Standard Power MOSFETs IRF420, IRF421, IRF422, IRF423 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors 2.0A and 2.5A, 450V-500V ros(on) = 3.0 Q and 4.00 Features: SOA is power-dissipation limited w Nanosecond switching speeds @ Linear transfer characteristics @ High input impedance w Majority carrier device The IRF420, !IRF421, IRF422 and IRF423 are n-channel enhancement-mode silicon-gate power field- effect transistors designed for applications such as switch- ing regulators, switching converters, motor drivers, retay drivers, and drivers for high-power bipolar switching tran- sistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. The IRF-types are supplied in the JEDEC TO-204AA steel package. Absolute Maximum Ratings File Number 1571 N-CHANNEL ENHANCEMENT MODE sO s 92CS-33741 TERMINAL DIAGRAM TERMINAL DESIGNATION DRAIN SOURCE (FLANGE } GATE 92CS- 37801 JEDEC TO-204AA Parameter IRF420 IRF421 IRF422 (RF423 Units Vos Drain - Source Voltage @) 500 480 500 450 v Vocr Drain - Gate Voltage (Rgs = 20KQ) Q) S500 450 500 450 v 'p @Te = 25C _ Continuous Drain Current 2.5 2.5 2.0 2.0 A Ip @Tc = 100C Continuous Drain Current 1.8 1.6 1.0 1.0 A om Pulsed Drain Current @ 10 10 3.0 8.0 A v. Gate - Source Voltage +20 v Pp @ Tc = 25C Max. Power Dissipation 40 {See Fig. 14} w Linear Derating Factor 0.32 iSae Fig. 14) wee itm Inductive Current, Clamped (See Fig. 15 and 16}L = 100,H A 10 l 10 | 8.0 t 8.0 Ty Opersting Junction and -55 to 150 C Tstg Storage Temperature Range Lead Temperature 300 (0.063 in. (1.6mm) from case for 308} 3-114Standard Power MOSFETs IRF420, IRF421, IRF422, IRF423 Electrical Characteristics @Tc = 25C (Unless Otherwise Specified) Parameter Type Min. | Typ. | Max. | Units Test Conditions BVpss_ Drain - Source Breakdown Voltage IRF420 _ _ - 1AR422 500 Vv Vag = OV 1RE421 _ IRF423 450 - = v ip = 250nA VGsith} Gate Threshold Voltage ALL 2.0 ~ 4.0 v Vos = Vos: !p = 250uA loss Gate-Source Leakage Forward ALL = = 100 nA Ves = 20V IGss _ Gate-Source Leakage Reverse ALL _ |-100 aA Vgs = -20V Ipgg Zero Gate Voltage Drain Current ALL - me yA Vos = Max. Rating. Vgg = OV = [1000] uA Vps = Max. Rating x 0.8, Vgg = OV, Tc = 125C IDion) _ On-State Drain Current @ IRF420 " wreaa1 | 25 | 7 | 7 A Vos? 'pton) * asion) max. Ves = 10V wra22 | OG _ _ A IRF423 RpSton) Static Drain-Source On-State (RF420 _ 25 3.0 a Resistance IRF421 v, tov, 1.08 razz td a0 | 4.0 0 gst ope IRF423 . ts Forward Tansconductance ) ALL 10 [17s] Si Vos 'bion) * pston max. 'p = 1-94 Cig Input Capacitance ALL = 300 pF Vag = OV. Vpg = 25V, f = 1.0 MHz Coss Output Capacitance ALL - 75 - oF See Fig. 10 Cregg ___ Reverse Transfer Capacitance ALL = 20 | pF tdion)__Turn-On Delay Time ALL = 30 | 60 ns Vop = 0.5 BVpgg. Ip = 1.08, Zp = 508 t Rise Time ALL - 25 50 ns See Fig. 17 tdloff) _Turn-Off Delay Time ALL 30 | 60 ns (MOSFET switching times are essentially tf Fall Time ALL _ 15 30 ns independent of operating temperature.) Q, Total Gate Charge Vag = 10V, Ip = 3.04. Vig = 0.8 Max. Rating. g = Gs o os (Gate-Source Plus Gate-Drain} Att N 18 nc See Fig. 18 for test circuit. (Gate charge is essentially Ogs Gate-Source Charge ALL _ 5.0 75 nc independent of operating ternperature.} Ogg Gate-Drain (Miller) Charge ALL = 6.0 9.0 nc lp Internal Drain Inductance ALL - 5.0 - nH Measured between Modified MOSFET the contact screw on symbol showing the header that is closer to internal device source and gate pins inductances. and center of die. ls internal Source Inductance ALL - 12.5 ~ nH Measured from the to source pin, 6 mm_ {0.25 in.) from header G and source bonding us. pad. s Thermal Resistance Rihuc Junction-to-Case ALL - = 3.12 | c/w Rincs __Case-to-Sink ALL - 0.1 ~ oC sw Mounting surface flat, smooth, and greased. Ringa _ Junction-ta-Ambient ALL ~ = 30 | c/w Free Air Operation Source-Drain Diode Ratings and Characteristics Is Continuous Source Current IRF420 _ _ 25 A Modified MOSFET symbol (Body Diode) IRF424 : showing the integral D IRF422 reverse P-N junction rectifier. IRF423 _ 2.0 A 'gm Pulse Source Current IRF420 _ _ (Body Diode) @ IRF421 10 A Ss IRF422 s ineaza | ~ | ~ | 8] 4 Vgp _ Diode Forward Voltage @ IRF420 _ _ 9R0 . _ IRFA21 - 1.4 v Te = 25C, tg = 2.5A, Vgg = OV (RF422 = 25 = = iRea23 ~ - {13 v To = 28C, Ig = 2.0A, Vag = OV tr Reverse Recovery Time ALL = 600.| ns Ty = 180C, Ip = 2.58, dip/dt = 100A/us Qer Reverse Recovered Charge ALL - 3.5 = ae Ty = 180C. ip = 2.5A, dip/dt = 100A/us ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by lg +.Lp. OTy = 28C to 150C. @ Pulse Test: Pulse width < 300us, Duty Cycle < 2%. @ Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal Impedance Curve (Fig. 5). 3-115Standard Power MOSFETs IRF420, IRF421, IRF422, IRF423 BD us PULSE TEST | 4 Vos > 'pton) * Roston} max. z z = = = = = 3 x c A a a 2 = = s 3 S Ty = 12500 Zz z? id =z = Ty - 25C 3 a s 2 Ty = -889C 1 0 59 100 150 200 250 a 2 4 6 8 10 Vpg, ORAIN-TO-SQURCE VOLTAGE (VOLTS) Vg. GATE. TO-SQURCE VOLTAGE {VOLTS} Fig. 1 Typicat Output Characteristics Fig. 2 Typical Transfer Characteristics AREA IS LIMITED BY PULSE TEST Ip, BRAIN CURRENT (AMPERES) tp, QRAIN CURRENT (AMPERES) Tr = 25C Ty* 190C MAX Rinse = 3.12C/W SINGLE PULSE a 4 8 2 16 20 102 5 Ww 2 50 100 200 $00 Vos. DRAIN-TO-SOURCE VOLTAGE {VOLTS} Vag. DRAIN-TO-SCURCE VOLTAGE (VOLTS) Fig. 3 Typicat Saturation Characteristics Fig. 4 Maximum Safe Operating Area n o Ss a oS ne 2 2 R 1. DUTY FACTOR, D= zt SINGLE . 0.02 THERMAL 2. PER UNIT BASE = Ringe = 3.12 DEG. CW. oot 3. Tym > To * Pom Zensclt- 10-5 2 5 19-4 2 5 w2 0? S 49-2 2 4 tot 2 s 10 2 5 10 ty, SQUARE WAVE PULSE DURATION (SECONDS) Zrraclt)/ Rye, NORMALIZED EFFECTIVE TRANSIENT THEAMAL IMPEDANCE (PER UNIT} Fig. 5 ~ Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration 3-116Og. TRANSCONOUCTANCE (SIEMANS} 0 1 2 3 4 5 Ip, ORAIN CURRENT (AMPERES) Fig. 6 Typical Transconductance Vs. Drain Current 125 08s BV ogg. ORAIN-TO-SOUACE BREAKDOWN VOLTAGE (NORMALIZED) O75 40 a a a0 120 160 Ty, JUNCTION TEMPERATURE (C) Fig. 8 Breakdown Voltage Vs. Temperature Vgs=0 f= 1 MHz Cigg = Cop + Cog, Cos SHORTED Crag = Cog Cy , Com" Cn CS tg = Cas + Cog C, CAPACITANCE {nF} 0 10 20 30 40 50 Vps, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage Standard Power MOSFETs IRF420, IRF421, IRF422, IRF423 102 to LTy= 150C ign. REVERSE ORAIN CURRENT (AMPERES) o 1 2 3 4 Vgp, SOURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7 Typical Source-Drain Diode Forward Voltage 28 Vigs* 10V = 2.50 Ros {on}. DRAIN-TO-SOURCE ON RESISTANCE (NORMALIZED) = 06 40 0 40 80 120 160 Ty, JUNCTION TEMPERATURE (C} Fig. 9 Normalized On-Resistance Vs. Temperature 20 Vps > 100v Vos 280V a ' | Vos = 400V Vgs. GATE-TO-SOURCE VOLTAGE (VOLTS) 3s Ip = 3A FOR TEST CIRCUIT SEE FIGURE 18 Q 4 8 12 16 20 ay. TOTAL GATE CHARGE (nC) Fig. 11 Typical Gate Charge Vs. Gate-to-Source Voltage 3-117Standard Power MOSFETs IRF420, IRF421, IRF422, IRF423 Vgg = 10V Vgs = 20V 7 Z : AO [ Roston) MEASURED WITH CURRENT PULSE OF 2.0 us DURATION. INITIAL T) = 25C. (HEATING EFFECT OF 2.0 us PULSE 1S MINIMAL } Apston)- DRAIN-TO-SOURCE ON RESISTANCE (OHMS) o 2 4 6 8 wo. 12 cy tp. DRAIN CURRENT (AMPERES) Fig. 12 Typical On-Resistance Vs. Drain Current 40 BB ww a 20 Pp. POWER DISSIPATION (WATTS) Qo 20 a0 {RF420, 421 (RF422, 423 Ip. ORAIN CURRENT (AMPERES) 0 5 50 75 tea 125 150 Fo, CASE TEMPERATURE (C) Fig. 13 Maximum Drain Current Vs. Case Temperature 60 Po 100 120 140 Tc, CASE TEMPERATURE (C) Fig. 14 Power Vs. Temperature Derating Curve VARY tp TO OBTAIN AEQUIREG PEAK ty, ay out Ygs <2 'p - 1 ft Fig. 15 Clamped Inductive Test Circuit ADJUST Ry, 10 OBTAIN SPECIFIED Ip Ey PULSE GENERATOR r TO SCOPE o.0Fn HIGH FREQUENCY SHUNT Fig. 17 Switching Time Test Circuit 3-118 Fig. 16 Clamped inductive Waveforms Vos CURRENT SOLATED REGULATOR SUPPLY) SAME TYPE AS OUT Y oa SO Ks? wv ! ] BATTERY CURRENT = SHUNT CURRENT SHUNT Fig. 18 -- Gate Charge Test Circuit