www.irf.com 1
12/8/04
IRLR7807ZPbF
IRLU7807ZPbF
HEXFET® Power MOSFET
Notes through are on page 11
Applications
Benefits
lVery Low RDS(on) at 4.5V VGS
lUltra-Low Gate Impedance
lFully Characterized Avalanche Voltage
and Current
lHigh Frequency Synchronous Buck
Converters for Computer Processor Power
lLead-Free
D-Pak
IRLR7807Z I-Pak
IRLU7807Z
PD - 95777A
VDSS RDS(on) max Qg (typ
.)
30V 13.8m
:
7.0nC
Absolute Maximum Ratings
Parameter Units
VDS Dr ain-to- Source Voltage V
VGS Gat e- to-Source Voltage
ID @ TC = 25 °C Co nti n uo us D rain C ur rent, VGS @ 10V
ID @ TC = 10 C
Co nti n uo us D rain C ur rent, V
GS
@ 10V
A
IDM
Pulsed D r ain Current
c
PD @TC = 25°C
Maximum Power D issi pation
g
W
PD @TC = 100°C
Maximum Power D issi pation
g
Linear Derating Factor W/°C
TJ Operatin g Junction and °C
TSTG Stor ag e Te m per ature Ra ng e
Soldering Temperature, for 10 seconds
Thermal Resist ance
Parameter Typ. Max. Units
RθJC Junction-to-Case ––– 3.75
RθJA
Junc ti o n- to- A mbien t (P CB Mo unt )
g
––– 50 °C/W
RθJA Junction-to-Ambient ––– 110
40
Max.
43
f
30
f
170
± 20
30
0.27
20
300 ( 1.6m m f r o m ca se)
-55 to + 17 5
IRLR/U7807ZPbF
2www.irf.com
Static @ TJ = 25°C (unles s otherwise s pec ified)
Parameter Min. Typ. Max. Units
DSS Drain-to-Sou rce Breakdown Voltage 30 ––– ––– V
∆Β
V
DSS
/
T
J B reak dow n Vo l tag e Tem p. Coeffi c i e nt ––– 23 ––– m VC
R
DS(on) Static Drai n-t o- Source O n- Resist ance ––– 11 13.8
m
––– 14.5 18.2
V
GS(th) Gate Thr eshold Volt age 1.35 1.8 2.25 V
V
GS(th)
/
T
JGat e Threshol d Voltage C oeffici ent ––– -4. 5 –– mV/°C
I
DSS Drain- to-Source Leakage Curren t ––– ––– 1.0 µA
––– –– 150
I
GSS Gate-to-Source Forward Leakage ––– ––– 100 nA
Gate-t o- Source Reve rse Leaka ge ––– ––– -1 00
gf s F orw a r d Tr a ns c ond uctan ce 51 –– –– S
Q
gTotal Gate Charge ––– 7.0 11
Q
gs1 Pre-Vth Gate-to-Source Charge ––– 1.8 –––
Q
gs2 Post-Vth Gate-to-Source Charge –– 0.7 ––– nC
Q
gd Ga t e - to- Dr ain C ha r ge ––– 2.7 –––
Q
godr Gate Char g e O v er dri v e ––– 1.8 –– Se e Fi g. 16
Q
sw
Switch Charge (Q
gs2
+ Q
gd
)
––– 3.4 –––
Q
oss Output Charge ––– 4.0 ––– nC
t
d(on) T urn-On Delay Tim e ––– 7. 1 –––
t
rRise Time –28–
t
d(off) Turn-Off Delay Time ––– 9.8 –– ns
t
fFall Time –– 3.5 ––
C
iss Input Capaci tance ––– 780 ––
C
oss Output Capacitance ––– 180 –– pF
C
rss R everse Tra nsfer Cap acitance ––– 100 ––
Avalanche Characteristics
Parameter Units
E
AS
Single Pul s e Avala nche Energy
d
mJ
I
AR
Avalanche Current
c
A
E
AR
Re petit i ve Ava l a nc he Ener g y
c
mJ
Diode Characteristics
Paramet e r Min . Typ. Ma x. Un its
I
SCo ntinuous S o ur c e Cu r rent ––– –––
43
f
(Body Diode) A
I
SM Pulsed Source Current ––– ––– 170
(Body Diode)
c
V
SD Diode Forward Voltage ––– ––– 1.0 V
t
rr Reve r se Reco ver y Ti me ––– 23 35 ns
Q
rr Reverse R ecovery Cha r ge ––– 14 2 1 nC
t
on Forward Turn-On Time
VDS = VGS, ID = 250µ A
VDS = 24V , V GS = 0V
VDS = 24V , V GS = 0V , TJ = 12 C
Conditions
4.0
Max.
28
12
ƒ = 1. 0M H z
ID = 12A
VDS = 15V
Conditions
VGS = 0V, ID = 25 A
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 15A
e
VGS = 4.5V , ID = 12A
e
VGS = 20V
VGS = -20V
VDS = 15V , I D = 12A
VDS = 15V , V GS = 0V
VDD = 15V, V GS = 4.5V
e
Cla m ped I n du ctive Lo ad
TJ = 25°C, IF = 12 A, V DD = 15V
di /dt = 100As
e
TJ = 25°C, IS = 12A, VGS = 0V
e
showing t he
integra l revers e
p-n ju nctio n diode.
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
MOSFET symbol
–––
VGS = 4.5V
Typ.
–––
–––
ID = 12A
VGS = 0V
VDS = 15V
IRLR/U7807ZPbF
www.irf.com 3
Fig 4. Normalized On-Resistance
vs. Temperature
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
0.1 110
VDS, Drain-to-Source Volt age (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
2.5V
20µs PU LSE WIDT H
Tj = 175°C
VGS
TOP 10V
5.0V
4.5V
3.5V
3.0V
2.7V
2.5V
BOTTOM 2.25V
2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
VGS, G ate-to-Source Voltage (V )
0.1
1.0
10.0
100.0
1000.0
ID, Drain-to-Source Current (Α)
TJ = 25° C
TJ = 175° C
VDS = 10V
20µs PU LSE WIDT H
-60 -40 -20 020 40 60 80 100 120 140 160 180
TJ , Junction T em perature ( °C)
0.5
1.0
1.5
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 30A
VGS = 10V
0.1 110
VDS, Dr ain-to-Sour ce Vol tage (V)
0.001
0.01
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
2.5V
20µs PU LSE WIDT H
Tj = 25°C
VGS
TOP 10V
5.0V
4.5V
3.5V
3.0V
2.7V
2.5V
BOTTOM 2.25V
IRLR/U7807ZPbF
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
110 100
VDS, Dr ain-to-Source Voltage ( V)
10
100
1000
10000
C, Capacitance (pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
0 4 8 12 16
QG Tot al Gate Char ge (nC)
0
2
4
6
8
10
12
VGS, Gate-to-Source Voltage (V)
VDS= 24V
VDS= 15V
ID= 12A
0.0 0.5 1.0 1.5 2.0
VSD, Source-t oDrain Volt age (V )
0.1
1.0
10.0
100.0
1000.0
ISD, Reverse Drain Current (A)
TJ = 25° C
TJ = 175° C
VGS = 0V
0.1 1.0 10.0 100.0 1000.0
VDS , Dr ain-toS ource Voltage (V )
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100µsec
IRLR/U7807ZPbF
www.irf.com 5
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current vs.
Case Temperature Fig 10. Threshold Voltage vs. Temperature
25 50 75 100 125 150 175
TC , C ase Temper ature (°C)
0
10
20
30
40
50
ID , Drain Current (A)
LIMITED BY PACKAGE
-75 -50 -25 025 50 75 100 125 150 175
TJ , T em perat ure ( °C )
1.0
1.5
2.0
2.5
VGS(th) Gate threshold Voltage (V)
ID = 250µA
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangul ar P ulse Duration ( sec)
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC )
0.20
0.10
D = 0. 50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zt hjc + Tc
Ri (°C/W) τi (sec)
1.796 0.000267
1.112 0.000607
0.842 0.004249
τJ
τJ
τ1
τ1τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
τ
τ
C
Ci= i/Ri
Ci= τi/Ri
IRLR/U7807ZPbF
6www.irf.com
D.U.T. V
D
S
I
D
I
G
3mA
V
GS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
Fig 13. Gate Charge Test Circuit
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
25 50 75 100 125 150 175
Starting TJ, Juncti on Temperatur e (°C)
0
20
40
60
80
100
120
EAS, Single Pulse Avalanche Energy (mJ)
ID
TOP 3.0A
1.4A
BOTTOM 12A
Fig 14a. Switching Time Test Circuit
Fig 14b. Switching Time Waveforms
VGS
VDS
9
0%
10%
td(on) td(off)
trtf
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
VDD
VDS
LD
D.U.T
+
-
IRLR/U7807ZPbF
www.irf.com 7
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
R
e-Applied
V
oltage
Reverse
Recovery
Current Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P.W.
Period
* VGS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
Fig 16. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2 Qgd Qgodr
IRLR/U7807ZPbF
8www.irf.com
Control FET
Special attention has been given to the power losses
in the switching elements of the circuit - Q1 and Q2.
Power losses in the high side switch Q1, also called
the Control FET, are impacted by the Rds(on) of the
MOSFET, but these conduction losses are only about
one half of the total losses.
Power losses in the control switch Q1 are given
by;
Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput
This can be expanded and approximated by;
P
loss =Irms 2×Rds(on )
()
+I×Qgd
ig
×Vin ×f
+I×Qgs2
ig
×Vin ×
f
+Qg×Vg×f
()
+Qoss
2×Vin ×f
This simplified loss equation includes the terms Qgs2
and Qoss which are new to Power MOSFET data sheets.
Qgs2 is a sub element of traditional gate-source
charge that is included in all MOSFET data sheets.
The importance of splitting this gate-source charge
into two sub elements, Qgs1 and Qgs2, can be seen from
Fig 16.
Qgs2 indicates the charge that must be supplied by
the gate driver between the time that the threshold
voltage has been reached and the time the drain cur-
rent rises to Idmax at which time the drain voltage be-
gins to change. Minimizing Qgs2 is a critical factor in
reducing switching losses in Q1.
Qoss is the charge that must be supplied to the out-
put capacitance of the MOSFET during every switch-
ing cycle. Figure A shows how Qoss is formed by the
parallel combination of the voltage dependant (non-
linear) capacitances Cds and Cdg when multiplied by
the power supply input buss voltage.
Synchronous FET
The power loss equation for Q2 is approximated
by;
P
loss =P
conduction +P
drive +P
output
*
P
loss =Irms
2×Rds(on)()
+Qg×Vg×f
()
+Qoss
2×Vin ×f
+Qrr ×Vin ×
f
(
)
*dissipated primarily in Q1.
For the synchronous MOSFET Q2, Rds(on) is an im-
portant characteristic; however, once again the im-
portance of gate charge must not be overlooked since
it impacts three critical areas. Under light load the
MOSFET must still be turned on and off by the con-
trol IC so the gate drive losses become much more
significant. Secondly, the output charge Qoss and re-
verse recovery charge Qrr both generate losses that
are transfered to Q1 and increase the dissipation in
that device. Thirdly, gate charge will impact the
MOSFETs’ susceptibility to Cdv/dt turn on.
The drain of Q2 is connected to the switching node
of the converter and therefore sees transitions be-
tween ground and Vin. As Q1 turns on and of f there is
a rate of change of drain voltage dV/dt which is ca-
pacitively coupled to the gate of Q2 and can induce
a voltage spike on the gate that is sufficient to turn
the MOSFET on, resulting in shoot-through current .
The ratio of Qgd/Qgs1 must be minimized to reduce the
potential for Cdv/dt turn on.
Power MOSFET Selection for Non-Isolated DC/DC Converters
Figure A: Qoss Characteristic
IRLR/U7807ZPbF
www.irf.com 9
D-Pak (TO-252AA) Part Marking Information
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
12
IN THE ASSEMBLY LINE "A"
ASSEMBLED ON WW 16, 1999
EXAMPLE: WIT H ASSE MBLY
THIS IS AN IRFR120
LOT CODE 12 34 YEAR 9 = 199
9
DA TE CODE
WEEK 16
PART NUMBER
LOGO
INTERNATIONAL
RECTIFIER
AS S EMBLY
LOT CODE
916A
IRFU120
34
YEAR 9 = 1999
DATE CODE
OR
P = DESIGNATES LEAD-FREE
PRODUCT (OPTIONAL)
Note: "P" in assembly line position
indicate s "Lead-F ree"
12 34
WEEK 16
A = AS S E MB L Y S IT E CODE
PART NUMBER
IRFU120
LINE A
LOGO
LOT CODE
AS S E MB L Y
INTERNATIONAL
RECTIFIER
IRLR/U7807ZPbF
10 www.irf.com
I-Pak (TO-251AA) Package Outline
Dimensions are shown in millimeters (inches)
I-Pak (TO-251AA) Part Marking Information
AS S EMBLY
EXAMPLE: WIT H AS SEMBLY
THIS IS AN IRFU120
YEAR 9 = 199
9
DATE C O DE
LI NE A
WEEK 19
IN THE ASSEM BLY LINE "A"
ASSEMBLED O N WW 19, 1999
LOT CODE 5678
PART NUMBER
56
IRFU120
INTERNATIONAL
LOGO
RECTIFIER
LOT CODE
919A
78
Note: "P" in asse mb ly line
pos ition indicates "Lead-F ree"
OR
56 78
AS S E MB LY
LOT CODE
RECTIFIER
LOGO
INTERNATIONAL
IRFU120
PART NUMBER
WEEK 19
DATE CODE
YEAR 9 = 1999
A = ASSEMBLY SITE CODE
P = D E SI GNATES LEAD- FREE
PRODUCT (OPTIONAL)
IRLR/U7807ZPbF
www.irf.com 11
Repetitive rating; pulse width limited by
max. junction temperature.
Starting TJ = 25°C, L = 0.39mH, RG = 25,
IAS = 12A.
Pulse width 400µs; duty cycle 2%.
Notes:
Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 30A.
When mounted on 1" square PCB (FR-4 or G-10 Material).
For recommended footprint and soldering techniques refer to
application note #AN-994.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.12/04
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
12.1 ( .476 )
11.9 ( .469 ) FEED DIRECTION FEED DIRE CTION
16.3 ( .641
)
15.7 ( .619
)
TRR TRL
N
OTES :
1
. CONTROLLING DIMENSION : MILLIMETE R.
2
. ALL D IMENSIONS ARE SH OWN IN MIL L IMETERS ( IN C H ES ).
3
. OUTLINE CONFORMS TO EIA-481 & EIA-541.
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
16 mm
13 INCH
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/