follows:
temperature [°C] = TS - TS0 [counts] + T0 [°C]
scale factorTS[counts/°C]
where
TS is the actual sensor readout;
TS0 is the sensor readout at known temperature T014;
Scale factorTS = 95 counts/°C
SPI - SERIAL PERIPHERAL INTERFACE
Note: It is import ant to adhere to the communication protocol in order to avoid damage to the sensor.
SCLK
(CPOL=0)
(CPHA=0)
MOSI
MISO
/CS
0 1 0 1 1 10 0 0 1 0 1 0 000
Step 2Step 1
SCLK
(CPOL=0)
(CPHA=0)
MOSI
MISO
/CS
1 0 1 1 000
Data from s e nso rStep 3
0
15 14 13 12 11 10 9876543210
MSB LSB
E / 11815 / D 10/13
LDE Series
Digital low differential pressure sensors
www.first-sensor.com
Interface specification
retemaraPlobmySsnoitidnoC.niM.pyT.xaMtinU
ycneuqerfkcolclanretxE f
KLCE
V
LESKC
0= .niM2.0 zHM
.xaM5
emitwoltupnikcolcretsamlanretxE f
OLNIKLCE
t
KLCE
f/1=
KLCE
0406t%
KLCE
emithgihtupnikcolcretsamlanretxE f
IHNIKLCE
t
KLCE
f/1=
KLCE
0406
SC/egdegnillafotputesKLCS t
CS
03 sn
emitputesegdegnisirKLCSotegdegnillafSC/ t
SSC
03
emiteldiSC/ t
ISC
f
KLC
zHM4= 5.1sµ
yaleddilavatadotegdegnillafKLCS t
OD
C
DAOL
Fp51= 08
sn
emitputesegdegnisirKLCSotdilavataD t
SD
03
emitdlohegdegnisirKLCSotdilavataD t
HD
03
htdiwesluphgihKLCS t
HC
001
htdiweslupwolKLCS t
LC
001
emitdlohegdegnisirKLCSotegdegnisirSC/ t
HSC
03
elbanetuptuootegdegnillafSC/ t
VD
C
DAOL
Fp51= 52
elbasidtuptuootegdegnisirSC/ t
RT
C
DAOL
Fp51= 52
)ylppusV5(...6...EDL ecnaticapacdaoltuptuomumixaMC
DAOL
R
DAOL
=,°55>nigramesahp 002Fp
HGIHcigol,egatlovtupnI V
HI
V×8.0
S
V
S
3.0+
V
WOLcigol,egatlovtupnI V
LI
V×2.0
S
HGIHcigol,egatlovtuptuO V
HO
R
DAOL
=V
S
1.0-
R
DAOL
k2= V
S
51.0-
WOLcigol,egatlovtuptuO V
LO
R
DAOL
=5.0
R
DAOL
k2= 2.0
)ylppusV3(...3...EDL
51
ecnaticapacdaoltuptuomumixaMC
DAOL
R
DAOL
k1= 51Fp
HGIHcigol,egatlovtupnI V
HI
V×56.0
S
V
S
3.0+
V
WOLcigol,egatlovtupnI V
LI
V×53.0
S
HGIHcigol,egatlovtuptuO V
HO
I
O
Aµ02-=V
S
4.0-
WOLcigol,egatlovtuptuO V
LO
I
O
Aµ02= 4.0
Fig. 5: Timing diagram
CSS
t
t
DV
SCLK
MOSI
MISO
/CS
t
SC
t
CL CH
t
t
DH
t
DS
DO
tt
TR
t
CSH
t
CSI
E / 11815 / D 11/13
LDE Series
Digital low differential pressure sensors
www.first-sensor.com
5.0
17.53
±0.15
12.70
±0.15
17.70
18.03 Ø 2.20
6.26
14.97
7.85
8.95
±0.5
5.60
±0.2
15.65
16.05
3.0 0.25
0.46
2.54
10.16
5.60
3.10
±0.2
1.60
±0.2
2.50
10 9 8 7 6
1 2 3 4 5
10.70
High pressure port
5.0
17.53
±0.15
12.70
±0.15
17.70
18.03 Ø 2.20
6.26
15.22
1.43
5.60
±0.2
5.08
3.0
0.25
0.51
1.27
2.54
5.60
3.10
±0.2
1.60
±0.2
2.50
10 9 8 7 6
1 2 3 4 5
10.70
High pressure port
13.85
OUTLINE DRAWING
LDE...F... (DIP, 2 port s same side)
LDE...E... (SMD, 2 ports same side)
dimensions in mm
all tolerances ±0.1 mm
unless otherwise noted
dimensions in mm
all tolerances ±0.1 mm
unless otherwise noted
E / 11815 / D 12/13
LDE Series
Digital low differential pressure sensors
www.first-sensor.com
ELECTRICAL CONNECTION3
niPnoitcnuF
noitcennoC
:1esaC tuptuolangislatigiD :2esaC tuptuolangisgolanA
:3esaC
t
nemecalperni-pordABL )ylnoEDLV5(
1devreseRCNCNDNG
2V
S
V3+/V5+V3+/V5+V5+
3DNGDNGDNGDNG
4tuoVCNtupnigolanaecnadepmi-hgiH )CDA,pma-po.g.e(
tu
pnigolanaecnadepmi-hgiH )CDA,pma-po.g.e(
5tuoVCN
6KLCSKLCSecivedretsaMDNGDNG
7ISOMISOMecivedretsaMDNGDNG
8OSIMOSIMecivedretsaMDNGDNG
9SC/)SC/(ecivedretsaMV
S
DNG
01devreseRCNCNDNG
There are three use cases that will change the manner in which the LDE series device is connected in-circuit:
Case 1: Reading of pressure measurement as a digital (SPI) signal;
Case 2: Reading of pressure measurement as an analog (voltage) signal; and
Case 3: Pin-to-pin compatible drop-in replacement for LBA series devices (5 V LDE devices only).
The connections for each such use case must be made as indicated below .
Sensor PCB footprint
OUTLINE DRAWING
dimensions in mm
all tolerances ±0.1 mm
unless otherwise noted
13/13
LDE Series
Digital low differential pressure sensors
www.first-sensor.com
ORDERING INFORMATION
seireS egnarerusserP noitarbilaC gnisuoH tuptuO edarG
snoitpOEDL 520S aP52 Hni1.0(
2
)O BlanoitceridiB Estrop2,TMS edisemas 3,cirtemoitar-non ylppusV3 ShgiH
UlanoitceridinU
050S aP05 Hni2.0(
2
)O Fstrop2,PID edisemas 6,cirtemoitar-non ylppusV5
001S aP001 Hni4.0(
2
)O
052S aP052 Hni1(
2
)O
005S aP005 Hni2(
2
)O
:elpmaxE EDL 052S B F 6 S
First Sensor reserves the right to make changes to any products herein. First Sensor does not assume any liability arising out of the application
or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.
E / 11815 / D
Specification notes:
6. The sensor is calibrated with a common mode pressure of 1 bar absolute. Due to the mass flow based measuring principle,
variations in absolute common mode pressure need to be compensated according to the following formula:
Peff = True differential pressure
abs
sensoreff P
bara 1
PP ×= Psensor = Differential pressure as indicated by output voltage
Pabs = Current absolute common mode pressure
7. Figure based on accelerated lifetime test of 10 000 hours at 85 °C biased burn-in.
8. Please contact First Sensor for low power options.
9. The digital output signal is a signed, two's complement integer. Negative pressures will result in a negative output.
10. Zero pressure offset accuracy and span accuracy are uncorrelated uncertainties. They can be added according to the
principles of error propagation.
11. Span accuracy below 10 % of full scale is limited by the intrinsic noise of the sensor.
12. Typical value for 250 Pa sensors.
13. Total accuracy is the combined error from offset and span calibration, non-linearity, repeatability and pressure hysteresis.
14. To be defined by user. The results show deviation in °C from the offset calibrated temperature
15. For correct operation of LDE…3... devices, the device driving the SPI bus must have a minimum drive capability of ±2 mA.