ATF-551M4
Low Noise Enhancement Mode Pseudomorphic HEMT
in a Miniature Leadless Package
Data Sheet
Description
Avago Technologies ATF-551M4 is a high dynamic
range, super low noise, single supply E-pHEMT GaAs FET
housed in a thin miniature leadless package.
The combination of small device size, super low noise
(under 1 dB Fmin from 2 to 6 GHz), high linearity and
low power makes the ATF-551M4 ideal for LNA or hybrid
module designs in wireless receiver in the 450 MHz to
10 GHz frequency band.
Applications include Cellular/PCS/ WCDMA handsets
and data modem cards, xed wireless infrastructure
in the 2.4, 3.5 GHz and UNII frequency bands, as well
as 2.4 GHz 802.11b, 5 GHz 802.11a and HIPERLAN/2
Wireless LAN PC-cards.
Note:
1. Avagos enhancement mode E-pHEMT devices are the rst com-
mercially available single-supply GaAs transistors that do not need
a negative gate bias voltage for operation. They can help simplify
the design and reduce the cost of receivers and transmitters in many
applications in the 450 MHz to 10 GHz frequency range.
Features
Very low noise gure and high linearity
Single Supply Enhancement Mode Technology[1]
optimized for 3V operation
Excellent uniformity in product specications
400 micron gate width
Thin miniature package 1.4 mm x 1.2 mm x 0.7 mm
Tape-and-reel packaging option available
Specications
2 GHz; 2.7V, 10 mA (typ.)
24.1 dBm output 3rd order intercept
14.6 dBm output power at 1 dB gain compression
0.5 dB noise gure
17.5 dB associated gain
Applications
Low Noise Amplier for:
Cellular/PCS/WCDMA handsets and modem cards
2.4 GHz, 3.5 GHz and UNII xed wireless infrastructure
2.4 GHz 802.11b Wireless LAN
5 GHz 802.11a and HIPERLAN Wireless LAN
General purpose discrete E-pHEMT for other ultra low
noise applications
MiniPak 1.4 mm x 1.2 mm Package
Pin Connections and Package Marking
Note:
Top View. Package marking provides orientation, product identica-
tion and date code.
“V = Device Type Code
“x” = Date code character. A dierent character is assigned for each
month and year.
Source
Pin 3
Gate
Pin 2
Source
Pin 1
Drain
Pin 4
Vx
Vx
2
ATF-551M4 Absolute Maximum Ratings[1]
Symbol Parameter Units Absolute MaximumMaximum
VDS Drain-Source Voltage[2] V 5
VGS Gate-Source Voltage[2] V -5 to +1
VGD Gate Drain Voltage[2] V -5 to +1
IDS Drain Current[2] mA 100
IGS Gate Current[5] mA 1
Pdiss Total Power Dissipation[3] mW 270
Pin max. RF Input Power
(Vd=2.7V, Id=10mA)
(Vd=0V, Id=0mA)
dBm
dBm
10
10
TCH Channel Temperature °C 150
TSTG Storage Temperature °C -65 to 150
θjc Thermal Resistance[4] °C/W 240
Notes:
1. Operation of this device above any one of these parameters may
cause permanent damage.
2. Assumes DC quiescent conditions.
3. Source lead temperature is 25°C. Derate 6 mW/°C for TL > 40°C.
4. Thermal resistance measured using 150°C Liquid Crystal Measure-
ment method.
5. Device can safely handle +10 dBm RF Input Power provided IGS is
limited to 1 mA. IGS at P1dB drive RF level is bias circuit dependent.
See applications section for additional information.
Product Consistency Distribution Charts [6]
V
DS
(V)
Figure 1. Typical I-V Curves.
(VGS = 0.1 V per step)
I
DS
(mA)
0.4V
0.5V
0.6V
0.7V
0.3V
0 21 4 653 7
70
60
50
40
30
20
10
0
GAIN (dB)
Figure 2. Capability Plot for Gain @ 2.7 V,
10 mA. LSL = 15.5, Nominal = 17.5,
USL = 18.5
15 1716 18 19
180
150
120
90
60
30
0
Cpk = 1.64
Stdev = 0.19
-3 Std +3 Std
OIP3 (dBm)
Figure 3. Capability Plot for OIP3 @ 2.7 V,
10 mA. LSL = 22.0, Nominal = 24.1
22 2423 25 26
150
120
90
60
30
0
Cpk = 2.85
Stdev = 0.25
-3 Std
NF (dB)
Figure 4. Capability Plot for NF @ 2.7 V,
10 mA. Nominal = 0.5, USL = 0.9
0.29 0.690.49 0.89 1.09
160
120
80
40
0
Cpk = 2.46
Stdev = 0.06
+3 Std
Note:
6. Distribution data sample size is 398 samples taken from 4 dierent wafers. Future wafers allocated to this product may have nominal values
anywhere between the upper and lower limits. Measurements made on production test board. This circuit represents a trade-o between
an optimal noise match and a realizeable match based on production test equipment. Circuit losses have been de-embedded from actual
measurements.
3
ATF-551M4 Electrical Specications
TA = 25°C, RF parameters measured in a test circuit for a typical device
Symbol Parameter and Test Condition Units Min. Typ. Max.
Vgs Operational Gate Voltage Vds = 2.7V, Ids = 10 mA V 0.3 0.47 0.65
Vth Threshold Voltage Vds = 2.7V, Ids = 2 mA V 0.18 0.37 0.53
Idss Saturated Drain Current Vds = 2.7V, Vgs = 0V µA 0.1 3
Gm Transconductance Vds = 2.7V, gm = Idss/Vgs; mmho 110 220 285
Vgs = 0.75 0.7 = 0.05V
Igss Gate Leakage Current Vgd = Vgs = -2.7V µA 95
NF Noise Figure [1] f = 2 GHz Vds = 2.7V, Ids = 10 mA dB 0.5 0.9
Vds = 3V, Ids = 20 mA dB 0.5
Gain Gain[1] f = 2 GHz Vds = 2.7V, Ids = 10 mA dB 15.5 17.5 18.5
Vds = 3V, Ids = 20 mA dB 18.0
OIP3 Output 3rd Order f = 2 GHz Vds = 2.7V, Ids = 10 mA dBm 22 24.1
Intercept Point[1] Vds = 3V, Ids = 20 mA dBm 30.0
P1dB 1dB Compressed f = 2 GHz Vds = 2.7V, Ids = 10 mA dBm 14.6
Output Power[1] Vds = 3V, Ids = 20 mA dBm 16.0
Notes:
1. Measurements obtained using production test board described in Figure 5. Typical values were determined from a sample size of 398 parts
from 4 wafers.
Input 50 Input
Transmission
Line Including
Gate Bias T
(0.3 dB loss)
Input
Matching Circuit
Γ_mag = 0.3
Γ_ang = 11°
(0.3 dB loss)
Output
Matching Circuit
Γ_mag = 0.3
Γ_ang = 9°
(0.9 dB loss)
DUT
50 Output
Transmission
Line Including
Gate Bias T
(0.3 dB loss)
Output
Figure 5. Block diagram of 2 GHz production test board used for Noise Figure, Gain, P1dB, OIP3, and IIP3 measurements. This circuit represents a trade-o
between an optimal noise match, maximum OIP3 match and associated impedance matching circuit losses. Circuit losses have been de-embedded from
actual measurements.
Symbol Parameter and Test Condition Units Min. Typ. Max.
Fmin Minimum Noise Figure[2] f = 900 GHz Vds = 2.7V, Ids = 10 mA dB 0.27
f = 2 GHz Vds = 2.7V, Ids = 10 mA dB 0.41
f = 3.9 GHz Vds = 2.7V, Ids = 10 mA dB 0.61
f = 5.8 GHz Vds = 2.7V, Ids = 10 mA dB 0.88
Ga Associated Gain[2] f = 900 GHz Vds = 2.7V, Ids = 10 mA dB 21.8
f = 2 GHz Vds = 2.7V, Ids = 10 mA dB 17.9
f = 3.9 GHz Vds = 2.7V, Ids = 10 mA dB 14.2
f = 5.8 GHz Vds = 2.7V, Ids = 10 mA dB 12.0
OIP3 Output 3rd Order f = 900 GHz Vds = 2.7V, Ids = 10 mA dBm 22.1
Intercept Point[3] f = 3.9 GHz Vds = 2.7V, Ids = 10 mA dBm 24.3
f = 5.8 GHz Vds = 2.7V, Ids = 10 mA dBm 24.5
P1dB 1dB Compressed f = 900 GHz Vds = 2.7V, Ids = 10 mA dBm 14.3
Output Power[3] f = 3.9 GHz Vds = 2.7V, Ids = 10 mA dBm 14.5
f = 5.8 GHz Vds = 2.7V, Ids = 10 mA dBm 14.3
Notes:
2. The Fmin values are based on a set of 16 noise gure measurements made at 16 dierent impedances using an ATN NP5 test system. From
these measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
3. Measurements taken above and below 2 GHz was made using a double stub tuner at the input tuned for low noise and a double stub tuner at
the output tuned for maximum OIP3. Circuit losses have been de-embedded from actual measurements.
ATF-551M4 Electrical Specications (see notes 2 and 3, as indicated)
4
ATF-551M4 Typical Performance Curves
Notes:
1. Measurements at 900MHz were made using an ICM xture with a double stub tuner at the input tuned for low noise and a double stub tuner
at the output tuned for maximum OIP3. Circuit losses have been de-embedded from actual measurements.
2. The Fmin values are based on a set of 16 noise gure measurements made at 16 dierent impedances using an ATN NP5 test system. From
these measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
Figure 6. Gain vs. Ids and Vds at 900 MHz
[1]
.
I
ds
(mA)
GAIN (dB)
0 35155 30252010
26
25
24
23
22
21
20
19
18
2V
2.7V
3V
Figure 7. Fmin vs. Ids and Vds at 900 MHz
[2]
.
I
ds
(mA)
Fmin (dB)
0 35155 30252010
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
2V
2.7V
3V
Figure 9. IIP3 vs. Ids and Vds at 900 MHz
[1]
.
I
ds
(mA)
IIP3 (dBm)
0 35155 30252010
7
6
5
4
3
2
1
0
-1
-2
2V
2.7V
3V
Figure 10. P1dB vs. Ids and Vds at 900 MHz
[1]
.
I
ds
(mA)
P1dB (dBm)
0 35155 30252010
18
17
16
15
14
13
12
11
10
9
2V
2.7V
3V
Figure 8. OIP3 vs. Ids and Vds at 900 MHz
[1]
.
I
ds
(mA)
OIP3 (dBm)
0 35155 30252010
32
30
28
26
24
22
20
18
16
2V
2.7V
3V
5
ATF-551M4 Typical Performance Curves, continued
Notes:
1. Measurements at 2 GHz with biasing 2.7V, 10 mA were made on a xed tuned production test board that was tuned for optimal OIP3 match
with reasonable noise gure. This circuit represents a trade-o between optimal noise match, maximum OIP3 match and a realizable match
based on production test board requirements. Measurements taken other than 2.7V, 10 mA biasing was made using a double stub tuner at
the input tuned for low noise and a double stub tuner at the output tuned for maximum OIP3. Circuit losses have been de-embedded from
actual measurements.
2. The Fmin values are based on a set of 16 noise gure measurements made at 16 dierent impedances using an ATN NP5 test system. From
these measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
Figure 11. Gain vs. Ids and Vds at 2 GHz
[1]
.
I
ds
(mA)
GAIN (dB)
0 35155 30252010
20
19
18
17
16
15
2V
2.7V
3V
Figure 12. Fmin vs. Ids and Vds at 2 GHz
[2]
.
I
ds
(mA)
Fmin (dB)
0 35155 30252010
0.6
0.5
0.4
0.3
0.2
0.1
0
2V
2.7V
3V
Figure 13. OIP3 vs. Ids and Vds at 2 GHz
[1]
.
I
ds
(mA)
OIP3 (dBm)
0 35155 30252010
36
32
28
24
20
16
2V
2.7V
3V
Figure 14. IIP3 vs. Ids and Vds at 2 GHz
[1]
.
I
ds
(mA)
IIP3 (dBm)
0 35155 30252010
18
16
14
12
10
8
6
4
2
0
2V
2.7V
3V
Figure 15. P1dB vs. Ids and Vds at 2 GHz
[1]
.
I
ds
(mA)
P1dB (dBm)
0 35155 30252010
2V
2.7V
3V
17
16
15
14
13
12
11
10
6
ATF-551M4 Typical Performance Curves, continued
Notes:
1. Measurements at 2 GHz were made on a xed tuned production test board that was tuned for optimal OIP3 match with reasonable noise g-
ure at 2.7 V, 10 mA bias. This circuit represents a trade-o between optimal noise match, maximum OIP3 match and a realizable match based
on production test board requirements. Measurements taken above and below 2 GHz was made using a double stub tuner at the input tuned
for low noise and a double stub tuner at the output tuned for maximum OIP3. Circuit losses have been de-embedded from actual measure-
ments.
2. The Fmin values are based on a set of 16 noise gure measurements made at 16 dierent impedances using an ATN NP5 test system. From
these measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
Figure 16. Gain vs. Bias over Frequency
[1]
.
FREQUENCY (GHz)
GAIN (dB)
0 631 542
30
25
20
15
10
5
2V 10 mA
2.7V 10 mA
Figure 17. Fmin vs. Bias over Frequency
[2]
.
FREQUENCY (GHz)
Fmin (dB)
0 631 542
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
2V 10 mA
2.7V 10 mA
Figure 18. OIP3 vs. Bias over Frequency
[1]
.
FREQUENCY (GHz)
OIP3 (dBm)
0 631 542
26
25
24
23
22
21
20
19
18
2V 10 mA
2.7V 10 mA
Figure 19. IIP3 vs. Bias over Frequency
[1]
.
FREQUENCY (GHz)
IIP3 (dBm)
0 631 542
16
14
12
10
8
6
4
2
0
-2
-4
-6
2V 10 mA
2.7V 10 mA
Figure 20. P1dB vs. Bias over Frequency
[1]
.
FREQUENCY (GHz)
P1dB (dBm)
0 631 542
16
15
14
13
12
11
10
2V 10 mA
2.7V 10 mA
7
ATF-551M4 Typical Performance Curves, continued
Notes:
1. Measurements at 2 GHz were made on a xed tuned production test board that was tuned for optimal OIP3 match with reasonable noise g-
ure at 2.7 V, 10 mA bias. This circuit represents a trade-o between optimal noise match, maximum OIP3 match and a realizable match based
on production test board requirements. Measurements taken above and below 2 GHz was made using a double stub tuner at the input tuned
for low noise and a double stub tuner at the output tuned for maximum OIP3. Circuit losses have been de-embedded from actual measure-
ments.
2. The Fmin values are based on a set of 16 noise gure measurements made at 16 dierent impedances using an ATN NP5 test system. From
these measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
Figure 21. Gain vs. Temperature and
Frequency with Bias at 2.7V, 10 mA
[1]
.
FREQUENCY (GHz)
GAIN (dB)
0 631 542
30
25
20
15
10
5
-40°C
25°C
85°C
Figure 22. Fmin vs. Temperature and
Frequency with Bias at 2.7V, 10 mA
[2]
.
FREQUENCY (GHz)
Fmin (dB)
0 631 542
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
-40°C
25°C
85°C
Figure 23. OIP3 vs. Temperature and
Frequency with Bias at 2.7V, 10 mA
[1]
.
FREQUENCY (GHz)
OIP3 (dBm)
0 631 542
-40°C
25°C
85°C
25
24
23
22
21
20
19
Figure 24. IIP3 vs. Temperature and
Frequency with Bias at 2.7V, 10 mA
[1]
.
FREQUENCY (GHz)
IIP3 (dBm)
0 631 542
-40°C
25°C
85°C
20
15
10
5
0
-5
-10
Figure 25. P1dB vs. Temperature and
Frequency with Bias at 2.7V, 10 mA
[1]
.
FREQUENCY (GHz)
P1dB (dBm)
0 631 542
-40°C
25°C
85°C
16
15
14
13
12
11
10
8
ATF-551M4 Typical Scattering Parameters, VDS = 2V, IDS = 10 mA
Freq. S11 S21 S12 S22
MSG/MAG
GHz Mag. Ang. dB Mag. Ang. Mag. Ang. Mag. Ang. dB
0.1 0.995 -6.0 20.41 10.479 175.9 0.007 86.3 0.803 -3.3 31.75
0.5 0.954 -29.1 19.95 9.946 158.2 0.031 71.6 0.758 -15.6 25.06
0.9 0.906 -50.7 19.35 9.280 144.2 0.052 60.8 0.710 -27.4 22.52
1.0 0.896 -55.7 19.18 9.103 141.0 0.056 58.3 0.692 -30.2 22.11
1.5 0.833 -79.5 18.15 8.080 125.6 0.075 46.8 0.611 -42.3 20.32
1.9 0.790 -96.5 17.22 7.260 114.9 0.085 39.0 0.547 -50.4 19.32
2.0 0.781 -100.4 17.00 7.078 112.5 0.087 37.3 0.532 -52.3 19.10
2.5 0.739 -118.5 15.84 6.197 101.1 0.095 29.8 0.463 -60.6 18.14
3.0 0.710 -134.4 14.74 5.459 91.2 0.099 23.7 0.404 -67.6 17.41
4.0 0.683 -160.0 12.75 4.341 74.5 0.104 14.8 0.318 -79.6 16.21
5.0 0.679 -179.8 11.03 3.559 60.3 0.105 8.6 0.263 -91.2 15.30
6.0 0.680 166.5 9.65 3.036 48.5 0.107 5.0 0.220 -99.5 14.53
7.0 0.681 154.0 8.43 2.638 37.2 0.107 2.1 0.199 -111.0 13.92
8.0 0.683 143.7 7.43 2.353 26.4 0.110 -0.3 0.185 -123.4 13.30
9.0 0.690 132.7 6.53 2.122 15.7 0.113 -2.6 0.181 -137.7 11.27
10.0 0.687 119.7 5.72 1.932 4.5 0.117 -5.4 0.185 -151.1 9.97
11.0 0.691 106.5 4.98 1.775 -6.4 0.122 -8.4 0.196 -163.5 9.14
12.0 0.696 92.6 4.28 1.636 -17.7 0.129 -12.3 0.209 -174.4 8.44
13.0 0.713 81.8 3.53 1.501 -28.6 0.135 -16.2 0.206 171.4 7.80
14.0 0.747 67.4 2.82 1.384 -40.4 0.143 -21.8 0.211 151.2 7.62
15.0 0.759 55.5 1.97 1.255 -51.8 0.149 -27.4 0.237 131.8 6.73
16.0 0.808 45.4 1.00 1.122 -62.4 0.153 -33.3 0.269 113.3 6.90
17.0 0.828 37.3 -0.01 0.999 -72.7 0.157 -39.2 0.322 95.4 6.20
18.0 0.870 30.9 -1.04 0.887 -82.6 0.159 -45.2 0.383 80.1 7.47
Freq Fmin Γopt Γopt Rn/50 Ga
GHz dB Mag. Ang. dB
0.5 0.24 0.62 -4.3 0.14 23.50
0.9 0.24 0.56 8.8 0.13 21.66
1.0 0.28 0.52 13.5 0.12 21.61
1.9 0.45 0.47 38.6 0.11 18.04
2.0 0.39 0.47 42.9 0.11 17.88
2.4 0.47 0.42 52.8 0.11 16.76
3.0 0.55 0.35 74.0 0.09 15.66
3.9 0.61 0.32 105.4 0.08 14.10
5.0 0.74 0.33 144.0 0.06 12.74
5.8 0.89 0.36 164.3 0.05 11.83
6.0 0.90 0.37 166.1 0.05 11.63
7.0 1.03 0.38 -170.9 0.06 10.71
8.0 1.13 0.44 -157.2 0.07 9.99
9.0 1.27 0.48 -142.4 0.09 9.36
10.0 1.53 0.46 -126.0 0.17 8.46
Notes:
1. The Fmin values are based on a set of 16 noise gure measurements made at 16 dierent impedances using an ATN NP5 test system. From
these measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at
the end of the gate pad. The output reference plane is at the end of the drain pad.
Typical Noise Parameters, VDS = 2V, IDS = 10 mA
9
ATF-551M4 Typical Scattering Parameters, VDS = 2V, IDS = 15 mA
Freq. S11 S21 S12 S22
MSG/MAG
GHz Mag. Ang. dB Mag. Ang. Mag. Ang. Mag. Ang. dB
0.1 0.995 -6.6 21.93 12.489 175.5 0.006 86.2 0.765 -3.7 33.18
0.5 0.947 -31.6 21.41 11.757 156.7 0.029 70.9 0.715 -17.0 26.08
0.9 0.892 -54.7 20.67 10.804 142.0 0.048 59.7 0.659 -29.6 23.52
1.0 0.880 -60.1 20.46 10.547 138.6 0.052 57.1 0.641 -32.5 23.07
1.5 0.812 -84.9 19.26 9.186 123.0 0.067 46.0 0.555 -45.0 21.37
1.9 0.768 -102.1 18.23 8.153 112.3 0.076 38.7 0.489 -53.1 20.31
2.0 0.758 -106.1 17.98 7.923 109.9 0.077 37.2 0.474 -55.0 20.12
2.5 0.718 -124.1 16.73 6.859 98.9 0.084 30.5 0.407 -63.2 19.12
3.0 0.692 -139.7 15.55 5.991 89.3 0.088 25.3 0.352 -70.2 18.33
4.0 0.671 -164.5 13.47 4.716 73.3 0.092 18.0 0.272 -82.3 17.10
5.0 0.670 176.6 11.70 3.845 59.7 0.095 13.1 0.222 -94.5 16.07
6.0 0.671 163.5 10.30 3.273 48.3 0.098 10.5 0.181 -103.2 15.24
7.0 0.674 151.5 9.06 2.838 37.4 0.101 8.2 0.164 -115.4 14.49
8.0 0.676 141.6 8.06 2.528 27.0 0.105 6.1 0.152 -128.5 12.66
9.0 0.684 130.9 7.14 2.276 16.5 0.111 3.7 0.150 -143.3 11.51
10.0 0.682 118.0 6.33 2.072 5.6 0.117 0.6 0.156 -156.9 10.35
11.0 0.686 105.1 5.59 1.903 -5.0 0.124 -3.1 0.170 -169.0 9.57
12.0 0.691 91.4 4.88 1.753 -16.1 0.132 -7.6 0.183 -179.3 8.87
13.0 0.708 80.9 4.13 1.609 -26.9 0.140 -12.3 0.181 165.9 8.27
14.0 0.744 66.5 3.42 1.483 -38.5 0.148 -18.6 0.188 145.0 8.14
15.0 0.756 54.9 2.59 1.347 -49.7 0.155 -24.9 0.217 125.0 7.23
16.0 0.805 45.0 1.59 1.201 -60.2 0.158 -31.2 0.253 106.8 7.38
17.0 0.825 37.0 0.61 1.073 -70.4 0.161 -37.5 0.310 89.4 6.61
18.0 0.870 30.7 -0.41 0.954 -80.1 0.163 -43.8 0.373 74.9 7.67
Freq Fmin Γopt Γopt Rn/50 Ga
GHz dB Mag. Ang. dB
0.5 0.21 0.61 -6.1 0.12 24.12
0.9 0.21 0.55 7.0 0.12 22.18
1.0 0.27 0.50 11.4 0.11 22.12
1.9 0.42 0.46 38.1 0.10 18.61
2.0 0.37 0.43 42.7 0.10 18.52
2.4 0.44 0.39 52.9 0.10 17.34
3.0 0.52 0.32 74.4 0.08 16.21
3.9 0.57 0.28 108.3 0.07 14.65
5.0 0.71 0.30 149.5 0.06 13.27
5.8 0.85 0.35 170.0 0.05 12.38
6.0 0.86 0.35 171.7 0.05 12.19
7.0 0.97 0.38 -165.9 0.06 11.24
8.0 1.08 0.43 -152.1 0.07 10.49
9.0 1.22 0.47 -138.1 0.10 9.84
10.0 1.44 0.46 -122.5 0.17 8.96
Notes:
1. The Fmin values are based on a set of 16 noise gure measurements made at 16 dierent impedances using an ATN NP5 test system. From
these measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at
the end of the gate pad. The output reference plane is at the end of the drain pad.
Typical Noise Parameters, VDS = 2V, IDS = 15 mA
10
ATF-551M4 Typical Scattering Parameters, VDS = 2V, IDS = 20 mA
Freq. S11 S21 S12 S22
MSG/MAG
GHz Mag. Ang. dB Mag. Ang. Mag. Ang. Mag. Ang. dB
0.1 0.994 -6.9 22.85 13.876 175.3 0.006 85.6 0.740 -3.9 33.64
0.5 0.942 -33.3 22.27 12.985 155.7 0.027 70.4 0.687 -17.8 26.82
0.9 0.882 -57.3 21.44 11.806 140.5 0.045 59.0 0.627 -30.9 24.19
1.0 0.869 -62.8 21.21 11.491 137.1 0.048 56.5 0.608 -33.8 23.79
1.5 0.798 -88.1 19.90 9.881 121.3 0.062 45.7 0.520 -46.4 22.02
1.9 0.753 -105.5 18.79 8.704 110.7 0.070 38.9 0.455 -54.4 20.95
2.0 0.744 -109.5 18.53 8.443 108.4 0.071 37.4 0.441 -56.3 20.75
2.5 0.706 -127.4 17.22 7.262 97.5 0.077 31.3 0.376 -64.3 19.75
3.0 0.681 -142.7 16.01 6.314 88.2 0.081 26.7 0.323 -71.0 18.92
4.0 0.663 -167.0 13.88 4.943 72.5 0.085 20.3 0.248 -82.9 17.65
5.0 0.664 174.6 12.09 4.021 59.3 0.089 16.2 0.201 -95.2 16.55
6.0 0.666 161.9 10.68 3.418 48.1 0.093 14.1 0.162 -103.7 15.65
7.0 0.670 150.1 9.43 2.962 37.3 0.097 12.0 0.144 -116.4 14.85
8.0 0.673 140.4 8.42 2.637 27.1 0.103 10.0 0.133 -130.0 12.78
9.0 0.681 129.8 7.51 2.373 16.8 0.109 7.4 0.131 -145.9 11.65
10.0 0.678 117.1 6.68 2.158 6.0 0.117 3.7 0.139 -160.3 10.56
11.0 0.682 104.3 5.94 1.982 -4.6 0.125 -0.2 0.154 -172.7 9.80
12.0 0.688 90.6 5.23 1.826 -15.6 0.133 -5.2 0.168 176.9 9.11
13.0 0.706 80.3 4.48 1.675 -26.3 0.142 -10.3 0.169 161.6 8.56
14.0 0.743 65.9 3.76 1.542 -38.0 0.150 -17.0 0.182 139.6 8.46
15.0 0.753 54.4 2.92 1.400 -48.9 0.157 -23.6 0.212 121.2 7.48
16.0 0.804 44.7 1.93 1.249 -59.3 0.160 -30.1 0.250 103.8 7.76
17.0 0.824 36.7 0.95 1.116 -69.4 0.163 -36.5 0.306 87.0 6.93
18.0 0.869 30.6 -0.05 0.994 -78.9 0.165 -43.0 0.367 73.0 7.80
Freq Fmin Γopt Γopt Rn/50 Ga
GHz dB Mag. Ang. dB
0.5 0.19 0.59 -7.0 0.11 23.50
0.9 0.20 0.54 6.3 0.11 21.66
1.0 0.25 0.48 10.1 0.10 21.61
1.9 0.41 0.43 38.7 0.09 18.04
2.0 0.36 0.41 43.1 0.09 17.88
2.4 0.43 0.37 53.4 0.09 16.76
3.0 0.51 0.29 76.3 0.08 15.66
3.9 0.58 0.26 112.7 0.07 14.10
5.0 0.70 0.29 154.0 0.05 12.74
5.8 0.85 0.34 173.6 0.05 11.83
6.0 0.86 0.35 175.9 0.05 11.63
7.0 0.94 0.37 -162.3 0.06 10.71
8.0 1.07 0.42 -148.2 0.08 9.99
9.0 1.20 0.48 -135.2 0.10 9.36
10.0 1.43 0.46 -119.5 0.17 8.46
Notes:
1. The Fmin values are based on a set of 16 noise gure measurements made at 16 dierent impedances using an ATN NP5 test system. From
these measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at
the end of the gate pad. The output reference plane is at the end of the drain pad.
Typical Noise Parameters, VDS = 2V, IDS = 20 mA
11
ATF-551M4 Typical Scattering Parameters, VDS = 2.7V, IDS = 10 mA
Freq. S11 S21 S12 S22
MSG/MAG
GHz Mag. Ang. dB Mag. Ang. Mag. Ang. Mag. Ang. dB
0.1 0.995 -5.9 20.55 10.656 175.9 0.006 86.3 0.825 -3.0 32.49
0.5 0.955 -28.7 20.11 10.129 158.4 0.028 72.0 0.782 -14.0 25.58
0.9 0.907 -50.0 19.52 9.466 144.6 0.046 61.3 0.735 -24.5 23.13
1.0 0.896 -55.0 19.36 9.292 141.4 0.050 58.8 0.717 -27.0 22.69
1.5 0.833 -78.6 18.34 8.265 126.1 0.067 47.6 0.639 -37.6 20.91
1.9 0.789 -95.5 17.43 7.439 115.4 0.076 40.0 0.577 -44.6 19.91
2.0 0.779 -99.4 17.21 7.255 113.0 0.078 38.4 0.562 -46.2 19.69
2.5 0.737 -117.4 16.07 6.361 101.7 0.085 31.0 0.495 -53.1 18.74
3.0 0.707 -133.4 14.98 5.610 91.8 0.089 25.1 0.439 -58.8 18.00
4.0 0.679 -159.1 13.01 4.471 75.0 0.093 16.6 0.357 -68.3 16.82
5.0 0.674 -178.9 11.30 3.673 60.8 0.094 10.9 0.303 -77.6 15.92
6.0 0.675 167.3 9.93 3.136 49.1 0.095 8.1 0.264 -83.7 15.19
7.0 0.676 154.9 8.72 2.728 37.7 0.096 5.9 0.244 -93.5 14.54
8.0 0.679 144.5 7.73 2.435 27.0 0.099 4.3 0.230 -104.1 12.94
9.0 0.686 133.5 6.84 2.198 16.2 0.102 2.9 0.222 -116.6 11.58
10.0 0.684 120.8 6.03 2.002 5.1 0.107 0.7 0.222 -129.0 10.44
11.0 0.688 107.5 5.30 1.841 -5.9 0.113 -1.7 0.230 -140.8 9.69
12.0 0.693 93.7 4.59 1.696 -17.2 0.121 -5.2 0.239 -151.9 9.02
13.0 0.710 82.7 3.86 1.559 -28.2 0.129 -8.9 0.232 -164.6 8.47
14.0 0.743 68.6 3.19 1.443 -39.8 0.139 -14.3 0.222 176.6 8.42
15.0 0.760 56.5 2.37 1.314 -51.5 0.147 -20.2 0.232 155.6 7.69
16.0 0.805 46.2 1.42 1.177 -62.2 0.153 -26.2 0.251 134.3 8.26
17.0 0.830 38.1 0.43 1.051 -72.8 0.158 -32.5 0.293 112.0 8.07
18.0 0.872 31.5 -0.58 0.935 -83.1 0.163 -39.1 0.353 92.7 7.59
Freq Fmin Γopt Γopt Rn/50 Ga
GHz dB Mag. Ang. dB
0.5 0.26 0.64 -4.4 0.14 23.79
0.9 0.27 0.57 7.5 0.13 21.80
1.0 0.30 0.54 11.1 0.13 21.60
1.9 0.46 0.49 36.6 0.11 18.06
2.0 0.41 0.48 40.4 0.12 17.92
2.4 0.47 0.44 50.3 0.11 16.79
3.0 0.55 0.36 69.5 0.10 15.70
3.9 0.61 0.32 101.3 0.08 14.24
5.0 0.74 0.32 139.5 0.06 12.86
5.8 0.88 0.35 161.5 0.05 12.01
6.0 0.90 0.35 163.9 0.05 11.82
7.0 1.00 0.37 -173.6 0.06 10.93
8.0 1.12 0.41 -158.2 0.07 10.24
9.0 1.25 0.46 -143.0 0.09 9.66
10.0 1.46 0.46 -127.2 0.15 8.85
Notes:
1. The Fmin values are based on a set of 16 noise gure measurements made at 16 dierent impedances using an ATN NP5 test system. From
these measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at
the end of the gate pad. The output reference plane is at the end of the drain pad.
Typical Noise Parameters, VDS = 2.7V, IDS = 10 mA
12
ATF-551M4 Typical Scattering Parameters, VDS = 2.7V, IDS = 15 mA
Freq. S11 S21 S12 S22
MSG/MAG
GHz Mag. Ang. dB Mag. Ang. Mag. Ang. Mag. Ang. dB
0.1 0.995 -6.5 21.98 12.559 175.6 0.006 86.4 0.793 -3.2 33.21
0.5 0.949 -31.2 21.47 11.839 156.9 0.026 71.0 0.745 -15.2 26.58
0.9 0.894 -54.0 20.75 10.905 142.3 0.043 60.1 0.691 -26.4 24.04
1.0 0.882 -59.4 20.55 10.650 138.9 0.047 57.5 0.673 -28.9 23.55
1.5 0.814 -84.0 19.37 9.298 123.4 0.061 46.6 0.589 -39.7 21.83
1.9 0.768 -101.1 18.34 8.265 112.7 0.068 39.5 0.526 -46.6 20.85
2.0 0.758 -105.1 18.10 8.034 110.3 0.070 38.0 0.511 -48.1 20.60
2.5 0.718 -123.1 16.86 6.966 99.3 0.076 31.4 0.447 -54.6 19.62
3.0 0.691 -138.7 15.70 6.095 89.7 0.079 26.3 0.393 -59.9 18.87
4.0 0.668 -163.5 13.64 4.806 73.6 0.083 19.4 0.318 -68.8 17.63
5.0 0.667 177.5 11.88 3.928 59.9 0.085 15.0 0.268 -77.7 16.65
6.0 0.668 164.3 10.49 3.345 48.5 0.088 13.1 0.230 -83.3 15.80
7.0 0.671 152.2 9.26 2.904 37.5 0.091 11.4 0.212 -93.0 15.04
8.0 0.673 142.3 8.27 2.591 27.0 0.095 10.0 0.198 -103.4 12.89
9.0 0.682 131.6 7.37 2.335 16.4 0.101 8.4 0.190 -116.2 11.88
10.0 0.677 118.5 6.56 2.128 5.4 0.107 5.6 0.190 -129.6 10.70
11.0 0.684 105.8 5.83 1.956 -5.3 0.115 2.6 0.198 -142.6 10.06
12.0 0.690 91.7 5.12 1.804 -16.7 0.124 -1.7 0.210 -154.2 9.46
13.0 0.707 81.2 4.38 1.656 -27.5 0.133 -6.1 0.205 -167.8 8.93
14.0 0.744 66.4 3.68 1.528 -39.4 0.143 -12.3 0.200 172.5 9.10
15.0 0.750 55.1 2.85 1.389 -50.6 0.151 -18.7 0.212 150.9 7.85
16.0 0.806 45.2 1.88 1.242 -61.2 0.156 -25.1 0.236 129.7 9.01
17.0 0.824 37.1 0.92 1.112 -71.5 0.162 -31.6 0.282 107.9 8.37
18.0 0.872 31.0 -0.08 0.991 -81.5 0.166 -38.2 0.337 89.7 7.76
Freq Fmin Γopt Γopt Rn/50 Ga
GHz dB Mag. Ang. dB
0.5 0.18 0.61 -6.0 0.12 24.49
0.9 0.18 0.56 6.8 0.12 22.38
1.0 0.24 0.5 10.7 0.11 22.32
1.9 0.38 0.45 36.9 0.1 18.78
2.0 0.33 0.43 41.9 0.1 18.65
2.4 0.42 0.39 50.9 0.1 17.47
3.0 0.5 0.31 73.0 0.08 16.37
3.9 0.55 0.28 107.0 0.07 14.83
5.0 0.66 0.29 146.6 0.06 13.4
5.8 0.83 0.33 168.7 0.05 12.54
6.0 0.84 0.34 170.7 0.05 12.36
7.0 0.95 0.36 -166.9 0.06 11.44
8.0 1.06 0.41 -152.3 0.07 10.69
9.0 1.18 0.46 -138.1 0.1 10.12
10.0 1.43 0.44 -122.5 0.16 9.21
Notes:
1. The Fmin values are based on a set of 16 noise gure measurements made at 16 dierent impedances using an ATN NP5 test system. From
these measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at
the end of the gate pad. The output reference plane is at the end of the drain pad.
Typical Noise Parameters, VDS = 2.7V, IDS = 15 mA
13
ATF-551M4 Typical Scattering Parameters, VDS = 2.7V, IDS = 20 mA
Freq. S11 S21 S12 S22
MSG/MAG
GHz Mag. Ang. dB Mag. Ang. Mag. Ang. Mag. Ang. dB
0.1 0.995 -6.8 22.92 13.988 175.4 0.005 86.4 0.772 -3.4 34.47
0.5 0.943 -33.0 22.35 13.103 155.9 0.024 70.6 0.72 -15.7 27.37
0.9 0.883 -56.9 21.53 11.932 140.7 0.04 59.4 0.662 -27.1 24.75
1.0 0.87 -62.4 21.30 11.616 137.3 0.043 56.9 0.643 -29.6 24.32
1.5 0.798 -87.6 20.00 10.004 121.6 0.056 46.2 0.557 -40.2 22.52
1.9 0.752 -104.9 18.91 8.822 111.0 0.063 39.6 0.494 -46.7 21.46
2.0 0.743 -108.8 18.65 8.557 108.6 0.064 38.2 0.48 -48.1 21.26
2.5 0.704 -126.7 17.35 7.367 97.8 0.069 32.3 0.417 -54.2 20.28
3.0 0.68 -142.1 16.14 6.411 88.4 0.072 27.8 0.367 -59.0 19.50
4.0 0.66 -166.3 14.02 5.026 72.8 0.076 22.0 0.297 -67.2 18.20
5.0 0.662 175.2 12.25 4.095 59.5 0.079 18.6 0.251 -75.7 17.15
6.0 0.664 162.6 10.84 3.483 48.4 0.083 17.4 0.216 -80.7 16.23
7.0 0.667 150.9 9.61 3.022 37.6 0.087 16.1 0.199 -90.4 14.69
8.0 0.67 141.2 8.61 2.695 27.3 0.093 14.8 0.185 -100.6 13.08
9.0 0.679 130.8 7.71 2.429 16.9 0.099 13.0 0.177 -113.5 12.08
10.0 0.677 118.1 6.90 2.213 6.0 0.107 9.9 0.178 -127.2 11.08
11.0 0.683 105.4 6.17 2.034 -4.6 0.116 6.4 0.186 -140.4 10.44
12.0 0.688 91.4 5.46 1.876 -15.8 0.126 1.8 0.198 -152.2 9.85
13.0 0.705 80.9 4.72 1.722 -26.5 0.136 -3.2 0.193 -165.9 9.37
14.0 0.741 66.5 4.03 1.59 -38.3 0.146 -9.8 0.188 173.7 9.78
15.0 0.75 55.0 3.19 1.444 -49.5 0.154 -16.5 0.2 151.1 8.35
16.0 0.803 45.1 2.22 1.291 -60.1 0.159 -23.2 0.224 129.5 9.10
17.0 0.823 37.2 1.26 1.156 -70.3 0.165 -29.8 0.269 107.3 8.45
18.0 0.872 31.0 0.27 1.032 -80.2 0.168 -36.6 0.325 88.8 7.88
Freq Fmin Γopt Γopt Rn/50 Ga
GHz dB Mag. Ang. dB
0.5 0.18 0.61 -6.7 0.12 24.89
0.9 0.18 0.55 5.9 0.11 22.72
1.0 0.23 0.49 9.9 0.10 22.68
1.9 0.39 0.43 37.8 0.09 19.18
2.0 0.36 0.42 41.6 0.09 18.98
2.4 0.43 0.37 51.7 0.09 17.83
3.0 0.51 0.29 73.6 0.08 16.69
3.9 0.56 0.26 110.7 0.07 15.19
5.0 0.68 0.28 152.8 0.05 13.79
5.8 0.83 0.33 172.9 0.05 12.91
6.0 0.85 0.33 175.6 0.05 12.73
7.0 0.95 0.37 -162.4 0.06 11.80
8.0 1.06 0.41 -148.8 0.08 11.06
9.0 1.19 0.47 -135.5 0.10 10.47
10.0 1.41 0.46 -119.2 0.17 9.59
Notes:
1. The Fmin values are based on a set of 16 noise gure measurements made at 16 dierent impedances using an ATN NP5 test system. From
these measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at
the end of the gate pad. The output reference plane is at the end of the drain pad.
Typical Noise Parameters, VDS = 2.7V, IDS = 20 mA
14
ATF-551M4 Typical Scattering Parameters, VDS = 3V, IDS = 10 mA
Freq. S11 S21 S12 S22
MSG/MAG
GHz Mag. Ang. dB Mag. Ang. Mag. Ang. Mag. Ang. dB
0.1 0.996 -5.9 20.49 10.578 176.0 0.006 86.1 0.835 -2.8 32.46
0.5 0.957 -28.4 20.05 10.059 158.5 0.027 72.0 0.792 -13.4 25.71
0.9 0.909 -49.6 19.48 9.420 144.8 0.045 61.5 0.747 -23.5 23.21
1.0 0.899 -54.6 19.32 9.246 141.6 0.049 59.1 0.730 -25.9 22.76
1.5 0.836 -78.1 18.32 8.241 126.3 0.065 47.9 0.653 -36.1 21.03
1.9 0.792 -94.9 17.41 7.424 115.7 0.074 40.3 0.593 -42.7 20.01
2.0 0.782 -98.8 17.20 7.241 113.2 0.075 38.6 0.578 -44.2 19.85
2.5 0.740 -116.8 16.07 6.360 101.9 0.082 31.3 0.513 -50.7 18.90
3.0 0.709 -132.8 14.99 5.616 91.9 0.086 25.3 0.458 -56.0 18.15
4.0 0.680 -158.5 13.03 4.481 75.1 0.090 16.9 0.378 -64.9 16.97
5.0 0.675 -178.4 11.33 3.684 60.9 0.091 11.3 0.325 -73.5 16.07
6.0 0.675 167.8 9.96 3.146 49.1 0.092 8.7 0.287 -79.1 15.34
7.0 0.676 155.1 8.75 2.738 37.6 0.093 6.6 0.267 -88.4 14.69
8.0 0.678 144.9 7.77 2.447 26.8 0.095 5.4 0.252 -98.6 12.90
9.0 0.686 133.8 6.88 2.209 16.0 0.099 4.1 0.242 -110.5 11.73
10.0 0.682 120.5 6.09 2.015 4.7 0.104 2.1 0.241 -122.9 10.56
11.0 0.688 107.5 5.37 1.855 -6.3 0.110 0.0 0.247 -135.1 9.88
12.0 0.694 93.3 4.67 1.711 -17.8 0.118 -3.4 0.256 -146.5 9.26
13.0 0.711 82.4 3.92 1.571 -28.8 0.127 -6.9 0.250 -159.0 8.76
14.0 0.746 67.5 3.24 1.452 -40.8 0.137 -12.6 0.240 -176.5 8.90
15.0 0.753 55.9 2.41 1.320 -52.4 0.146 -18.5 0.246 163.0 7.74
16.0 0.807 45.8 1.46 1.183 -63.1 0.152 -24.5 0.260 142.0 8.91
17.0 0.826 37.6 0.48 1.057 -73.7 0.159 -30.8 0.297 119.0 8.23
18.0 0.874 31.3 -0.53 0.941 -84.1 0.164 -37.5 0.349 98.9 7.59
Freq Fmin Γopt Γopt Rn/50 Ga
GHz dB Mag. Ang. dB
0.5 0.23 0.65 -4.3 0.14 23.81
0.9 0.24 0.58 7.4 0.13 21.82
1.0 0.26 0.54 10.7 0.13 21.62
1.9 0.43 0.50 36.2 0.11 18.05
2.0 0.38 0.48 40.4 0.12 17.96
2.4 0.43 0.44 49.8 0.11 16.84
3.0 0.51 0.36 69.2 0.10 15.76
3.9 0.59 0.31 99.4 0.08 14.23
5.0 0.70 0.32 139.3 0.06 12.94
5.8 0.85 0.35 160.3 0.05 12.04
6.0 0.86 0.35 162.3 0.05 11.85
7.0 0.98 0.36 -173.7 0.06 10.99
8.0 1.09 0.41 -158.6 0.07 10.29
9.0 1.23 0.45 -143.7 0.09 9.71
10.0 1.45 0.44 -126.8 0.15 8.88
Notes:
1. The Fmin values are based on a set of 16 noise gure measurements made at 16 dierent impedances using an ATN NP5 test system. From
these measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at
the end of the gate pad. The output reference plane is at the end of the drain pad.
Typical Noise Parameters, VDS = 3V, IDS = 10 mA
15
ATF-551M4 Typical Scattering Parameters, VDS = 3V, IDS = 15 mA
Freq. S11 S21 S12 S22
MSG/MAG
GHz Mag. Ang. dB Mag. Ang. Mag. Ang. Mag. Ang. dB
0.1 0.995 -6.5 22.02 12.623 175.6 0.005 86.0 0.802 -3.1 34.02
0.5 0.949 -31.2 21.51 11.900 156.9 0.025 71.0 0.754 -14.6 26.78
0.9 0.894 -54.1 20.79 10.958 142.3 0.041 60.1 0.700 -25.4 24.27
1.0 0.882 -59.4 20.59 10.701 138.9 0.045 57.6 0.682 -27.8 23.76
1.5 0.813 -84.0 19.41 9.341 123.3 0.059 46.7 0.599 -38.1 22.00
1.9 0.768 -101.2 18.38 8.301 112.7 0.066 39.7 0.537 -44.5 21.00
2.0 0.758 -105.1 18.14 8.068 110.3 0.067 38.1 0.522 -45.9 20.81
2.5 0.717 -123.1 16.90 6.996 99.2 0.073 31.6 0.459 -52.0 19.82
3.0 0.690 -138.7 15.74 6.120 89.7 0.076 26.7 0.407 -56.9 19.06
4.0 0.668 -163.5 13.68 4.829 73.6 0.080 20.0 0.334 -65.0 17.81
5.0 0.666 177.5 11.93 3.947 59.9 0.082 15.8 0.286 -73.3 16.82
6.0 0.668 164.4 10.53 3.363 48.5 0.084 14.2 0.250 -78.4 16.02
7.0 0.670 152.3 9.31 2.921 37.5 0.087 12.9 0.232 -87.6 14.96
8.0 0.672 142.4 8.32 2.607 27.0 0.092 11.8 0.218 -97.7 12.99
9.0 0.681 131.7 7.43 2.351 16.4 0.098 10.4 0.209 -110.0 12.01
10.0 0.678 118.6 6.62 2.142 5.3 0.104 7.8 0.209 -122.9 10.90
11.0 0.684 105.8 5.89 1.970 -5.5 0.113 4.9 0.215 -135.4 10.28
12.0 0.690 91.8 5.19 1.817 -16.8 0.122 0.7 0.226 -147.1 9.70
13.0 0.707 81.3 4.44 1.667 -27.6 0.132 -3.7 0.221 -160.3 9.23
14.0 0.744 66.6 3.75 1.540 -39.5 0.142 -10.0 0.211 -179.5 9.62
15.0 0.751 55.2 2.93 1.401 -50.7 0.151 -16.4 0.218 159.7 8.26
16.0 0.807 45.3 1.97 1.254 -61.4 0.157 -22.8 0.236 137.8 9.02
17.0 0.824 37.3 1.01 1.123 -71.9 0.163 -29.5 0.277 114.5 8.38
18.0 0.874 31.1 0.02 1.002 -82.0 0.167 -36.2 0.330 95.0 7.78
Freq Fmin Γopt Γopt Rn/50 Ga
GHz dB Mag. Ang. dB
0.5 0.18 0.63 -6.3 0.12 24.41
0.9 0.19 0.56 6.8 0.12 22.45
1.0 0.23 0.51 10.0 0.11 22.29
1.9 0.39 0.46 36.5 0.10 18.75
2.0 0.35 0.44 40.8 0.10 18.61
2.4 0.42 0.39 50.1 0.10 17.46
3.0 0.49 0.31 72.5 0.08 16.42
3.9 0.56 0.27 104.4 0.07 14.80
5.0 0.66 0.29 146.9 0.06 13.48
5.8 0.83 0.33 167.4 0.05 12.58
6.0 0.84 0.33 169.0 0.05 12.38
7.0 0.94 0.35 -166.9 0.06 11.49
8.0 1.05 0.40 -152.7 0.07 10.77
9.0 1.19 0.46 -138.6 0.09 10.23
10.0 1.40 0.44 -121.9 0.16 9.32
Notes:
1. The Fmin values are based on a set of 16 noise gure measurements made at 16 dierent impedances using an ATN NP5 test system. From
these measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at
the end of the gate pad. The output reference plane is at the end of the drain pad.
Typical Noise Parameters, VDS = 3V, IDS = 15 mA
16
ATF-551M4 Typical Scattering Parameters, VDS = 3V, IDS = 20 mA
Freq. S11 S21 S12 S22
MSG/MAG
GHz Mag. Ang. dB Mag. Ang. Mag. Ang. Mag. Ang. dB
0.1 0.995 -6.8 22.91 13.987 175.4 0.005 86.1 0.781 -3.3 34.47
0.5 0.943 -33.0 22.35 13.101 155.8 0.024 70.5 0.730 -15.2 27.37
0.9 0.883 -56.9 21.53 11.932 140.7 0.039 59.5 0.672 -26.1 24.86
1.0 0.870 -62.4 21.30 11.614 137.2 0.042 56.9 0.654 -28.5 24.42
1.5 0.798 -87.6 20.00 10.004 121.5 0.054 46.3 0.569 -38.5 22.68
1.9 0.752 -104.9 18.91 8.820 111.0 0.061 39.7 0.506 -44.6 21.60
2.0 0.743 -108.9 18.64 8.555 108.6 0.062 38.3 0.493 -46.0 21.40
2.5 0.704 -126.7 17.35 7.368 97.7 0.067 32.4 0.431 -51.6 20.41
3.0 0.679 -142.1 16.14 6.412 88.4 0.070 28.1 0.383 -56.0 19.62
4.0 0.660 -166.3 14.03 5.028 72.7 0.074 22.5 0.314 -63.5 18.32
5.0 0.662 175.3 12.25 4.099 59.4 0.076 19.2 0.270 -71.5 17.32
6.0 0.664 162.6 10.85 3.488 48.3 0.080 18.3 0.237 -76.2 16.39
7.0 0.667 150.9 9.62 3.027 37.5 0.084 17.2 0.220 -85.2 14.66
8.0 0.670 141.3 8.63 2.701 27.2 0.090 16.3 0.207 -95.2 13.18
9.0 0.679 130.9 7.73 2.435 16.8 0.096 14.6 0.198 -107.6 12.20
10.0 0.677 118.1 6.92 2.219 5.9 0.104 11.7 0.198 -120.6 11.21
11.0 0.683 105.4 6.19 2.040 -4.8 0.114 8.4 0.205 -133.4 10.64
12.0 0.689 91.4 5.49 1.881 -16.0 0.124 3.8 0.216 -145.2 10.10
13.0 0.705 80.9 4.75 1.727 -26.8 0.134 -1.0 0.210 -158.4 9.62
14.0 0.742 66.4 4.05 1.594 -38.6 0.145 -7.7 0.199 -178.0 10.41
15.0 0.751 55.0 3.23 1.451 -49.8 0.153 -14.4 0.207 160.3 8.80
16.0 0.806 45.1 2.27 1.298 -60.4 0.159 -21.1 0.225 138.1 9.12
17.0 0.826 37.2 1.32 1.164 -70.8 0.165 -27.9 0.265 114.0 8.48
18.0 0.874 31.1 0.33 1.039 -80.8 0.170 -34.9 0.320 94.1 7.86
Freq Fmin Γopt Γopt Rn/50 Ga
GHz dB Mag. Ang. dB
0.5 0.17 0.62 -6.2 0.12 24.92
0.9 0.18 0.55 6.0 0.11 22.79
1.0 0.24 0.50 9.5 0.10 22.59
1.9 0.39 0.43 37.5 0.10 19.22
2.0 0.36 0.41 41.2 0.09 19.00
2.4 0.42 0.37 50.9 0.09 17.83
3.0 0.50 0.29 73.6 0.08 16.72
3.9 0.57 0.25 109.4 0.07 15.18
5.0 0.68 0.28 151.6 0.06 13.80
5.8 0.83 0.32 172.5 0.05 12.93
6.0 0.85 0.33 175.6 0.05 12.77
7.0 0.93 0.36 -162.7 0.06 11.84
8.0 1.05 0.41 -149.1 0.08 11.09
9.0 1.19 0.46 -135.5 0.10 10.53
10.0 1.39 0.45 -119.4 0.17 9.64
Notes:
1. The Fmin values are based on a set of 16 noise gure measurements made at 16 dierent impedances using an ATN NP5 test system. From
these measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at
the end of the gate pad. The output reference plane is at the end of the drain pad.
Typical Noise Parameters, VDS = 3V, IDS = 20 mA
17
ATF-551M4 Typical Scattering Parameters, VDS = 3V, IDS = 30 mA
Freq. S11 S21 S12 S22
MSG/MAG
GHz Mag. Ang. dB Mag. Ang. Mag. Ang. Mag. Ang. dB
0.1 0.994 -7.4 23.90 15.662 175.0 0.005 86.1 0.760 -3.4 34.96
0.5 0.936 -35.3 23.25 14.544 154.5 0.022 69.8 0.705 -15.4 28.20
0.9 0.870 -60.4 22.32 13.058 138.7 0.035 58.7 0.644 -26.2 25.72
1.0 0.856 -66.1 22.05 12.665 135.2 0.038 56.2 0.624 -28.5 25.23
1.5 0.781 -92.0 20.61 10.732 119.4 0.048 46.0 0.539 -37.7 23.49
1.9 0.736 -109.4 19.44 9.374 108.9 0.054 40.1 0.480 -43.1 22.40
2.0 0.726 -113.3 19.15 9.072 106.6 0.055 38.8 0.467 -44.2 22.17
2.5 0.690 -131.0 17.79 7.753 96.0 0.059 33.7 0.410 -49.0 21.19
3.0 0.668 -146.1 16.54 6.713 86.9 0.062 30.3 0.367 -52.7 20.35
4.0 0.653 -169.6 14.38 5.234 71.7 0.066 26.1 0.307 -59.2 18.99
5.0 0.656 172.7 12.58 4.258 58.7 0.069 23.8 0.268 -66.7 17.90
6.0 0.659 160.5 11.17 3.618 47.9 0.074 23.6 0.238 -70.9 16.89
7.0 0.663 149.0 9.93 3.138 37.2 0.079 22.9 0.224 -79.8 14.61
8.0 0.666 139.6 8.94 2.798 27.1 0.086 21.9 0.211 -89.5 13.35
9.0 0.676 129.3 8.03 2.522 16.8 0.094 20.1 0.203 -101.5 12.55
10.0 0.674 116.6 7.22 2.296 5.9 0.103 16.9 0.202 -114.5 11.58
11.0 0.680 104.1 6.48 2.109 -4.6 0.113 13.1 0.208 -127.3 11.01
12.0 0.688 90.3 5.77 1.944 -15.8 0.124 8.0 0.219 -139.4 10.62
13.0 0.705 80.1 5.03 1.784 -26.4 0.135 3.0 0.213 -152.3 10.38
14.0 0.743 65.8 4.34 1.648 -38.0 0.147 -4.1 0.200 -170.8 10.50
15.0 0.751 54.5 3.53 1.502 -49.2 0.156 -11.1 0.203 166.8 9.84
16.0 0.806 44.9 2.56 1.343 -59.8 0.162 -18.1 0.218 143.9 9.19
17.0 0.826 37.0 1.64 1.208 -70.1 0.168 -25.2 0.254 118.4 8.57
18.0 0.875 31.0 0.67 1.080 -80.2 0.174 -32.4 0.306 97.4 7.93
Freq Fmin Γopt Γopt Rn/50 Ga
GHz dB Mag. Ang. dB
0.5 0.16 0.60 -6.2 0.11 25.60
0.9 0.18 0.55 6.4 0.11 23.17
1.0 0.24 0.47 10.1 0.10 23.19
1.9 0.39 0.39 39.1 0.09 19.73
2.0 0.36 0.38 42.7 0.09 19.48
2.4 0.45 0.33 54.2 0.09 18.36
3.0 0.52 0.26 79.0 0.08 17.20
3.9 0.59 0.23 119.0 0.06 15.66
5.0 0.71 0.28 162.1 0.05 14.28
5.8 0.86 0.33 -179.3 0.05 13.39
6.0 0.89 0.33 -176.7 0.05 13.20
7.0 0.99 0.37 -156.1 0.07 12.27
8.0 1.12 0.42 -143.5 0.09 11.50
9.0 1.26 0.48 -130.8 0.12 10.96
10.0 1.50 0.46 -115.1 0.20 10.01
Notes:
1. The Fmin values are based on a set of 16 noise gure measurements made at 16 dierent impedances using an ATN NP5 test system. From
these measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at
the end of the gate pad. The output reference plane is at the end of the drain pad.
Typical Noise Parameters, VDS = 3V, IDS = 30 mA
18
S and Noise Parameter Measurements
The position of the reference planes used for the mea-
surement of both S and Noise Parameter measure-
ments is shown in Figure 36. The reference plane can be
described as being at the center of both the gate and
drain pads.
S and noise parameters are measured with a 50 ohm
microstrip test xture made with a 0.010" thickness
aluminum substrate. Both source pads are connected
directly to ground via a 0.010" thickness metal rib
which provides a very low inductance path to ground
for both source pads. The inductance associated with
the addition of printed circuit board plated through
holes and source bypass capacitors must be added
to the computer circuit simulation to properly model
the eect of grounding the source leads in a typical
amplier design.
Gate
Pin 2
Source
Pin 3
Drain
Pin 4
Source
Pin 1
Reference
Plane
Microstrip
Transmission Lines
Vx
Figure 36. Position of the Reference Planes.
Noise Parameter Applications Information
The Fmin values are based on a set of 16 noise gure
measurements made at 16 dierent impedances using
an ATN NP5 test system. From these measurements,
a true Fmin is calculated. Fmin represents the true
minimum noise gure of the device when the device is
presented with an impedance matching network that
transforms the source impedance, typically 50Ω, to an
impedance represented by the reection coecient Γo.
The designer must design a matching network that will
present Γo to the device with minimal associated circuit
losses. The noise gure of the completed amplier is
equal to the noise gure of the device plus the losses of
the matching network preceding the device. The noise
gure of the device is equal to Fmin only when the
device is presented with Γo. If the reection coecient
of the matching network is other than Γo, then the noise
gure of the device will be greater than Fmin based on
the following equation.
NF = Fmin + 4 Rn |ΓsΓo | 2
Zo (|1 + Γo|2)(1 - |Γs|2)
Where Rn/Zo is the normalized noise resistance, Γo is
the optimum reection coecient required to produce
Fmin and
Γ
s is the reection coecient of the source
impedance actually presented to the device.
The losses of the matching networks are non-zero
and they will also add to the noise gure of the device
creating a higher amplier noise gure. The losses of
the matching networks are related to the Q of the com-
ponents and associated printed circuit board loss. Γo is
typically fairly low at higher frequencies and increases
as frequency is lowered. Larger gate width devices
will typically have a lower Γo as compared to narrower
gate width devices. Typically for FETs , the higher Γo
usually infers that an impedance much higher than
50Ω is required for the device to produce Fmin. At VHF
frequencies and even lower L Band frequencies, the
required impedance can be in the vicinity of several
thousand ohms. Matching to such a high impedance
requires very hi-Q components in order to minimize
circuit losses. As an example at 900 MHz, when air
wound coils (Q>100)are used for matching networks,
the loss can still be up to 0.25 dB which will add directly
to the noise gure of the device. Using muiltilayer
molded inductors with Qs in the 30 to 50 range results
in additional loss over the air wound coil. Losses as high
as 0.5 dB or greater add to the typical 0.15 dB Fmin of
the device creating an amplier noise gure of nearly
0.65 dB.
19
Bias Networks
One of the major advantages of the enhancement
mode technology is that it allows the designer to be
able to dc ground the source leads and then merely
apply a positive voltage on the gate to set the desired
amount of quiescent drain current Id.
Whereas a depletion mode PHEMT pulls maximum
drain current when Vgs= 0V, an enhancement mode
PHEMT pulls only a small amount of leakage current
when Vgs= 0V. Only when Vgs is increased above Vth, the
device threshold voltage, will drain current start to ow.
At a Vds of 2.7V and a nominal Vgs of 0.47V, the drain
current Id will be approximately 10 mA. The data sheet
suggests a minimum and maximum Vgs over which the
desired amount of drain current will be achieved. It is
also important to note that if the gate terminal is left
open circuited, the device will pull some amount of
drain current due to leakage current creating a voltage
dierential between the gate and source terminals.
Passive Biasing
Passive biasing of the ATF-551M4 is accomplished by
the use of a voltage divider consisting of R1 and R2. The
voltage for the divider is derived from the drain voltage
which provides a form of voltage feedback through the
use of R3 to help keep drain current constant. In the
case of a typical depletion mode FET, the voltage divider
which is normally connected to a negative voltage
source is connected to the gate through resistor R4.
Additional resistance in the form of R5 (approximately
10KΩ) is added to provide current limiting for the gate
of enhancement mode devices such as the ATF-551M4.
This is especially important when the device is driven to
P1dB or Psat.
Resistor R3 is calculated based on desired Vds, Ids and
available power supply voltage.
VDD Vds
Ids + IBB
R3 =
(1)
Figure 37. Typical ATF-551M4 LNA with Passive Biasing.
INPUT C1
C2
C3
L1
R4
R1 R2
Vdd
R3
L2 L3
L4
Q1
Zo Zo
C4
C5
C6
OUTPUT
R5
ATF-551M4 Applications Information
Introduction
Avago Technologiess ATF-551M4 is a low noise
enhancement mode PHEMT designed for use in low
cost commercial applications in the VHF through 10
GHz frequency range. As opposed to a typical depletion
mode PHEMT where the gate must be made negative
with respect to the source for proper operation, an
enhancement mode PHEMT requires that the gate
be made more positive than the source for normal
operation. Therefore a negative power supply voltage is
not required for an enhancement mode device. Biasing
an enhancement mode PHEMT is much like biasing the
typical bipolar junction transistor. Instead of a 0.7V base
to emitter voltage, the ATF-551M4 enhancement mode
PHEMT requires a nominal 0.47V potential between the
gate and source for a nominal drain current of 10 mA.
Matching Networks
The techniques for impedance matching an en-
hancement mode device are very similar to those for
matching a depletion mode device. The only dierence
is in the method of supplying gate bias. S and Noise
Parameters for various bias conditions are listed in
this data sheet. The circuit shown in Figure 37 shows a
typical LNA circuit normally used for 900 and 1900 MHz
applications. Consult the Avago Technologies web site
for application notes covering specic designs and ap-
plications. High pass impedance matching networks
consisting of L1/C1 and L4/C4 provide the appropri-
ate match for noise gure, gain, S11 and S22. The
high pass structure also provides low frequency gain
reduction which can be benecial from the standpoint
of improving out-of-band rejection.
Capacitors C2 and C5 provide a low impedance in-band
RF bypass for the matching networks. Resistors R3 and
R4 provide a very important low frequency termination
for the device. The resistive termination improves low
frequency stability. Capacitors C3 and C6 provide the
RF bypass for resistors R3 and R4. Their value should be
chosen carefully as C3 and C6 also provide a termina-
tion for low frequency mixing products. These mixing
products are as a result of two or more in-band signals
mixing and producing third order in-band distor-
tion products. The low frequency or dierence mixing
products are terminated by C3 and C6. For best sup-
pression of third order distortion products based on
the CDMA 1.25 MHz signal spacing, C3 and C6 should
be 0.1 uF in value. Smaller values of capacitance will
not suppress the generation of the 1.25 MHz dierence
signal and as a result will show up as poorer two tone
IP3 results.
20
VDD is the power supply voltage.
Vds is the device drain to source voltage.
Ids is the desired drain current.
IBB is the current owing through the R1/R2 resistor
voltage divider network.
The value of resistors R1 and R2 are calculated with the
following formulas.
Vgs
p
IBB
R1 =
(2)
R2 = (Vds Vgs) R1
gs
(3)(3)
Example Circuit
VDD = 3V
Vds = 2.7V
Ids = 10 mA
Vgs = 0.47V
Choose IBB to be at least 10X the maximum expected
gate leakage current. IBB was conservatively chosen to
be 0.5 mA for this example. Using equations (1), (2), and
(3) the resistors are calculated as follows
R1 = 940Ω
R2 = 4460Ω
R3 = 28.6Ω
Active Biasing
Active biasing provides a means of keeping the
quiescent bias point constant over temperature and
constant over lot to lot variations in device dc perfor-
mance. The advantage of the active biasing of an en-
hancement mode PHEMT versus a depletion mode
PHEMT is that a negative power source is not required.
An active bias scheme is shown in Figure 38.
R1 and R2 provide a constant voltage source at the
base of a PNP transistor at Q2. The constant voltage
at the base of Q2 is raised by 0.7 volts at the emitter.
The constant emitter voltage plus the regulated VDD
supply are present across resistor R3. Constant voltage
across R3 provides a constant current supply for the
drain current. Resistors R1 and R2 are used to set the
desired Vds. The combined series value of these resistors
also sets the amount of extra current consumed by the
bias network. The equations that describe the circuit’s
operation are as follows.
Rearranging equation (4)provides the following formula
and rearranging equation (5) provides the follow
formula
Example Circuit
VDD = 3 V
Vds = 2.7 V
Ids = 10 mA
R4 = 10
VBE = 0.7V
Equation (1) calculates the required voltage at the
emitter of the PNP transistor based on desired Vds and
Ids through resistor R4 to be 2.8V. Equation (2) calcu-
lates the value of resistor R3 which determines the drain
current Ids. In the example R3=18.2Ω. Equation (3) calcu-
lates the voltage required at the junction of resistors R1
and R2. This voltage plus the step-up of the base emitter
junction determines the regulated Vds. Equations (4) and
(5) are solved simultaneously to determine the value of
resistors R1 and R2. In the example R1=4200Ω and R2
=1800Ω.
Figure 38. Typical ATF-551M4 LNA with Active Biasing.
The techniques of active biasing an enhancement mode
device are very similar to those used to bias a bipolar
junction transistor.
INPUT C1
C2
C3
C7
L1
R5
R6
R7 R3
R2
R1
Q2 Vdd
R4
L2 L3
L4
Q1
Zo Zo
C4
C5
C6
OUTPUT
VE = Vds + (Ids R4) (1)
R3 = VDD VE
(2)
p
Ids
VB = VE VBE
(3)
VB = R1 VDD
(4)
p
R1 + R2
VDD = IBB (R1 + R2)
R1(VDD VB)
p
VB
R1 = VDD (5A)
9
IBB (VDD VB)
p
VB
(5)
(4A)
R2 =
1 +
21
ATF-551M4 Die Model
GATE
SOURCE
INSIDE Package
Port
G
Num=1
C
C1
C=0.28 pF
Port
S1
Num=2
SOURCE
DRAIN
Port
S2
Num=4
Port
D
Num=3
L
L6
L=0.147 nH
R=0.001
C
C2
C=0.046 pF
L
L7
L=0.234 nH
R=0.001
MSub
TLINP
TL3
Z=Z2 Ohm
L=23.6 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
TLINP
TL9
Z=Z2 Ohm
L=11 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
VAR
VAR1
K=5
Z2=85
Z1=30
Var
Egn
TLINP
TL1
Z=Z2/2 Ohm
L=22 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
TLINP
TL2
Z=Z2/2 Ohm
L=20 0 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
TLINP
TL7
Z=Z2/2 Ohm
L=5.2 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
TLINP
TL5
Z=Z2 Ohm
L=27.5 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
L
L1
L=0.234 nH
R=0.001
L
L4
L=0.281 nH
R=0.001
GaAsFET
FET1
Mode1=MESFETM1
Mode=Nonlinear
MSUB
MSub2
H=25.0 mil
Er=9.6
Mur=1
Cond=1.0E+50
Hu=3.9e+034 mil
T=0.15 mil
TanD=0
Rough=0 mil
ATF-551M4 Minipak Model
R7 is chosen to be 1 kΩ. This resistor keeps a small
amount of current owing through Q2 to help maintain
bias stability. R6 is chosen to be 10 KΩ. This value of re-
sistance is high enough to limit Q1 gate current in the
presence of high RF drive levels as experienced when
Q1 is driven to the P1dB gain compression point. C7
provides a low frequency bypass to keep noise from Q2
eecting the operation of Q1. C7 is typically 0.1 µF.
Maximum Suggested Gate Current
The maximum suggested gate current for the ATF-
551M4 is 1 mA. Incorporating resistor R5 in the passive
bias network or resistor R6 in the active bias network
safely limits gate current to 500 µA at P1dB drive levels.
In order to minimize component count in the passive
biased amplier circuit, the 3 resistor bias circuit consist-
ing of R1, R2, and R5 can be simplied if desired. R5 can
be removed if R1 is replaced with a 5.6KΩ resistor and
if R2 is replaced with a 27KΩ resistor. This combination
should limit gate current to a safe level.
NFET=yes
PFET=no
Vto=0.3
Beta=0.444
Lambda=72e-3
Alpha=13
Tau=
Tnom=16.85
Idstc=
Ucrit=-0.72
Vgexp=1.91
Gamds=1e-4
Vtotc=
Betatce=
Rgs=0.5 Ohm
Rf=
Gscap=2
Cgs=0.6193 pF
Cgd=0.1435 pF
Gdcap=2
Fc=0.65
Rgd=0.5 Ohm
Rd=2.025 Ohm
Rg=1.7 Ohm
Rs=0.675 Ohm
Ld=
Lg=0.094 nH
Ls=
Cds=0.100 pF
Rc=390 Ohm
Crf=0.1 F
Gsfwd=
Gsrev=
Gdfwd=
Gdrev=
R1=
R2=
Vbi=0.95
Vbr=
Vjr=
Is=
Ir=
Imax=
Xti=
Eg=
N=
Fnc=1 MHz
R=0.08
P=0.2
C=0.1
Taumdl=no
wVgfwd=
wBvgs=
wBvgd=
wBvds=
wldsmax=
wPmax=
AllParams=
Advanced_Curtice2_Model
MESFETM1
22
MiniPak Package Outline Drawing
Ordering Information
Part Number No. of Devices Container
ATF-551M4-TR1 3000 7” Reel
ATF-551M4-TR2 10,000 13” Reel
ATF-551M4-BLK 100 antistatic bag
1.44 (0.058)
1.40 (0.056)
Top view
Side view
Dimensions are in millimeteres (inches)
Bottom view
1.20 (0.048)
1.16 (0.046)
0.70 (0.028)
0.58 (0.023)
1.12 (0.045)
1.08 (0.043)
3
2
4
1
0.82 (0.033)
0.78 (0.031)
0.32 (0.013)
0.28 (0.011)
-0.07 (-0.003)
-0.03 (-0.001)
0.00
-0.07 (-0.003)
-0.03 (-0.001)
0.42 (0.017)
0.38 (0.015)
0.92 (0.037)
0.88 (0.035)1.32 (0.053)
1.28 (0.051)
0.00
Vx
Solder Pad Dimensions
PCB Layout
A suggested PCB pad print for the miniature, Minipak
1412 package used by the ATF-551M4 is shown in
Figure 39.
0.5
0.020
0.4
0.016
0.4
0.016
1.1
0.043
0.3
0.012
0.5
0.020
0.3
0.012
Figure 39. PCB Pad Print for Minipak 1412. Package (mm [inches ]).
This pad print provides allowance for package
placement by automated assembly equipment without
adding excessive parasitics that could impair the high
frequency performance of the ATF-551M4. The layout is
shown with a footprint of the ATF-551M4 superimposed
on the PCB pads for reference.
For Further Information
The information presented here is an introduction to
the use of the ATF-551M4 enhancement mode PHEMT.
More detailed application circuit information is available
from Avago Technologies. Consult the web page or your
local Avago Technologies sales representative.
USER
FEED
DIRECTION
COVER TAPE
CARRIER
TAPE
REEL
END VIEW
8 mm
4 mm
TOP VIEW
Note: Vx represents Package Marking Code.
Device orientation is indicated by package marking.
Vx
Vx
Vx
Vx
P
P
0
P
2
F
W
C
D
1
D
E
A
0
5° MAX.
t
1
(CARRIER TAPE THICKNESS) T
t
(COVER TAPE THICKNESS)
5° MAX.
B
0
K
0
DESCRIPTION SYMBOL SIZE (mm) SIZE (INCHES)
LENGTH
WIDTH
DEPTH
PITCH
BOTTOM HOLE DIAMETER
A
0
B
0
K
0
P
D
1
1.40 ± 0.05
1.53 ± 0.05
0.80 ± 0.05
4.00 ± 0.10
0.80 ± 0.05
0.055 ± 0.002
0.064 ± 0.002
0.031 ± 0.002
0.157 ± 0.004
0.031 ± 0.002
CAVITY
DIAMETER
PITCH
POSITION
D
P
0
E
1.50 ± 0.10
4.00 ± 0.10
1.75 ± 0.10
0.060 ± 0.004
0.157 ± 0.004
0.069 ± 0.004
PERFORATION
WIDTH
THICKNESS
W
t
1
8.00 + 0.30 - 0.10
0.254 ± 0.02
0.315 + 0.012 - 0.004
0.010 ± 0.0008
CARRIER TAPE
CAVITY TO PERFORATION
(WIDTH DIRECTION)
CAVITY TO PERFORATION
(LENGTH DIRECTION)
F
P
2
3.50 ± 0.05
2.00 ± 0.05
0.138 ± 0.002
0.079 ± 0.002
DISTANCE
WIDTH
TAPE THICKNESS
C
T
t
5.40 ± 0.10
0.062 ± 0.001
0.213 ± 0.004
0.0024 ± 0.00004
COVER TAPE
A
0
B
0
Device Orientation for Outline 4T, MiniPak 1412
Tape Dimensions
For product information and a complete list of distributors, please go to our web site: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2008 Avago Technologies. All rights reserved. Obsoletes 5989-4217EN
AV02-0924EN - August 26, 2008