®
Altera Corporation 745
Classic
EPLD Family
May 1999, ver. 5 Data Sheet
A-DS-CLASSIC-05
Features
Complete device family with logic densities of 300 to 900 usable gates
(see Table 1)
Device erasure and reprogramming with non-volatile EPROM
configuration elements
Fast pin-to-pin logic delays as low as 10 ns and counter frequencies
as high as 100 MHz
24 to 68 pins available in dual in-line package (DIP), plastic J-lead
chip carrier (PLCC), pin-grid array (PGA), and small-outline
integrated circuit (SOIC) packages
Programmable security bit for protection of proprietary designs
100
%
generically tested to provide 100
%
programming yield
Programmable registers providing D, T, JK, and SR flipflops with
individual clear and clock controls
Software design support featuring the Altera
®
MAX+PLUS
®
II
development system on Windows-based PCs, as well as
Sun SPARCstation, HP 9000 Series 700/800, IBM RISC System/6000
workstations, and third-party development systems
Programming support with Altera’s Master Programming Unit
(MPU); programming hardware from Data I/O, BP Microsystems,
and other third-party programming vendors
Additional design entry and simulation support provided by EDIF,
library of parameterized modules (LPM), Verilog HDL, VHDL, and
other interfaces to popular EDA tools from manufacturers such as
Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys,
Synplicity, and VeriBest
Table 1. Classic Device Features
Feature EP610
EP610I
EP910
EP910I
EP1810
Usable gates 300 450 900
Macrocells 16 24 48
Maximum user I/O pins 22 38 64
t
PD
(ns) 10 12 20
f
CNT
(MHz) 100 76.9 50
746 Altera Corporation
Classic EPLD Family Data Sheet
General
Description
The Altera Classic
TM
device family offers a solution to high-speed, low-
power logic integration. Fabricated on advanced CMOS technology,
Classic devices also have a Turbo-only version, which is described in this
data sheet.
Classic devices support 100
%
TTL emulation and can easily integrate
multiple PAL- and GAL-type devices with densities ranging from 300 to
900 usable gates. The Classic family provides pin-to-pin logic delays as
low as 10 ns and counter frequencies as high as 100 MHz. Classic devices
are available in a wide range of packages, including ceramic dual in-line
package (CerDIP), plastic dual in-line package (PDIP), plastic J-lead chip
carrier (PLCC), ceramic J-lead chip carrier (JLCC), pin-grid array (PGA),
and small-outline integrated circuit (SOIC) packages.
EPROM-based Classic devices can reduce active power consumption
without sacrificing performance. This reduced power consumption
makes the Classic family well suited for a wide range of low-power
applications.
Classic devices are 100
%
generically tested devices in windowed
packages and can be erased with ultra-violet (UV) light, allowing design
changes to be implemented quickly.
Classic devices use sum-of-products logic and a programmable register.
The sum-of-products logic provides a programmable-
AND
/fixed-
OR
structure that can implement logic with up to eight product terms. The
programmable register can be individually programmed for D, T, SR, or
JK flipflop operation or can be bypassed for combinatorial operation. In
addition, macrocell registers can be individually clocked either by a global
clock or by any input or feedback path to the
AND
array. Altera’s
proprietary programmable I/O architecture allows the designer to
program output and feedback paths for combinatorial or registered
operation in both active-high and active-low modes. These features make
it possible to implement a variety of logic functions simultaneously.
Classic devices are supported by Altera’s MAX+PLUS II development
system, a single, integrated package that offers schematic, text—including
VHDL, Verilog HDL, and the Altera Hardware Description Language
(AHDL)—and waveform design entry, compilation and logic synthesis,
simulation and timing analysis, and device programming. The
MAX+PLUS II software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL,
Verilog HDL, and other interfaces for additional design entry and
simulation support from other industry-standard PC- and workstation-
based EDA tools. The MAX+PLUS II software runs on Windows-based
PCs, as well as Sun SPARCstation, HP 9000 Series 700/800, and IBM RISC
System/6000 workstations. These devices also contain on-board logic test
circuitry to allow verification of function and AC specifications during
standard production flow.
Altera Corporation 747
Classic EPLD Family Data Sheet
f
For more information, see the
MAX+PLUS II Programmable Logic
Development System & Software Data Sheet
.
Functional
Description
The Classic architecture includes the following elements:
Macrocells
Programmable registers
Output enable/clock select
Feedback select
Macrocells
Classic macrocells, shown in Figure 1, can be individually configured for
both sequential and combinatorial logic operation. Eight product terms
form a programmable-
AND
array that feeds an
OR
gate for combinatorial
logic implementation. An additional product term is used for
asynchronous clear control of the internal register; another product term
implements either an output enable or a logic-array-generated clock.
Inputs to the programmable-
AND
array come from both the true and
complement signals of the dedicated inputs, feedbacks from I/O pins that
are configured as inputs, and feedbacks from macrocell outputs. Signals
from dedicated inputs are globally routed and can feed the inputs of all
device macrocells. The feedback multiplexer controls the routing of
feedback signals from macrocells and from I/O pins. For additional
information on feedback select configurations, see Figure 3 on page 749.
Figure 1. Classic Device Macrocell
To Logic Array
Output Enable/Clock Select
Global
Clock OE
CLK
Programmable
Register
Input, I/O, and
Macrocell
Feedbacks
Logic Array
Feedback
Select
CLR
Q
Asynchronous Clear
VCC
748 Altera Corporation
Classic EPLD Family Data Sheet
The eight product terms of the programmable-
AND
array feed the 8-input
OR
gate, which then feeds one input to an
XOR
gate. The other input to the
XOR
gate is connected to a programmable bit that allows the array output
to be inverted. Altera’s MAX+PLUS II software uses the
XOR
gate to
implement either active-high or active-low logic, or De Morgan’s
inversion to reduce the number of product terms needed to implement a
function.
Programmable Registers
To implement registered functions, each macrocell register can be
individually programmed for D, T, JK, or SR operation. If necessary, the
register can be bypassed for combinatorial operation. During design
compilation, the MAX+PLUS II software selects the most efficient register
operation for each registered function to minimize the logic resources
needed by the design. Registers have an individual asynchronous clear
function that is controlled by a dedicated product term. These registers
are cleared automatically during power-up.
In addition, macrocell registers can be individually clocked by either a
global clock or any input or feedback path to the
AND
array. Altera’s
proprietary programmable I/O architecture allows the designer to
program output and feedback paths for combinatorial or registered
operation in both active-high and active-low modes. These features make
it possible to simultaneously implement a variety of logic functions.
Output Enable/Clock Select
Figure 2 shows the two operating modes (Modes 0 and 1) provided by the
output enable/clock (
OE
/
CLK
) select. The
OE
/
CLK
select, which is
controlled by a single programmable bit, can be individually configured
for each macrocell. In Mode 0, the tri-state output buffer is controlled by
a single product term. If the output enable is high, the output buffer is
enabled. If the output enable is low, the output has a high-impedance
value. In Mode 0, the macrocell flipflop is clocked by its global clock input
signal.
In Mode 1, the output enable buffer is always enabled, and the macrocell
register can be triggered by an array clock signal generated by a product
term. This mode allows registers to be individually clocked by any signal
on the
AND
array. With both true and complement signals in the
AND
array,
the register can be configured to trigger on a rising or falling edge. This
product-term-controlled clock configuration also supports gated clock
structures.
Altera Corporation 749
Classic EPLD Family Data Sheet
Figure 2. Classic Output Enable/Clock Select
Feedback Select
Each macrocell in a Classic device provides feedback selection that is
controlled by the feedback multiplexer. This feedback selection allows the
designer to feed either the macrocell output or the I/O pin input
associated with the macrocell back into the
AND
array. The macrocell
output can be either the
Q
output of the programmable register or the
combinatorial output of the macrocell. Different devices have different
feedback multiplexer configurations. See Figure 3.
Figure 3. Classic Feedback Multiplexer Configurations
In Mode 0, the register
is clocked by the global
c
lock signal. The
o
utput is enabled by
t
he logic from the
p
roduct term.
Macrocell
Output Buffer
Global
Clock OE
CLK
AND
Array
Data
Output Enable/Cloc
k
Select
OE = Product Term
CLK= Global
Mode 0
In Mode 1, the output
is permanently enabled
a
nd the register is
c
locked by the product
t
erm, which allows
g
ated clocks to be
g
enerated.
OE = Enabled
CLK= Product Term
Mode 1
Output Enable/Clock
Select
VCC
CLR
Q
Macrocell
Output Buffer
Global
Clock VCC
OE
CLK
AND
Array
Data
CLR
Q
Q
I/O
EP610
EP610I
EP910
EP910I
EP1810
Q
I/O
EP1810
Q
I/O
Global Quadrant Quadrant
Global
Global Feedback Multiplexer Quadrant Feedback Multiplexer Dual Feedback Multiplexer
750 Altera Corporation
Classic EPLD Family Data Sheet
EP610, EP610I, EP910, and EP910I devices have a global feedback
configuration; either the macrocell output (
Q
) or the I/O pin input (
I/O
)
can feed back to the
AND
array so that it is accessible to all other
macrocells.
EP1810 macrocells can have either of two feedback configurations:
quadrant or dual. Most macrocells in EP1810 devices have a quadrant
feedback configuration; either the macrocell output or I/O pin input can
feed back to other macrocells in the same quadrant. Selected macrocells in
EP1810 devices have a dual feedback configuration: the output of the
macrocell feeds back to other macrocells in the same quadrant, and the
I/O pin input feeds back to all macrocells in the device. If the associated
I/O pin is not used, the macrocell output can optionally feed all
macrocells in the device. In this case, the output of the macrocell passes
through the tri-state buffer and uses the feedback path between the buffer
and the I/O pin.
Design Security
Classic devices contain a programmable security bit that controls access to
the data programmed into the device. When this bit is programmed, a
proprietary design implemented in the device cannot be copied or
retrieved. This feature provides a high level of design security because
data within configuration elements is invisible. The security bit that
controls this function and other program data is reset only when the
device is erased.
Timing Model
Device timing can be analyzed with the MAX+PLUS II software, with a
variety of popular industry-standard EDA simulators and timing
analyzers, or with the timing model shown in Figure 4. Devices have fixed
internal delays that allow the user to determine the worst-case timing for
any design. The MAX+PLUS II software provides timing simulation,
point-to-point delay prediction, and detailed timing analysis for system-
level performance evaluation.
Figure 4. Classic Timing Model
I/O
Delay
t
IO
Feedback
Delay
t
FD
Output
Delay
t
OD
t
XZ
t
ZX
Input
Delay
t
IN
Logic Array
Delay
t
LAD
t
CLR
Array Clock
Delay
t
IC
Register
t
SU
t
H
t
ICS
Global Clock
Delay
Altera Corporation 751
Classic EPLD Family Data Sheet
Timing information can be derived from the timing model and
parameters for a particular device. External timing parameters represent
pin-to-pin timing delays, and can be calculated from the sum of internal
parameters. Figure 5 shows the internal timing relationship for internal
and external delay parameters.
f
For more information on device timing, refer to
Application Note 78
(Understanding MAX 5000 & Classic Timing)
in this data book.
752 Altera Corporation
Classic EPLD Family Data Sheet
Figure 5. Classic Switching Waveforms
I/O Pin
Input Pin
Logic Array Input
Logic Array Output
Output Pin
t
IN
t
LAD
t
CLR
t
OD
t
IO
Input Mode tPD1 =
t
IN
+ t
LAD
+ t
OD
tPD2 =
t
IO
+ t
IN
+ t
LAD
+ t
OD
t
FD
t
ASU
Clock Pin
Clock into Logic Array
Clock from Logic Array
Data from Logic Array
Register Output to Logic Array
tRtACH
t
IN
tF
t
IC
tACL
t
AH
Array Clock Mode
Global Clock Pin
Global Clock at Register
Data from Logic Array
tR
t
IN
t
ICS
t
SU
t
H
tF
tCH tCL
Global Clock Mode
t
OD
Clock from Logic Array
Data from Logic Array
Output Pin High-Impedance
Tri-State
t
ZX
t
XZ
Output Mode
t
R
and t
F
< 3 ns.
Inputs are driven at 3 V
for a logic high and
0 V for a logic low.
All timing characteristics
are measured at 1.5 V.
Altera Corporation 753
Classic EPLD Family Data Sheet
Turbo Bit
Option
Many Classic devices contain a programmable Turbo Bit
TM
option to
control the automatic power-down feature that enables the low-standby-
power mode. When the Turbo Bit option is turned on, the low-standby-
power mode is disabled. All AC values are tested with the Turbo Bit
option turned on. When the device is operating with the Turbo Bit option
turned off (non-Turbo mode), a non-Turbo adder must be added to the
appropriate AC parameter to determine worst-case timing. The non-
Turbo adder is specified in the “AC Operating Conditions” tables for each
Classic device that supports the Turbo mode.
Generic Testing
Classic devices are fully functionally tested. Complete testing of each
programmable EPROM configuration element and all internal logic
elements before and after packaging ensures 100
%
programming yield.
See Figure 6 for AC test measurement conditions. These devices also
contain on-board logic test circuitry to allow verification of function and
AC specifications during standard production flow.
Figure 6. AC Test Conditions
Device
Programming
Classic devices can be programmed on 486- and Pentium-based PCs with
the MAX+PLUS II Programmer, an Altera Logic Programmer card, the
MPU, and the appropriate device adapter. The MPU performs continuity
checking to ensure adequate electrical contact between the adapter and
the device.
Data I/O, BP Microsystems, and other programming hardware
manufacturers also offer programming support for Altera devices. See
Programming Hardware Manufacturers
for more information.
VCC
To
T est
System
C1 (includes
JIG capacitance)
R1
885
Device
Output
R2
340
Power-supply transients can affect AC
measurements. Simultaneous transitions of
multiple outputs should be avoided for
accurate measurement. Threshold tests
must not be performed under AC
conditions. Large-amplitude, fast ground-
current transients normally occur as the
device outputs discharge the load
capacitances. When these transients flow
through the parasitic inductance between
the device ground pin and the test system
ground, significant reductions in observable
noise immunity can result.
Notes:
Altera Corporation 755
EP610 EPLD
Features
High-performance, 16-macrocell Classic EPLD
Combinatorial speeds with
t
PD as fast as 10 ns
Counter frequencies of up to 100 MHz
Pipelined data rates of up to 125 MHz
Programmable I/O architecture with up to 20 inputs or 16 outputs
and 2 clock pins
EP610 and EP610I devices are pin-, function-, and programming
file-compatible
Programmable clock option for independent clocking of all registers
Macrocells individually programmable as D, T, JK, or SR flipflops, or
for combinatorial operation
Available in the following packages (see Figure 7):
24-pin small-outline integrated circuit (plastic SOIC only)
24-pin ceramic and plastic dual in-line package (CerDIP and
PDIP)
28-pin plastic J-lead chip carrier (PLCC)
Figure 7. EP610 Package Pin-Out Diagrams
Package outlines not drawn to scale. Windows in ceramic packages only.
28-Pin PLCC
24-Pin SOIC 24-Pin DIP
I/O
INPUT
CLK1
VCC
VCC
INPUT
I/O
I/O
I/O
I/O
I/O
I/O
I/O
NC
I/O
I/O
I/O
I/O
I/O
I/O
NC
I/O
INPUT
GND
GND
CLK2
INPUT
I/O
5
6
7
8
9
10
11
4 3 2 1 28 27 26
12 13 14 15 16 17 18
25
24
23
22
21
20
19
EP610
EP610I
EP610 EP610
EP610I
EP610
CLK1
INPUT
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
INPUT
GND
VCC
INPUT
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
INPUT
CLK2
1
2
3
4
5
6
7
8
9
10
11
12
24
23
22
21
20
19
18
17
16
15
14
13
CLK1
INPUT
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
INPUT
GND
VCC
INPUT
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
INPUT
CLK2
1
2
3
4
5
6
7
8
9
10
11
12
24
23
22
21
20
19
18
17
16
15
14
13
EP610
EP610
756 Altera Corporation
Classic EPLD Family Data Sheet
General
Description
EP610 devices have 16 macrocells, 4 dedicated input pins, 16 I/O pins,
and 2 global clock pins (see Figure 8). Each macrocell can access signals
from the global bus, which consists of the true and complement forms of
the dedicated inputs and the true and complement forms of either the
output of the macrocell or the I/O input. The CLK1 signal is a dedicated
global clock input for the registers in macrocells 9 through 16. The CLK2
signal is a dedicated global clock input for registers in macrocells 1
through 8.
Figure 8. EP610 Block Diagram
Numbers without parentheses are for DIP and SOIC packages. Numbers in parentheses are for J-lead packages.
Figure 9 shows the typical supply current (ICC) versus frequency of EP610
devices.
Figure 9. I
CC
vs. Frequency of EP610 Devices
(26)
(25)
(24)
(23)
(22)
(21)
(20)
(18)
22
21
20
19
18
17
16
15
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(12)
2 (3)
1 (2)
INPUT
CLK1
(13) INPUT
23 (27)
13 (16)
INPUT
CLK2
3
4
5
6
7
8
9
10
11
Global
Bus
(17)
INPUT 14
Macrocell 9
Macrocell 10
Macrocell 11
Macrocell 12
Macrocell 13
Macrocell 14
Macrocell 15
Macrocell 16
Macrocell 1
Macrocell 2
Macrocell 3
Macrocell 4
Macrocell 5
Macrocell 6
Macrocell 7
Macrocell 8
Frequency
1 kHz 10 kHz 100 kHz 1 MHz 10 MHz 80 MHz
0.1
1.0
100
10
Turbo
Non-Turbo
VCC = 5.0 V
TA = 25° C
Typical I
Active (mA)
CC
Altera Corporation 757
Classic EPLD Family Data Sheet
Figure 10 shows the typical output drive characteristics of EP610 devices.
Figure 10. Output Drive Characteristics of EP610 Devices
EP610-15 & EP610-20 EPLDs EP610-25, EP610-30 & EP610-35 EPLDs
VO Output Voltage (V)
1 2 3 4 5
IOL
IOH
80
60
40
20
0.45
VCC = 5.0 V
TA = 25° C
VO Output Voltage (V)
1 2 3 4 5
IOL
IOH
200
150
100
50
0.45
VCC = 5.0 V
TA = 25° C
EP610I EPLDs
VO Output Voltage (V)
1 2 3 4 5
100
80
60
40
20
IOL
IOH
VCC = 5.0 V
TA = 25° C
Typical I
Output
Current (mA)
CC
Typical I
Output
Current (mA)
CC
Typical I
Output
Current (mA)
CC
Drive characteristics may exceed shown curves.
758 Altera Corporation
Classic EPLD Family Data Sheet
Operating
Conditions
Tables 2 through 7 provide information on absolute maximum ratings,
recommended operating conditions, operating conditions, and
capacitance for EP610 and EP610I devices.
Table 2. EP610 & EP610I Device Absolute Maximum Ratings Notes (1), (2)
Symbol Parameter Conditions EP610 EP610I Unit
Min Max Min Max
VCC Supply voltage With respect to ground
(3)
–2.0 7.0 –2.0 7.0 V
VIDC input voltage –2.0 7.0 –0.5 VCC + 0.5 V
IMAX DC VCC or ground current –175 175 mA
IOUT DC output current, per pin –25 25 mA
TSTG Storage temperature No bias –65 150 –65 150 ° C
TAMB Ambient temperature Under bias –65 135 –65 135 ° C
TJJunction temperature Ceramic packages, under
bias 150 150 ° C
Plastic packages, under bias 135 135 ° C
Table 3. EP610 & EP610I Device Recommended Operating Conditions Note (2)
Symbol Parameter Conditions EP610 EP610I Unit
Min Max Min Max
VCC Supply voltage
(4)
4.75 (4.5) 5.25 (5.5) 4.75 5.25 V
VIInput voltage –0.3 VCC + 0.3 –0.3 VCC + 0.3 V
VOOutput voltage 0 VCC 0 VCC V
TAOperating temperature For commercial use 0 70 0 70 ° C
For industrial use –40 85 –40 85 ° C
tRInput rise time
(5)
100 (50) 500 ns
tFInput fall time
(5)
100 (50) 500 ns
Table 4. EP610 & EP610I Device DC Operating Conditions Note (6)
Symbol Parameter Conditions Min Max Unit
VIH High-level input voltage 2.0 VCC + 0.3 V
VIL Low-level input voltage –0.3 0.8 V
VOH High-level TTL output voltage IOH = –4 mA DC
(7)
2.4 V
High-level CMOS output voltage IOH = –0.6 mA DC
(7)
,
(8)
3.84 V
VOL Low-level output voltage IOL = 4 mA DC
(7)
0.45 V
III/O pin leakage current of dedicated input
pins VI = VCC or ground –10 10 µA
IOZ Tri-state output leakage current VO = VCC or ground –10 10 µA
Altera Corporation 759
Classic EPLD Family Data Sheet
Table 5. EP610 & EP610I Device Capacitance Note (9)
Symbol Parameter Conditions EP610-15
EP610-20
EP610-25
EP610-30
EP610-35
EP610I Unit
Min Max Min Max Min Max
CIN Input pin capacitance VIN = 0 V, f = 1.0 MHz 10 20 8 pF
CI/O I/O pin capacitance VOUT = 0 V, f = 1.0 MHz 12 20 8 pF
CCLK1 CLK1 pin capacitance VIN = 0 V, f = 1.0 MHz 20 20 10 pF
CCLK2 CLK2 pin capacitance VIN = 0 V, f = 1.0 MHz 20 50 12 pF
Table 6. EP610 Device I
CC
Supply Current Notes (2), (10)
Symbol Parameter Conditions Speed
Grade
EP610 Unit
Min Typ Max
ICC1 VCC supply current
(non-Turbo, standby) VI = VCC or ground, no load
(11), (12)
20 150 µA
ICC2 VCC supply current
(non-Turbo, active) VI = VCC or ground, no load,
f = 1.0 MHz
(11), (12)
5 10 (15) mA
ICC3 VCC supply current
(Turbo, active) VI = VCC or ground, no load,
f = 1.0 MHz
(12)
-15, -20 60 90 (115) mA
-25, -30,
-35 45 60 (75) mA
Table 7. EP610I Device I
CC
Supply Current Note (10)
Symbol Parameter Conditions EP610I Unit
Min Typ Max
ICC1 VCC supply current
(non-Turbo, standby) VI = VCC or ground, no load,
(11)
,
(12)
20 150 µA
ICC2 VCC supply current
(non-Turbo, active) VI = VCC or ground, no load,
f = 1.0 MHz
(11)
,
(12)
3 8 mA
ICC3 VCC supply current
(Turbo, active) VI = VCC or ground, no load,
f = 1.0 MHz
(12)
65 105 mA
760 Altera Corporation
Classic EPLD Family Data Sheet
Notes to tables:
(1) See the Operating Requirements for Altera Devices Data Sheet in this data book.
(2) Numbers in parentheses are for industrial-temperature-range devices.
(3) The minimum DC input is –0.3 V. During transitions, the inputs may undershoot to –2.0 V (EP610) or
–0.5 V (EP610I) or overshoot to 7.0 V (EP610) or VCC + 0.5 V (EP610I) for input currents less than 100 mA and periods
less than 20 ns.
(4) For EP610 devices, maximum VCC rise time is 50 ms. For EP610I devices, maximum VCC rise time is unlimited with
monotonic rise.
(5) For EP610-15 and EP610-20 devices: tR and tF = 40 ns.
For EP610-15 and EP610-20 clocks: tR and tF = 20 ns.
(6) These values are specified in Table 3 on page 758.
(7) The IOH parameter refers to high-level TTL or CMOS output current; the IOL parameter refers to low-level TTL
output current.
(8) This parameter does not apply to EP610I devices.
(9) The device capacitance is measured at 25° C and is sample-tested only.
(10) Typical values are for TA = 25° C and VCC = 5 V.
(11) When the Turbo Bit option is not set (non-Turbo mode), EP610 devices enter standby mode if no logic transitions
occur for 100 ns after the last transition. When the Turbo Bit option is not set, EP610I devices enter standby mode if
no logic transitions occur for 75 ns after the last transition.
(12) Measured with a device programmed as a 16-bit counter.
Altera Corporation 761
Classic EPLD Family Data Sheet
Tables 8 and 9 show the timing parameters for EP610-15 and EP610-20
devices.
Table 8. EP610-15 & EP610-20 External Timing Parameters Notes (1), (2)
Symbol Parameter Conditions EP610-15 EP610-20 Non-Turbo
Adder
Unit
Min Max Min Max
(3)
tPD1 Input to non-registered output C1 = 35 pF 15.0 20.0 20.0 ns
tPD2 I/O input to non-registered output C1 = 35 pF 17.0 22.0 20.0 ns
tPZX Input to output enable C1 = 35 pF 15.0 20.0 20.0 ns
tPXZ Input to output disable C1 = 5 pF
(4)
15.0 20.0 20.0 ns
tCLR Asynchronous output clear time C1 = 35 pF 15.0 20.0 20.0 ns
fMAX Maximum clock frequency
(5)
83.3 62.5 0.0 MHz
tSU Global clock input setup time 9.0 11.0 20.0 ns
tHGlobal clock input hold time 0.0 0.0 0.0 ns
tCH Global clock high time 6.0 8.0 0.0 ns
tCL Global clock low time 6.0 8.0 0.0 ns
tCO1 Global clock to output delay 11.0 13.0 0.0 ns
tCNT Global clock minimum period 12.0 16.0 0.0 ns
fCNT Maximum internal global clock
frequency
(6)
83.3 62.5 0.0 MHz
tASU Array clock input setup time 6.0 8.0 20.0 ns
tAH Array clock input hold time 6.0 8.0 0.0 ns
tACH Array clock high time 7.0 9.0 0.0 ns
tACL Array clock low time 7.0 9.0 0.0 ns
tODH Output data hold time after clock C1 = 35 pF
(7)
1.0 1.0 1.0 ns
tACO1 Array clock to output delay 15.0 20.0 20.0 ns
tACNT Array clock minimum period 14.0 18.0 0.0 ns
fACNT Array clock internal maximum
frequency
(6)
71.4 55.6 0.0 MHz
Table 9. EP610-15 & EP610-20 Internal Timing Parameters (Part 1 of 2)
Symbol Parameter Conditions EP610-15 EP610-20 Unit
Min Max Min Max
t
IN
Input pad and buffer delay 4.0 4.0 ns
t
IO
I/O input pad and buffer delay 2.0 2.0 ns
t
LAD
Logic array delay 6.0 11.0 ns
t
OD
Output buffer and pad delay C1 = 35 pF 5.0 5.0 ns
t
ZX
Output buffer enable delay C1 = 35 pF 5.0 5.0 ns
t
XZ
Output buffer disable delay C1 = 5 pF 5.0 5.0 ns
762 Altera Corporation
Classic EPLD Family Data Sheet
Tables 10 and 11 show the timing parameters for EP610-25, EP610-30 and
EP610-35 devices.
t
SU
Register setup time 5.0 4.0 ns
t
H
Register hold time 4.0 7.0 ns
t
IC
Array clock delay 6.0 11.0 ns
t
ICS
Global clock delay 2.0 4.0 ns
t
FD
Feedback delay 1.0 1.0 ns
t
CLR
Register clear time 6.0 11.0 ns
Table 9. EP610-15 & EP610-20 Internal Timing Parameters (Part 2 of 2)
Symbol Parameter Conditions EP610-15 EP610-20 Unit
Min Max Min Max
Table 10. EP610-25, EP610-30 & EP610-35 External Timing Parameters Notes (1), (2)
Symbol Parameter Conditions EP610-25 EP610-30 EP610-35 Non-Turbo
Adder
Unit
Min Max Min Max Min Max
(3)
tPD1 Input to non-registered output C1 = 35 pF 25.0 30.0 35.0 30.0 ns
tPD2 I/O input to non-registered output 27.0 32.0 37.0 30.0 ns
tPZX Input to output enable 25.0 30.0 35.0 30.0 ns
tPXZ Input to output disable C1 = 5 pF
(4)
25.0 30.0 35.0 30.0 ns
tCLR Asynchronous output clear time C1 = 35 pF 27.0 32.0 37.0 30.0 ns
fMAX Maximum frequency
(5)
47.6 41.7 37.0 0.0 MHz
tSU Global clock input setup time 21.0 24.0 27.0 30.0 ns
tHGlobal clock input hold time 0.0 0.0 0.0 0.0 ns
tCH Global clock high time 10.0 11.0 12.0 0.0 ns
tCL Global clock low time 10.0 11.0 12.0 0.0 ns
tCO1 Global clock to output delay 15.0 17.0 20.0 0.0 ns
tCNT Global clock minimum period 25.0 30.0 35.0 0.0 ns
fCNT Maximum internal global clock
frequency
(6)
40.0 33.3 28.6 0.0 MHz
tASU Array clock input setup time 8.0 8.0 8.0 30.0 ns
tAH Array clock input hold time 12.0 12.0 12.0 0.0 ns
tACH Array clock high time 10.0 11.0 12.0 0.0 ns
tACL Array clock low time 10.0 11.0 12.0 0.0 ns
tODH Output data hold time after clock C1 = 35 pF
(7)
1.0 1.0 1.0 ns
tACO1 Array clock to output delay 27.0 32.0 37.0 30.0 ns
tACNT Array clock minimum period 25.0 30.0 35.0 0.0 ns
fACNT Maximum internal global clock
frequency
(6)
40.0 33.3 28.6 0.0 MHz
Altera Corporation 763
Classic EPLD Family Data Sheet
Notes to tables:
(1) These values are specified in Table 3 on page 758.
(2) See Application Note 78 (Understanding MAX 5000 & Classic Timing) in this data book for information on internal
timing parameters.
(3) The non-Turbo adder must be added to this parameter when the Turbo Bit option is off.
(4) Sample-tested only for an output change of 500 mV.
(5) The fMAX values represent the highest frequency for pipelined data.
(6) Measured with a device programmed as a 16-bit counter.
(7) Sample-tested only. This parameter is a guideline based on extensive device characterization. This parameter
applies for both global and array clocking.
Table 11. EP610-25, EP610-30 & EP610-35 Internal Timing Parameters
Symbol Parameter Condition EP610-25 EP610-30 EP610-35 Unit
Min Max Min Max Min Max
t
IN
Input pad and buffer delay 8.0 9.0 11.0 ns
t
IO
I/O input pad and buffer delay 2.0 2.0 2.0 ns
t
LAD
Logic array delay 11.0 14.0 15.0 ns
t
OD
Output buffer and pad delay C1 = 35 pF 6.0 7.0 9.0 ns
t
ZX
Output buffer enable delay C1 = 35 pF 6.0 7.0 9.0 ns
t
XZ
Output buffer disable delay C1 = 5 pF 6.0 7.0 9.0 ns
t
SU
Register setup time 11.0 11.0 12.0 ns
t
H
Register hold time 10.0 10.0 10.0 ns
t
IC
Array clock delay 13.0 16.0 17.0 ns
t
ICS
Global clock delay 1.0 1.0 0.0 ns
t
FD
Feedback delay 3.0 5.0 8.0 ns
t
CLR
Register clear time 13.0 16.0 17.0 ns
764 Altera Corporation
Classic EPLD Family Data Sheet
Tables 12 and 13 show the timing parameters for EP610I devices.
Table 12. EP610I External Timing Parameters Notes (1), (2)
Symbol Parameter Conditions EP610I-10 EP610I-12 EP610I-15 Non-Turbo
Adder
Unit
Min Max Min Max Min Max
(3)
tPD1 Input to non-registered output C1 = 35 pF 10.0 12.0 15.0 25.0 ns
tPD2 I/O input to non-registered output 10.0 12.0 15.0 25.0 ns
tPZX Input to output enable 15.0 15.0 18.0 25.0 ns
tPXZ Input to output disable C1 = 5 pF
(4)
13.0 15.0 18.0 25.0 ns
tCLR Asynchronous output clear time C1 = 35 pF 13.0 15.0 18.0 25.0 ns
fMAX Maximum frequency
(5)
125.0 100.
083.3 0.0 MHz
tSU Global clock input setup time 7.0 9.0 12.0 25 ns
tHGlobal clock input hold time 0.0 0.0 0.0 0.0 ns
tCH Global clock high time 5.0 5.0 5.0 0.0 ns
tCL Global clock low time 5.0 5.0 5.0 0.0 ns
tCO1 Global clock to output delay 6.5 8.0 8.0 0.0 ns
tCNT Global clock minimum period 10.0 12.0 15.0 25.0 ns
fCNT Maximum internal global clock
frequency
(6)
100.0 83.3 66.0 0.0 MHz
tASU Array clock input setup time 1.5 3.0 4.0 25.0 ns
tAH Array clock input hold time 5.5 6.0 6.0 0.0 ns
tACH Array clock high time 5.0 5.0 6.0 0.0 ns
tACL Array clock low time 5.0 5.0 6.0 0.0 ns
tODH Output data hold time after clock C1 = 35 pF
(7)
1.0 1.0 1.0 ns
tACO1 Array clock to output delay 12.0 14.0 16.0 25.0 ns
tACNT Array clock minimum period 10.0 12.0 15.0 25.0 ns
fACNT Maximum internal array clock
frequency
(6)
100.0 83.3 66.0 0.0 MHz
Altera Corporation 765
Classic EPLD Family Data Sheet
Notes to tables:
(1) These values are specified in Table 3 on page 758.
(2) See Application Note 78 (Understanding MAX 5000 & Classic Timing) in this data book for more information on Classic
timing parameters.
(3) The non-Turbo adder must be added to this parameter when the Turbo Bit option is off.
(4) Sample-tested only for an output change of 500 mV.
(5) The fMAX values represent the highest frequency for pipelined data.
(6) Measured with a device programmed as a 16-bit counter.
(7) Sample-tested only. This parameter is a guideline based on extensive device characterization. This parameter
applies for both global and array clocking.
Table 13. EP610 Internal Timing Parameters
Symbol Parameter Conditions EP610I-10 EP610I-12 EP610I-15 Unit
Min Max Min Max Min Max
t
IN
Input pad and buffer delay 1.5 4.0 4.0 ns
t
IO
I/O input pad and buffer delay 0.0 0.0 0.0 ns
t
LAD
Logic array delay 5.5 6.0 9.0 ns
t
OD
Output buffer and pad delay C1 = 35 pF 3.0 2.0 2.0 ns
t
ZX
Output buffer enable delay C1 = 35 pF 8.0 5.0 6.0 ns
t
XZ
Output buffer disable delay C1 = 5 pF 6.0 5.0 6.0 ns
t
SU
Register setup time 3.5 5.0 5.0 ns
t
H
Register hold time 3.5 4.0 7.0 ns
t
IC
Array clock delay 7.5 8.0 10.0 ns
t
ICS
Global clock delay 2.0 2.0 2.0 ns
t
FD
Feedback delay 1.0 1.0 1.0 ns
t
CLR
Register clear time 8.5 9.0 12.0 ns
Notes:
Altera Corporation 767
EP910 EPLD
Features High-performance, 24-macrocell Classic EPLD
Combinatorial speeds with tPD as fast as 12 ns
Counter frequencies of up to 76.9 MHz
Pipelined data rates of up to 125 MHz
Programmable I/O architecture with up to 36 inputs or 24 outputs
EP910 and EP910I devices are pin-, function-, and programming file-
compatible
Programmable clock option for independent clocking of all registers
Macrocells individually programmable as D, T, JK, or SR flipflops, or
for combinatorial operation
Available in the following packages (see Figure 11)
44-pin plastic J-lead chip carrier (PLCC)
40-pin ceramic and plastic dual in-line packages (CerDIP and
PDIP)
Figure 11. EP910 Package Pin-Out Diagrams
Package outlines are not drawn to scale. Windows in ceramic packages only.
40-Pin DIP
44-Pin PLCC
EP910
EP910I EP910
EP910I
I/O
INPUT
INPUT
INPUT
CLK1
VCC
VCC
INPUT
INPUT
INPUT
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
NC
NC
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
INPUT
INPUT
INPUT
GND
GND
CLK2
INPUT
INPUT
INPUT
I/O
6 5 4 3 2 1 44 43 42 41 40
18 19 20 21 22 23 24 25 26 27 28
7
8
9
10
11
12
13
14
15
16
17
39
38
37
36
35
34
33
32
31
30
29
CLK1
INPUT
INPUT
INPUT
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
INPUT
INPUT
INPUT
GND
VCC
INPUT
INPUT
INPUT
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
INPUT
INPUT
INPUT
CLK2
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
768 Altera Corporation
Classic EPLD Family Data Sheet
General
Description
Altera EP910 devices can implement up to 450 usable gates of SSI and MSI
logic functions. EP910 devices have 24 macrocells, 12 dedicated input
pins, 24 I/O pins, and 2 global clock pins (see Figure 12). Each macrocell
can access signals from the global bus, which consists of the true and
complement forms of the dedicated inputs and the true and complement
forms of either the output of the macrocell or the I/O input. The CLK1 and
CLK2 signals are the dedicated clock inputs for the registers in macrocells
13 through 24 and 1 through 12, respectively.
Figure 12. EP910 Block Diagram
Numbers without parentheses are for DIP packages. Numbers in parentheses are for J-lead packages.
(40)
(38)
(37)
(36)
(35)
(34)
(33)
(32)
(31)
(30)
(29)
(28)
36
35
34
33
32
31
30
29
28
27
26
25
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(18)
Macrocell 13
Macrocell 14
Macrocell 15
Macrocell 16
Macrocell 17
Macrocell 18
Macrocell 19
Macrocell 20
Macrocell 21
Macrocell 22
Macrocell 23
Macrocell 24
Macrocell 1
Macrocell 2
Macrocell 3
Macrocell 4
Macrocell 5
Macrocell 6
Macrocell 7
Macrocell 8
Macrocell 9
Macrocell 10
Macrocell 11
Macrocell 12
2 (3)
3 (4)
4 (5)
1 (2)
INPUT
INPUT
INPUT
CLK1
(19)
(20)
(21)
INPUT
INPUT
INPUT
39
38
37
21
INPUT
INPUT
INPUT
CLK2
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Global
Bus
(27)
(26)
(25)
INPUT
INPUT
INPUT
24
23
22
(43)
(42)
(41)
(24)
Altera Corporation 769
Classic EPLD Family Data Sheet
Figure 13 shows the typical supply current (ICC) versus frequency of
EP910 devices.
Figure 13. I
CC
vs. Frequency of EP910 Devices
Figure 14 shows the typical output drive characteristics of EP910 devices.
Figure 14. Output Drive Characteristics of EP910 Devices
1 kHz 10 kHz 100 kHz 1 MHz 10 MHz 40 MHz
Frequency
V = 5.0 V
T = 25° C
Typical I
Active (mA)
CC
Non-Turbo
Turbo
100
10
1.0
0.1
CC
A
Drive characteristics may exceed shown curves.
VO Output Voltage (V)
1 2 3 4 5
60
50
40
30
20
10
00.45
IOL
IOH
VCC = 5.0 V
TA = 25° C
EP910 EPLDs
VO Output Voltage (V)
1 2 3 4 5
120
100
80
60
40
20
0.45
EP910I EPLDs
IOL
IOH
VCC = 5.0 V
TA = 25° C
Typical I
Output
Current (mA)
OTypical I
Output
Current (mA)
O
770 Altera Corporation
Classic EPLD Family Data Sheet
Operating
Conditions
Tables 14 through 18 provide information on absolute maximum ratings,
recommended operating conditions, operating conditions, and
capacitance for EP910 and EP910I devices.
Table 14. EP910 & EP910I Device Absolute Maximum Ratings Notes (1), (2)
Symbol Parameter Conditions EP910 EP910I Unit
Min Max Min Max
VCC Supply voltage With respect to ground
(3)
–2.0 7.0 –2.0 7.0 V
VIDC input voltage –2.0 7.0 –0.5 VCC + 0.5 V
IMAX DC VCC or ground current –250 250 mA
IOUT DC output current, per pin –25 25 mA
TSTG Storage temperature No bias –65 150 –65 150 ° C
TAMB Ambient temperature Under bias –65 135 –65 135 ° C
TJJunction temperature Ceramic packages, under
bias 150 150 ° C
Plastic packages, under
bias 135 135 ° C
Table 15. EP910 & EP910I Device Recommended Operating Conditions Note (2)
Symbol Parameter Conditions EP910 EP910I Unit
Min Max Min Max
VCC Supply voltage
(4)
4.75 (4.5) 5.25 (5.5) 4.75 5.25 V
VIInput voltage –0.3 VCC + 0.3 –0.3 VCC + 0.3 V
VOOutput voltage 0 VCC 0 VCC V
TAOperating temperature For commercial use 0 70 0 70 ° C
For industrial use –40 85 ° C
tRInput rise time
(5)
100 (50) 500 ns
tFInput fall time
(5)
100 (50) 500 ns
Table 16. EP910 & EP910I Device DC Operating Conditions Notes (6), (7)
Symbol Parameter Conditions Min Max Unit
VIH High-level input voltage 2.0 VCC + 0.3 V
VIL Low-level input voltage –0.3 0.8 V
VOH High-level TTL output voltage IOH = –4 mA DC
(8)
2.4 V
High-level CMOS output voltage IOH = –0.6 mA DC
(8)
,
(9)
3.84 V
VOL Low-level output voltage IOL = 4 mA DC
(8)
0.45 V
III/O leakage current of dedicated input pins VI = VCC or ground –10 10 µA
IOZ Tri-state output leakage current VO = VCC or ground –10 10 µA
Altera Corporation 771
Classic EPLD Family Data Sheet
Notes to tables:
(1) See the Operating Requirements for Altera Devices Data Sheet in this data book.
(2) Numbers in parentheses are for industrial-temperature-range devices.
(3) The minimum DC input is –0.3 V. During transitions, the inputs may undershoot to –2.0 V (EP910) or
–0.5 V (EP910I) or overshoot to 7.0 V (EP910) or VCC + 0.5 V (EP910I) for input currents less than 100 mA and periods
less than 20 ns.
(4) Maximum VCC rise time for EP910 devices = 50 ms; for EP910I devices, maximum VCC rise time is unlimited with
monotonic rise.
(5) For all clocks: tR and tF = 100 ns (50 ns for the industrial-temperature-range version).
(6) These values are specified in Table 15 on page 770.
(7) The device capacitance is measured at 25° C and is sample-tested only.
(8) The IOH parameter refers to high-level TTL or CMOS output current; the IOL parameter refers to low-level TTL
output current.
(9) This parameter does not apply to EP910I devices.
(10) When the Turbo Bit option is not set (non-Turbo mode), an EP910 device will enter standby mode if no logic
transitions occur for 100 ns after the last transition, and an EP910I device will enter standby mode if no logic
transitions occur for 75 ns after the last transition.
(11) Measured with a device programmed as a 24-bit counter.
Table 17. EP910 & EP910I Device Capacitance Note (6)
Symbol Parameter Conditions EP910 EP910I Unit
Min Max Min Max
CIN Input pin capacitance VIN = 0 V, f = 1.0 MHz 20 8 pF
CI/O I/O pin capacitance VOUT = 0 V, f = 1.0 MHz 20 8 pF
CCLK1 CLK1 pin capacitance VIN = 0 V, f = 1.0 MHz 20 10 pF
CCLK2 CLK2 pin capacitance VIN = 0 V, f = 1.0 MHz 60 12 pF
Table 18. EP910 & EP910I Device I
CC
Supply Current Notes (2), (6), (7)
Symbol Parameter Conditions EP910 EP910I Unit
Min Typ Max Min Typ Max
ICC1 VCC supply current
(non-Turbo, standby) VI = VCC or ground, no load
(10), (11)
20 150 60 150 µA
ICC2 VCC supply current
(non-Turbo, active) VI = VCC or ground, no load,
f = 1.0 MHz
(10), (11)
6 20 4 12 mA
ICC3 VCC supply current
(Turbo, active) VI = VCC or ground, no load,
f = 1.0 MHz
(11)
45 80
(100) 120 150 mA
772 Altera Corporation
Classic EPLD Family Data Sheet
Tables 19 and 20 show the timing parameters for EP910 devices.
Table 19. EP910 External Timing Parameters Notes (1), (2)
Symbol Parameter Conditions EP910-30 EP910-35 EP910-40 Non-
Turbo
Adder
(3)
Unit
Min Max Min Max Min Max
tPD1 Input to non-registered output C1 = 35 pF 30.0 35.0 40.0 30.0 ns
tPD2 I/O input to non-registered output C1 = 35 pF 33.0 38.0 43.0 30.0 ns
tPZX Input to output enable C1 = 35 pF 30.0 35.0 40.0 30.0 ns
tPXZ Input to output disable C1 = 5 pF
(4)
30.0 35.0 40.0 30.0 ns
tCLR Asynchronous output clear time C1 = 35 pF 33.0 38.0 43.0 30.0 ns
fMAX Maximum frequency
(5)
41.7 37.0 32.3 0.0 MHz
tSU Global clock input setup time 24.0 27.0 31.0 30.0 ns
tHGlobal clock input hold time 0.0 0.0 0.0 0.0 ns
tCH Global clock high time 12.0 13.0 15.0 0.0 ns
tCL Global clock low time 12.0 13.0 15.0 0.0 ns
tCO1 Global clock to output delay C1 = 35 pF 18 21.0 24.0 0.0 ns
tCNT Global clock minimum clock period
(6)
30.0 35.0 40.0 0.0 ns
fCNT Maximum internal global clock
frequency
(6)
33.3 28.6 25.0 0.0 MHz
tASU Array clock input setup time 10.0 10.0 10.0 30.0 ns
tAH Array clock input hold time 15.0 15.0 15.0 0.0 ns
tACH Array clock high time 15.0 16.0 17.0 0.0 ns
tACL Array clock low time 15.0 16.0 17.0 0.0 ns
tODH Output data hold time after clock C1 = 35 pF
(7)
1.0 1.0 1.0 ns
tACO1 Array clock to output delay C1 = 35 pF 33.0 38.0 43.0 30.0 ns
tACNT Array clock minimum clock period 30.0 35.0 40.0 0.0 ns
fACNT Maximum internal array clock
frequency
(6)
33.3 28.6 25.0 0.0 MHz
Altera Corporation 773
Classic EPLD Family Data Sheet
Notes to tables:
(1) These values are specified in Table 15 on page 770.
(2) See Application Note 78 (Understanding MAX 5000 & Classic Timing) in this data book for more information on Classic
timing parameters.
(3) The non-Turbo adder must be added to this parameter when the Turbo Bit option is off.
(4) Sample-tested only for an output change of 500 mV.
(5) The fMAX values represent the highest frequency for pipelined data.
(6) Measured with a device programmed as a 24-bit counter.
(7) Sample-tested only. This parameter is a guideline based on extensive device characterization and applies for both
global and array clocking.
Table 20. EP910 Internal Timing Parameters
Symbol Parameter Condition EP910-30 EP910-35 EP910-40 Unit
Min Max Min Max Min Max
t
IN
Input pad and buffer delay 9.0 10.0 13.0 ns
t
IO
I/O input pad and buffer delay 3.0 3.0 3.0 ns
t
LAD
Logic array delay 14.0 16.0 17.0 ns
t
OD
Output buffer and pad delay C1 = 35 pF 7.0 9.0 10.0 ns
t
ZX
Output buffer enable delay C1 = 35 pF 7.0 9.0 10.0 ns
t
XZ
Output buffer disable delay C1 = 5 pF 7.0 9.0 10.0 ns
t
SU
Register setup time 12.0 13.0 15.0 ns
t
H
Register hold time 12.0 12.0 12.0 ns
t
IC
Array clock delay 17.0 19.0 20.0 ns
t
ICS
Global clock delay 2.0 2.0 1.0 ns
t
FD
Feedback delay 4.0 6.0 8.0 ns
t
CLR
Register clear time 17.0 19.0 20.0 ns
774 Altera Corporation
Classic EPLD Family Data Sheet
Tables 21 and 22 show the timing parameters for EP910I devices.
Table 21. EP910I External Timing Parameters Notes (1), (2)
Symbol Parameter Conditions EP910I-12 EP910I-15 EP910I-25 Non-Turbo
Adder
Unit
Min Max Min Max Min Max
(3)
tPD1 Input to non-registered output C1 = 35 pF 12.0 15.0 25.0 40.0 ns
tPD2 I/O input to non-registered output C1 = 35 pF 12.0 15.0 25.0 40.0 ns
tPZX Input to output enable C1 = 35 pF 15.0 18.0 28.0 40.0 ns
tPXZ Input to output disable C1 = 35 pF
(4)
15.0 18.0 28.0 40.0 ns
tCLR Asynchronous output clear time C1 = 35 pF 15.0 18.0 28.0 40.0 ns
fMAX Global clock maximum frequency
(5)
125.0 100.0 62.5 0.0 MHz
tSU Global clock input setup time 8.0 11.0 16.0 40.0 ns
tHGlobal clock input hold time 0.0 0.0 0.0 0.0 ns
tCH Global clock high time 5.0 6.0 10.0 0.0 ns
tCL Global clock low time 5.0 6.0 10.0 0.0 ns
tCO1 Global clock to output delay 8.0 9.0 14.0 0.0 ns
tCNT Global clock minimum clock period C1 = 35 pF 13.0 15.0 25.0 40.0 ns
fCNT Maximum internal global clock
frequency
(6)
76.9 66.6 40.0 0.0 MHz
tASU Array clock input setup time 3.0 4.0 8.0 40.0 ns
tAH Array clock input hold time 6.0 7.0 8.0 ns
tACH Array clock high time 6.0 7.5 12.5 ns
tACL Array clock low time 6.0 7.5 12.5 ns
tODH Output data hold time after clock C1 = 35 pF
(7)
1.0 1.0 1.0 ns
tACO1 Array clock to output delay C1 = 35 pF 16.0 18.0 22.0 40.0 ns
tACNT Array clock minimum clock period 13.0 15.0 25.0 40.0 ns
fACNT Maximum internal array clock
frequency
(6)
76.9 66.6 40.0 MHz
Altera Corporation 775
Classic EPLD Family Data Sheet
Notes to tables:
(1) These values are specified in Table 15 on page 770.
(2) See Application Note 78 (Understanding MAX 5000 & Classic Timing) in this data book for information on internal
timing parameters.
(3) The non-Turbo adder must be added to this parameter when the Turbo Bit option is off.
(4) Sample-tested only for an output change of 500 mV.
(5) The fMAX values represent the highest frequency for pipelined data.
(6) Measured with the device programmed as a 24-bit counter.
(7) Sample-tested only. This parameter is a guideline based on extensive device characterization and applies for both
global and array clocking.
Table 22. EP910I Internal Timing Parameters
Symbol Parameter Condition EP910I-12 EP910I-15 EP910I-25 Unit
Min Max Min Max Min Max
t
IN
Input pad and buffer delay 2.0 3.0 2.0 ns
t
IO
I/O input pad and buffer delay 0.0 0.0 0.0 ns
t
LAD
Logic array delay 8.0 9.0 17.0 ns
t
OD
Output buffer and pad delay C1 = 35 pF 2.0 3.0 6.0 ns
t
ZX
Output buffer enable delay C1 = 35 pF 5.0 6.0 9.0 ns
t
XZ
Output buffer disable delay C1 = 5 pF 5.0 6.0 9.0 ns
t
SU
Register setup time 4.0 5.0 5.0 ns
t
H
Register hold time 4.0 6.0 11.0 ns
t
IC
Array clock delay 12.0 12.0 14.0 ns
t
ICS
Global clock delay 4.0 3.0 6.0 ns
t
FD
Feedback delay 1.0 1.0 3.0 ns
t
CLR
Register clear time 11.0 12.0 20.0 ns
Notes:
Altera Corporation 777
EP1810 EPLD
Features High-performance, 48-macrocell Classic EPLD
Combinatorial speeds with tPD as fast as 20 ns
Counter frequencies of up to 50 MHz
Pipelined data rates of up to 62.5 MHz
Programmable I/O architecture with up to 64 inputs or 48 outputs
Programmable clock option for independent clocking of all registers
Macrocells individually programmable as D, T, JK, or SR flipflops, or
for combinatorial operation
Available in the following packages (see Figure 15)
68-pin ceramic pin-grid array (PGA)
68-pin plastic J-lead chip carrier (PLCC)
Figure 15. EP1810 Package Pin-Out Diagrams
Package outlines not drawn to scale. See Table 32 on page 785 of this data sheet for PGA package pin-out information.
Windows in ceramic packages only.
68-Pin PGA
L
K
J
H
G
F
E
D
C
B
A
Bottom
View
1 2 3 4 5 6 7 8 9 10 11
EP1810 EP1810
68-Pin PLCC
I/O
I/O
I/O
I/O
INPUT
INPUT
INPUT
CLK1/INPUT
VCC
CLK2/INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
I/O
I/O
I/O
I/O
I/O
INPUT
INPUT
INPUT
CLK4/INPUT
VCC
CLK3/INPUT
INPUT
INPUT
INPUT
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
9
8
7
6
5
4
3
2
1
68
67
66
65
64
63
62
61
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
778 Altera Corporation
Classic EPLD Family Data Sheet
General
Description
Altera EP1810 devices offer LSI density, TTL-equivalent speed, and low-
power consumption. EP1810 devices have 48 macrocells, 16 dedicated
input pins, and 48 I/O pins (see Figure 16). EP1810 devices are divided
into four quadrants, each containing 12 macrocells. Of the 12 macrocells
in each quadrant, 8 have quadrant feedback and are “local” macrocells
(see “Feedback Select” on page 749 of this data sheet for more
information). The remaining 4 macrocells in the quadrant are “global”
macrocells. Both local and global macrocells can access signals from the
global bus, which consists of the true and complement forms of the
dedicated inputs and the true and complement forms of the feedbacks
from the global macrocells.
EP1810 devices also have four dedicated inputs (one in each quadrant)
that can be used as quadrant clock inputs. If the dedicated input is used
as a clock pin, the input feeds the clock input of all registers in that
particular quadrant.
Altera Corporation 779
Classic EPLD Family Data Sheet
Figure 16. EP1810 Block Diagram
Pin numbers are for J-lead packages. Pin numbers in parentheses are for PGA packages.
(K4)
(L4)
(K5)
(L5)
(L6)
(K7)
(L7)
(K8)
INPUT
INPUT
INPUT
INPUT/CLK1
INPUT/CLK2
INPUT
INPUT
INPUT
(B4) 56
(A5) 55
(B5) 54
(A6) 53
(A7) 51
(B7) 50
(A8) 49
(B8) 48
INPUT
INPUT
INPUT
INPUT/CLK4
INPUT/CLK3
INPUT
INPUT
INPUT
Quadrant A
(F1)
(G2)
(G1)
(H2)
(H1)
(J2)
(J1)
(K1)
(K2)
(L2)
(K3)
(L3)
Local Bus—Quadrant A
Macrocell 48
Macrocell 47
Macrocell 46
Macrocell 45
Macrocell 44
Macrocell 43
Macrocell 42
Macrocell 41
Macrocell 40
Macrocell 39
Macrocell 38
Macrocell 37
Quadrant D
(E1) 68
(E2) 67
(D1) 66
(D2) 65
(C1) 64
(C2) 63
(B1) 62
(B2) 61
(A2) 60
(A3) 59
(B3) 58
(A4) 57
Local Bus—Quadrant D
Macrocell 13
Macrocell 14
Macrocell 15
Macrocell 16
Macrocell 17
Macrocell 18
Macrocell 19
Macrocell 20
Macrocell 21
Macrocell 22
Macrocell 23
Macrocell 24
(L8)
(K9)
(L9)
(L10)
(K10)
(K11)
(J10)
(J11)
(H10)
(H11)
(G10)
(G11)
Local Bus—Quadrant B
Macrocell 36
Macrocell 35
Macrocell 34
Macrocell 33
Macrocell 32
Macrocell 31
Macrocell 30
Macrocell 29
Macrocell 28
Macrocell 27
Macrocell 26
Macrocell 25
(A9) 47
(B9) 46
(A10) 45
(B10) 44
(B11) 43
(C11) 42
(C10) 41
(D11) 40
(D10) 39
(E11) 38
(E10) 37
(F11) 36
Local Bus—Quadrant C
Quadrant B Quadrant C
Global Macrocells
Local Macrocells
Macrocell 1
Macrocell 2
Macrocell 3
Macrocell 4
Macrocell 5
Macrocell 6
Macrocell 7
Macrocell 8
Macrocell 9
Macrocell 10
Macrocell 11
Macrocell 12
Global
Bus
2
3
4
5
6
7
8
9
10
11
12
13
23
24
25
26
27
28
29
30
31
32
33
34
14
15
16
17
19
20
21
22
780 Altera Corporation
Classic EPLD Family Data Sheet
Figure 17 shows the typical supply current (ICC) versus frequency for
EP1810 EPLDs.
Figure 17. I
CC
vs. Frequency of EP1810 Devices
Figure 18 shows the output drive characteristics of EP1810 devices.
Figure 18. Output Drive Characteristics of EP1810 Devices
100
10
1.0
0.1
Frequency
10 kHz 100 kHz 1 MHz 10 MHz 60 MHz
V = 5.0 V
T = 25° C
Typical I
Active (mA)
CC CC
A
EP1810
Drive characteristics may exceed shown curves
.
VO Output Voltage (V)
EP1810-20 & EP1810-25 EPLDs
1 2 3 4 5
IOL
IOH
200
150
100
50
VCC = 5.0 V
TA = 25° C
EP1810-35 & EP1810-45 EPLDs
VO Output Voltage (V)
1 2 3 4 5
IOL
IOH
80
60
40
20
VCC = 5.0 V
TA = 25° C
Typical I
Output
Current (mA)
OTypical I
Output
Current (mA)
O
Altera Corporation 781
Classic EPLD Family Data Sheet
Operating
Conditions
Tables 23 through 27 provide information on absolute maximum ratings,
recommended operating conditions, operating conditions, and
capacitance for EP1810 devices.
Table 23. EP1810 Device Absolute Maximum Ratings Notes
(1)
,
(2)
Symbol Parameter Conditions Min Max Unit
VCC Supply voltage With respect to ground
(3)
–2.0 (–0.5) 7.0 V
VIDC input voltage With respect to ground
(3)
–2.0 (–0.5) 7.0 V
IMAX DC VCC or ground current –300 (–400) 300 (400) mA
IOUT DC output current, per pin –25 25 mA
TSTG Storage temperature No bias –65 150 ° C
TAMB Ambient temperature Under bias –65 135 ° C
TJJunction temperature Ceramic packages, under bias 150 ° C
Plastic packages, under bias 135 ° C
Table 24. EP1810 Device Recommended Operating Conditions Note (2)
Symbol Parameter Conditions Min Max Unit
VCC Supply voltage
(4)
4.75 (4.5) 5.25 (5.5) V
VIInput voltage –0.3 VCC + 0.3 V
VOOutput voltage 0 VCC V
TAOperating temperature For commercial use 0 70 ° C
For industrial use –40 85 ° C
tRInput rise time
(5)
50 ns
tFInput fall time
(5)
50 ns
Table 25. EP1810 Device DC Operating Conditions Notes (6), (7)
Symbol Parameter Conditions Min Max Unit
VIH High-level input voltage 2.0 VCC + 0.3 V
VIL Low-level input voltage –0.3 0.8 V
VOH High-level TTL output voltage IOH = –4 mA DC
(8)
2.4 V
High-level CMOS output voltage IOH = –0.6 mA DC
(8)
3.84 V
VOL Low-level output voltage IOL = 4 mA DC
(8)
0.45 V
III/O pin leakage current of dedicated
input pins VI = VCC or ground –10 10 µA
IOZ Tri-state output leakage current VO = VCC or ground –10 10 µA
782 Altera Corporation
Classic EPLD Family Data Sheet
Notes to tables:
(1) See the Operating Requirements for Altera Devices Data Sheet in this data book.
(2) Numbers in parentheses are for industrial-temperature-range devices.
(3) The minimum DC input is –0.3 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 7.0 V for
input currents less than 100 mA and periods less than 20 ns.
(4) Maximum VCC rise time is 50 ms.
(5) For EP1810 clocks: tR and tF = 100 ns (50 ns for industrial-temperature-range versions).
(6) Typical values are for TA = 25° C and VCC = 5 V.
(7) These values are specified in Table 24 on page 781.
(8) The IOH parameter refers to high-level TTL or CMOS output current; the IOL parameter refers to low-level TTL
output current.
(9) The device capacitance is measured at 25° C and is sample-tested only.
(10) Measured with a device programmed as four 12-bit counters.
Table 26. EP1810 Device Capacitance Note (9)
Symbol Parameter Conditions Min Max Unit
CIN Input pin capacitance VIN = 0 V, f = 1.0 MHz 20 pF
CIO I/O pin capacitance VOUT = 0 V, f = 1.0 MHz 20 pF
CCLK1 CCLK1 pin capacitance VIN = 0 V, f = 1.0 MHz 25 pF
CCLK2 CCLK2 pin capacitance VIN = 0 V, f = 1.0 MHz 160 pF
Table 27. EP1810 Device I
CC
Supply Current Notes (2), (6), (7)
Symbol Parameter Conditions Speed
Grade
Min Typ Max Unit
ICC1 VCC supply current VI = VCC or ground, no load,
(10)
-20, -25 50 150 µA
(non-Turbo, standby) -35, -45 35 150 µA
ICC2 VCC supply current VI = VCC or ground, no load,
f = 1.0 MHz
(10)
-20, -25 20 40 mA
(non-Turbo, active) -35, -45 10 30 (40) mA
ICC3 VCC supply current (Turbo, active) VI = VCC or ground, no load
f = 1.0 MHz
(10)
-20, -25 180 225 (250) mA
-35, -45 100 180 (240) mA
Altera Corporation 783
Classic EPLD Family Data Sheet
Tables 28 through 31 show the timing parameters for EP1810-20,
EP1810-25, EP1810-35, and EP1810-45 devices.
Table 28. EP1810-20 & EP1810-25 External Timing Parameters Note (1)
Symbol Parameter Conditions EP1810-20 EP1810-25 Non-Turbo
Adder
Unit
Min Max Min Max
(2)
tPD1 Input to non-registered output C1 = 35 pF 20.0 25.0 25.0 ns
tPD2 I/O input to non-registered output C1 = 35 pF 22.0 28.0 25.0 ns
tSU Global clock setup time 13.0 17.0 25.0 ns
tHGlobal clock hold time 0.0 0.0 0.0 ns
tCH Global clock high time 8.0 10.0 0.0 ns
tCL Global clock low time 8.0 10.0 0.0 ns
tCO1 Global clock to output delay C1 = 35 pF 15.0 18.0 0.0 ns
tCNT Minimum global clock period
(3)
20.0 25.0 0.0 ns
fCNT Maximum internal frequency
(3)
50.0 40.0 0.0 MHz
tASU Array clock setup time 8.0 10.0 25.0 ns
tAH Array clock hold time 8.0 10.0 0.0 ns
tACO1 Array clock to output delay C1 = 35 pF 20.0 25.0 25.0 ns
tODH Output data hold time after clock C1 = 35 pF
(4)
1.0 1.0 0.0 ns
tACNT Array clock maximum clock period
(3)
20.0 25.0 0.0 ns
fACNT Maximum internal array clock
frequency
(3)
50.0 40.0 0.0 ns
fMAX Maximum clock frequency
(5)
62.5 50.0 0.0 MHz
Table 29. EP1810-20 and EP1810-25 Internal Timing Parameters
Symbol Parameter Conditions EP1810-20 EP1810-25 Non-Turbo
Adder
Unit
Min Max Min Max
(2)
t
IN
Input pad and buffer delay 5.0 7.0 0.0 ns
t
IO
I/O input pad and buffer delay 2.0 3.0 0.0 ns
t
LAD
Logic array delay 9.0 12.0 25.0 ns
t
OD
Output buffer and pad delay C1 = 35 pF 6.0 6.0 0.0 ns
t
ZX
Output buffer enable delay C1 = 35 pF 6.0 6.0 0.0 ns
t
XZ
Output buffer disable delay C1 = 5 pF
(6)
6.0 6.0 0.0 ns
t
SU
Register setup time 8.0 10.0 0.0 ns
t
H
Register hold time 5.0 10.0 0.0 ns
t
IC
Array clock delay 9.0 12.0 25.0 ns
t
ICS
Global clock delay 4.0 5.0 0.0 ns
t
FD
Feedback delay 3.0 3.0 –25.0 ns
t
CLR
Register clear time 9.0 12.0 25.0 ns
784 Altera Corporation
Classic EPLD Family Data Sheet
Table 30. EP1810-35 & EP1810-45 External Timing Parameters Note (1)
Symbol Parameter Conditions EP1810-35 EP1810-45 Non-Turbo
Adder
Unit
Min Max Min Max
(2)
tPD1 Input to non-registered output C1 = 35 pF 35.0 45.0 30.0 ns
tPD2 I/O input to non-registered output C1 = 35 pF 40.0 50.0 30.0 ns
tSU Global clock setup time 25.0 30.0 30.0 ns
tHGlobal clock hold time 0.0 0.0 0.0 ns
tCH Global clock high time 12.0 15.0 0.0 ns
tCL Global clock low time 12.0 15.0 0.0 ns
tCO1 Global clock to output delay C1 = 35 pF 20.0 25.0 0.0 ns
tCNT Minimum global clock period
(3)
35.0 45.0 0.0 ns
fCNT Maximum internal frequency
(3)
28.6 22.2 0.0 MHz
tASU Array clock setup time 10.0 11.0 30.0 ns
tAH Array clock hold time 15.0 18.0 0.0 ns
tACO1 Array clock to output delay C1 = 35 pF 35.0 45.0 30.0 ns
tODH Output data hold time after clock C1 = 35 pF
(4)
1.0 1.0 ns
tACNT Array clock maximum clock period
(3)
35.0 45.0 0.0 ns
fACNT Maximum internal array clock
frequency
(3)
28.6 22.2 0.0 ns
fMAX Maximum clock frequency
(5)
40 33.3 0.0 MHz
Table 31. EP1810-35 & EP1810-45 Internal Timing Parameters
Symbol Parameter Conditions EP1810-35 EP1810-45 Non-Turbo
Adder
Unit
Min Max Min Max
(2)
t
IN
Input pad and buffer delay 7.0 6.0 0.0 ns
t
IO
I/O input pad and buffer delay 5.0 5.0 0.0 ns
t
LAD
Logic array delay 19.0 28.0 30.0 ns
t
OD
Output buffer and pad delay C1 = 35 pF 9.0 11.0 0.0 ns
t
ZX
Output buffer enable delay C1 = 35 pF 9.0 11.0 0.0 ns
t
XZ
Output buffer disable delay C1 = 5 pF
(6)
9.0 11.0 0.0 ns
t
SU
Register setup time 10.0 10.0 0.0 ns
t
H
Register hold time 15.0 18.0 0.0 ns
t
IC
Array clock delay 19.0 28.0 30.0 ns
t
ICS
Global clock delay 4.0 8.0 0.0 ns
t
FD
Feedback delay 6.0 7.0 –30.0 ns
t
CLR
Register clear time 24.0 32.0 30.0 ns
Altera Corporation 785
Classic EPLD Family Data Sheet
Notes to tables:
(1) These values are specified in Table 24 on page 781.
(2) The non-Turbo adder must be added to this parameter when the Turbo Bit option is off.
(3) Measured with a device programmed as four 12-bit counters.
(4) Sample-tested only. This parameter is a guideline based on extensive device characterization. This parameter
applies for both global and array clocking.
(5) The fMAX values represent the highest frequency for pipelined data.
(6) Sample-tested only for an output change of 500 mV.
Pin-Out
Information
Table 32 provides pin-out information for EP1810 devices in 68-pin PGA
packages.
Table 32. EP1810 PGA Pin-Outs
Pin Function Pin Function Pin Function Pin Function
A2 I/O B9 I/O F10 GND K4 INPUT
A3 I/O B10 I/O F11 I/O K5 INPUT
A4 I/O B11 I/O G1 I/O K6 VCC
A5 INPUT C1 I/O G2 I/O K7 INPUT
A6 CLK4/INPUT C2 I/O G10 I/O K8 INPUT
A7 CLK3/INPUT C10 I/O G11 I/O K9 I/O
A8 INPUT C11 I/O H1 I/O K10 I/O
A9 I/O D1 I/O H2 I/O K11 I/O
A10 I/O D2 I/O H10 I/O L2 I/O
B1 I/O D10 I/O H11 I/O L3 I/O
B2 I/O D11 I/O J1 I/O L4 INPUT
B3 I/O E1 I/O J2 I/O L5 CLK1/INPUT
B4 INPUT E2 I/O J10 I/O L6 CLK2/INPUT
B5 INPUT E10 I/O J11 I/O L7 INPUT
B6 VCC E11 I/O K1 I/O L8 I/O
B7 INPUT F1 I/O K2 I/O L9 I/O
B8 INPUT F2 GND K3 I/O L10 I/O
Notes: