N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 1 of 164 January 2010
1. DESCRIPTION
The N681386/87, implements a single channel FXS telephone line interface optimized for short loop applications. It
integrates SLCC (Subscriber Line Control Circuit) functionality with a programmable CODEC and a DC/DC controller.
The SLCC supports internal ringing up to 90 VPK (5 REN at 4k ft) ideal for Customer Premise Equipment (CPE). The
CODEC can be configured for -law, A-law or 16-bit linear PCM encoding. It also supports a comprehensive set of
signaling capabilities required to supervise and control the telephone lines. These include tone generation, ring
tones, DTMF detection/ generation as well as FSK generation. An on-chip Pulse Width Modulation (PWM) driver
allows control of an inductor based DC/DC converter. Programmable impedance and trans-hybrid balancing allow for
worldwide deployment.
2. FEATURES
¡ Complete BORSCHT functions
¡ Internal balanced and unbalanced ringing up to 90
VPK (5 REN up to 4k ft)
¡ Integrated Power Management Options
Integrated DC/DC controller regulates battery
voltage to minimize power dissipation in all
operating modes
Programmable external battery switching
¡ Programmable linefeed characteristics
Ringing Frequency, Amplitude, and Cadence
Trapezoidal and Sinusoidal waveforms
Two wire AC impedance, and trans-hybrid
balance
Constant Current feed (20 to 41) mA
Ring Trip and Loop Closure Thresholds
Ground Key Detection
¡ Programmable signal generation and detection
DTMF generation/ detection and Tone
generation
Frequency Shift Keying (FSK) Enhanced Caller
ID generation (Type I and Type II)
¡ Loop test and diagnostics support
Integrated loopback modes
Real-time linefeed monitoring
On-chip temperature sensor
Line Card Diagnostics Support
¡ Digital interfaces
PCM: G.711 -Law, A-Law and 16-bit linear
GCI and SPI bus
Programmable audio path gains
¡ Both PCM Master and Slave modes supported
¡ On-chip PLL for flexible clocking options including
1.0 MHz and 2.0 MHz BCLK operation
¡ Operating voltage: 3.3V
¡ Narrowband Codec (N681386)
¡ Wideband and Narrowband codec (N681387)
¡ Optional integrated (N681622) or discrete
Subscriber Line Feed Circuit
APPLICATIONS
¡ Residential VoIP Gateways / Routers/ IP-PBX
¡ Fiber to the Premise/Home (FTTP/H)
¡ Wireless Local Loop
¡ Optical Network Terminals (ONT)
¡ Analog Telephone Adapter (ATA)
¡ Voice enabled DSL/Cable Modems
¡ Integrated Access Devices
¡ Set Top Boxes
Ordering Information
Part Number Temp
Range (oC) Package Package
Material
N681386DG
N681387DG -40 to 85 48-LQFP Pb-Free
N681386YG
N681387YG -40 to 85 48-QFN Pb-Free
N681622YG -40 to 85 20-QFN Pb-Free
! WARNING !
HIGH VOLTAGE WARNING
USE EXTREME CAUTION
High voltage sources could cause serious injury or
death if not used in accordance with design and/or user
specifications, if they are used by untrained or
unqualified personnel. Before testing Nuvoton’s products
read and understand all instructions, and safety
procedures as in industry standard safe practices.
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 2 of 164 January 2010
3. PIN CONFIGURATION
Figure 1: N681386/87 Pin Configuration
NC
SDA
WBAND
SDB
SCM
BAT
TVE
RVE
TIN
TPP
NC
VDD1
13
SDO
SDI
DCN
DCP
GND3
SCLK
VDDL
FS
PCMT
BCLK
PCMR
VDD3
14
15
16
17
18
19
20
21
22
23
24 37
38
39
40
41
42
43
44
45
46
47
48
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 3 of 164 January 2010
Figure 2: N681622 Subscriber Line Feed Circuit (SLFC) Pin Configuration
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 4 of 164 January 2010
4. PIN DESCRIPTION
4.1. N681386/87 Pin Description
Pin Name Pin No. Functionality A/D Pin Type
VDD1 1 Line-driver 3.3 V supply A P
RIP 2 Positive RING Driver current source & Voltage sense A I/O
RIN 3 Negative RING Driver current source A O
TVB 4 Positive TIP Driver Base Voltage Control A O
GND 5 Line-driver ground supply A G
RVB 6 Positive RING Driver Base Voltage Control A O
RAC 7 RING Voice Band Input A I
TAC 8 TIP Voice Band Input A I
NC 9 No connect
TEST 10
For internal testing only. Needs to be tied to ground during normal
operation D I
INTb 11
Interrupt. Maskable interrupt. Open drain output for wired-or
operation D O
CSb 12
Chip Select. When inactive, SCLK and SDI are ignored and SDO is
high impedance. When active, serial port is operational D I
SCLK 13
Serial port bit clock. Controls serial data on SDO and latches data on
SDI D I
SDI 14 Serial port data in. Serial port control data D I
SDO 15 Serial port data out. Serial port control data D O
DCN 16 DC/DC converter Control for external NPN BJT D O
DCP 17 DC/DC Converter Control for external PNP BJT D O
GND3 18 Logic I/O ground supply D G
VDDL 19
Logic supply voltage. This pin should not be connected up to an
external supply. Use only as shown in application diagram. D I/O
VDD3 20 3.3 V Logic I/O supply D P
PCMT 21 Serial PCM Transmit data D O
FS 22 8 or 16 kHz Frame Sync D I/O
BCLK 23 PCM Bit Clock. Also used as internal PLL reference clock D I
PCMR 24 Serial PCM Receive data D I
DSY 25 SPI Daisy Chain Enable D I
XBAT 26
External Battery Supply Enable. Disables DC/DC Controller when set
high D I
RESETb 27
Reset. Active Low. Hardware reset used to place all control registers
in default state. D I
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 5 of 164 January 2010
Pin Name Pin No. Functionality A/D Pin Type
DCH 28 DC/DC Converter Current Sense Higher input Voltage A I
DCL 29 DC/DC Converter Current Sense Lower input Voltage A I
VDD2 30 3.3 V Analog AC path and reference Supply Voltage A P
GND2 31 Analog AC path and reference Supply ground A P
IREF 32 Current Reference A I/O
VREF2 33 Precision Reference Voltage A I/O
VREF1 34 Mid Supply Reference Voltage A I/O
CT 35 External Capacitor TIP A I/O
CR 36 External Capacitor RING A I/O
NC 37 No Connect
NC 38 No Connect
WBAND 39 Wideband enable (only on N681387) D I
SDA 40 Subscriber Loop Differential sense signal A from linefeed circuit A I
SCM 41 Subscriber Common Mode sense signal from linefeed circuit A I
SDB 42 Subscriber Loop Differential sense signal B from linefeed circuit A I
TVE 43 TIP line-driver emitter voltage sense A I
BAT 44 Battery voltage monitoring A I
RVE 45 RING line-driver emitter voltage sense A I
TIN 46 Negative TIP Driver current source A O
TPP 47 Positive TIP Driver current source & Voltage sense A I/O
VDD1 48 Line-driver 3.3 V supply A P
Table 1: N681386/87 Pin Description
A Analog O
Output
D Digital I
Input
G Ground P
Power
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 6 of 164 January 2010
4.2. N681622 Pin Description
Pin Name Pin No. Functionality Type Pin Type
RIP 1 Ring Driver Pull up Current from 34.8 Ohm resistor LV I/O
TVB 2 Tip Pull-Up Driver control voltage LV I
TPP 3 Tip Driver Pull up Current from 34.8 Ohm resistor LV I/O
RVB 4 Ring Pull-Up Driver control voltage LV I
GND 5 Supply ground (0V) LV G
VDD 6 3.3V Supply LV P
SDB 7 Subscriber differential signal B LV O
SDA 8 Subscriber differential signal A LV O
TIN 9 Tip DC Pull-Down current LV I
RIN 10 Ring DC Pull-Down current LV I
SDR 11 Subscriber differential Ring input HV I/O
NC 12 Not connected
CR 13 Ring Pull-Down filter capacitor HV I/O
CT 14 Tip Pull-Down filter capacitor HV I/O
VBAT 15 Battery Supply Voltage HV P
RING 16 Ring terminal HV O
NC 17 Not connected
TIP 18 Tip terminal HV O
NC 19 Not connected
SDT 20 Subscriber differential Tip input HV I/O
Table 2: N681622 Pin Description
LV Low Voltage O
Output
HV High Voltage I
Input
G Ground P
Power
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 7 of 164 January 2010
5. BLOCK DIAGRAM
Figure 3: N681386/87 Block Diagram
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 8 of 164 January 2010
6. TABLE OF CONTENTS
1.DESCRIPTION ........................................................................................................................................... 1
2.FEATURES ................................................................................................................................................ 1
3.PIN CONFIGURATION .............................................................................................................................. 2
4.PIN DESCRIPTION .................................................................................................................................... 4
4.1.N681386/87 PIN DESCRIPTION ............................................................................................................... 4
4.2.N681622 PIN DESCRIPTION .................................................................................................................... 6
5.BLOCK DIAGRAM ...................................................................................................................................... 7
6.TABLE OF CONTENTS ............................................................................................................................. 8
7.LIST OF FIGURES ................................................................................................................................... 15
8.LIST OF TABLES ..................................................................................................................................... 17
9.ABSOLUTE MAXIMUM RATINGS ........................................................................................................... 18
9.1.SINGLE PROGRAMMABLE EXTENDED CODEC/SLCC (N681386/87) ................................................. 18
9.2.SUBSCRIBER LINE FEED CIRCUIT (N681622) ..................................................................................... 18
10.OPERATING CONDITIONS ..................................................................................................................... 19
10.1.SINGLE PROGRAMMABLE EXTENDED CODEC/SLCC (N681386/87) ................................................. 19
10.2.SUBSCRIBER LINE FEED CIRCUIT (N681622) ..................................................................................... 19
11.ELECTRICAL CHARACTERISTICS ......................................................................................................... 20
11.1.GENERAL PARAMETERS (N681386/87) ................................................................................................ 20
11.2.SUPPLY PARAMETERS DISCRETE SOLUTION (N681386/87 AND DISCRETE LINE DRIVER) ......... 20
11.3.SUPPLY PARAMETERS SLFC SOLUTION (N681386/87 AND N681622) ............................................. 21
11.4.MONITORING A/D PARAMETERS .......................................................................................................... 22
11.5.ANALOG SIGNAL LEVEL AND GAIN PARAMETERS ............................................................................ 22
11.6.2-WIRE TO 4-WIRE CONVERSION PARAMETERS ............................................................................... 23
11.7.2-WIRE PARAMETERS ........................................................................................................................... 23
11.8.LINEFEED CHARACTERISTICS ............................................................................................................. 23
11.9.ANALOG DISTORTION AND NOISE PARAMETERS ............................................................................. 24
12.FUNCTIONAL DESCRIPTION ................................................................................................................. 25
12.1.BORSCHT FUNCTIONALITY .................................................................................................................. 26
12.1.1.BATTERY FEED ...................................................................................................................................... 26
12.1.1.1.LINEFEED STATES OF OPERATION ..................................................................................................... 28
12.1.1.1.1.OPEN STATE ........................................................................................................................................... 28
12.1.1.1.2.ACTIVE, IDLE AND ON-HOOK TRANSMISSION STATES ..................................................................... 28
12.1.1.1.3.TIP OPEN STATE .................................................................................................................................... 28
12.1.1.1.4.RING OPEN STATE ................................................................................................................................. 29
12.1.1.1.5.RINGING STATE...................................................................................................................................... 29
12.1.1.1.6.CALIBRATION STATE ............................................................................................................................. 29
12.1.1.2.OPERATION MODES .............................................................................................................................. 29
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 9 of 164 January 2010
12.1.1.3.AUTOMATIC TRANSITIONS ................................................................................................................... 29
12.1.1.3.1.POWER ALARM AUTOMATIC REACT ................................................................................................... 29
12.1.1.3.2.SETTING RING AUTOMATIC .................................................................................................................. 29
12.1.1.3.3.SETTING LOOP CLOSURE DETECT AUTOMATIC REACT .................................................................. 30
12.1.1.4.POLARITY REVERSAL ............................................................................................................................ 32
12.1.1.4.1.HARD POLARITY REVERSAL ................................................................................................................ 32
12.1.1.4.2.SOFT POLARITY REVERSAL ................................................................................................................. 32
12.1.1.5.WINK FUNCTION POLARITY REVERSAL .............................................................................................. 33
12.1.2.OVER-VOLTAGE PROTECTION ............................................................................................................. 33
12.1.2.1.THERMAL OVERLOAD ........................................................................................................................... 34
12.1.2.2.TEMPERATURE MONITOR .................................................................................................................... 35
12.1.3.RINGING .................................................................................................................................................. 35
12.1.3.1.TONE GENERATION ............................................................................................................................... 36
12.1.3.2.RING SIGNAL GENERATION .................................................................................................................. 39
12.1.3.2.1.SINUSOIDAL RINGING ........................................................................................................................... 41
12.1.3.2.2.TRAPEZOIDAL RINGING ........................................................................................................................ 42
12.1.3.2.3.RINGING DC OFFSET AND COMMON MODE BIAS .............................................................................. 43
12.1.3.2.4.LINEFEED CONSIDERATIONS DURING RINGING ............................................................................... 44
12.1.3.3.INTERNAL UNBALANCED RINGING ...................................................................................................... 44
12.1.3.4.RING TRIP DETECTION .......................................................................................................................... 45
12.1.4.SUPERVISION (SIGNALING) .................................................................................................................. 47
12.1.4.1.LOOP CLOSURE DETECTION................................................................................................................ 47
12.1.4.2.GROUND KEY DETECTION .................................................................................................................... 49
12.1.4.3.CALLER ID AND FSK GENERATION ...................................................................................................... 50
12.1.4.4.DTMF GENERATOR ................................................................................................................................ 51
12.1.4.5.DTMF DETECTION .................................................................................................................................. 53
12.1.5.CODEC .................................................................................................................................................... 54
12.1.6.HYBRID .................................................................................................................................................... 54
12.1.6.1.AC PATH .................................................................................................................................................. 54
12.1.6.1.1.NARROWBAND TRANSMIT PATH ......................................................................................................... 54
12.1.6.1.2.NARROWBAND RECEIVE PATH ............................................................................................................ 54
12.1.6.1.3.ANALOG TRANSHYBRID BALANCING .................................................................................................. 55
12.1.6.1.4.IMPEDANCE MATCHING ........................................................................................................................ 56
12.1.6.1.5.DAC/ADC AUTOMUTE ............................................................................................................................ 57
12.1.7.TESTING .................................................................................................................................................. 58
12.1.7.1.LOOP BACK TESTS ................................................................................................................................ 58
12.1.7.2.DIAGNOSTICS SUPPORT ...................................................................................................................... 59
12.1.8.POWER INTERFACE ............................................................................................................................... 59
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 10 of 164 January 2010
12.1.8.1.DC/DC CONVERSION (INDUCTOR) ....................................................................................................... 60
12.1.8.2.EXTERNAL BATTERY SWITCHING ........................................................................................................ 62
12.2.DIGITAL INTERFACE .............................................................................................................................. 63
12.2.1.CLOCK GENERATION ............................................................................................................................ 63
12.2.2.PCM INTERFACE .................................................................................................................................... 64
12.2.2.1.WIDEBAND AND NARROWBAND OPERATION .................................................................................... 65
12.2.2.2.TOGGLING BETWEEN WIDEBAND AND NARROWBAND .................................................................... 66
12.2.2.3.PCM INTERFACE IN WIDEBAND OPERATION ..................................................................................... 66
12.2.2.3.1.PCM INTERFACE 8KHZ FRAME SYNC .................................................................................................. 66
12.2.2.3.2.PCM INTERFACE 16KHZ FRAME SYNC ................................................................................................ 67
12.2.2.4.PLL & PRESCALER IN WIDEBAND OPERATION .................................................................................. 67
12.2.3.SERIAL PERIPHERAL INTERFACE (SPI) ............................................................................................... 68
12.2.4.READ/WRITE SEQUENCE (8-BIT OR 16-BIT) ........................................................................................ 69
12.2.5.SPI DAISY CHAIN .................................................................................................................................... 71
12.2.6.SPI BURST MODE ................................................................................................................................... 72
12.2.7.SPECIAL READ SEQUENCE FOR 12-BIT WIDE REGISTER ................................................................ 73
12.2.7.1.12-BIT READ SEQUENCE ....................................................................................................................... 73
12.3.POWER-ON RESET ................................................................................................................................ 74
12.4.INTERRUPT HANDLING ......................................................................................................................... 75
13.GENERAL DESCRIPTION FOR N681622 (LINEFEED CIRCUIT)........................................................... 76
13.1.FUNCTIONAL DESCRIPTION FOR N681622 (LINEFEED CIRCUIT) ..................................................... 76
14.REGISTER DESCRIPTION ...................................................................................................................... 77
14.1.PCM CONTROL REGISTERS ................................................................................................................. 82
14.1.1.PCM CONTROL REGISTER .................................................................................................................... 82
14.1.2.RECEIVE/TRANSMIT TIMESLOT (WIDEBAND AND NARROWBAND) ................................................. 82
14.1.3.PLL STATUS REGISTER ......................................................................................................................... 83
14.1.4.PCM FREQUENCY SETTING REGISTER .............................................................................................. 84
14.1.5.SILICON VERSION ID REGISTER (READ ONLY) .................................................................................. 85
14.1.6.DEVICE VERSION ID REGISTER (READ ONLY) ................................................................................... 85
14.1.7.TIMESLOT (WIDEBAND) ......................................................................................................................... 85
14.2.FSK REGISTERS ..................................................................................................................................... 86
14.2.1.FSK CONTROL REGISTER ..................................................................................................................... 86
14.2.2.FSK TRANSMIT REGISTER .................................................................................................................... 86
14.2.3.FSK STATUS REGISTER (READ ONLY) ................................................................................................ 87
14.2.4.FSK LCR REGISTER ............................................................................................................................... 87
14.2.5.FSK TCR REGISTER ............................................................................................................................... 88
14.3.DIAGNOSTIC REGISTERS ..................................................................................................................... 89
14.3.1.DIAGNOSTIC CONTROL 0 ...................................................................................................................... 89
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 11 of 164 January 2010
14.3.2.DIAGNOSTIC CONTROL 1 ...................................................................................................................... 89
14.3.3.DIAGNOSTIC CONTROL 2, 3, 4. AND 5 ................................................................................................. 90
14.3.4.DIAGNOSTIC CONTROL 6 AND 7 (READ ONLY) .................................................................................. 91
14.3.5.DIAGNOSTIC CONTROL 8 (READ ONLY) .............................................................................................. 92
14.3.6.DIAGNOSTIC FIFO 0 AND FIFO1 (READ ONLY) ................................................................................... 92
14.4.SYSTEM REGISTERS ............................................................................................................................. 93
14.4.1.PCM HPF (HIGH PASS FILTER) ............................................................................................................. 93
14.4.2.LOOP BACK CONTROL REGISTER ....................................................................................................... 93
14.4.3.POWER ON ............................................................................................................................................. 94
14.4.4.LINEFEED TRIM ...................................................................................................................................... 95
14.5.INTERRUPT REGISTERS ....................................................................................................................... 96
14.5.1.INTERRUPT VECTOR LOW (READ ONLY) ............................................................................................ 96
14.5.2.INTERRUPT STATUS REGISTER 1 ........................................................................................................ 96
14.5.3.INTERRUPT ENABLE REGISTER 1 ........................................................................................................ 97
14.5.4.INTERRUPT STATUS REGISTER 2 ........................................................................................................ 97
14.5.5.INTERRUPT ENABLE REGISTER 2 ........................................................................................................ 98
14.5.6.INTERRUPT STATUS REGISTER 3 ........................................................................................................ 98
14.5.7.INTERRUPT ENABLE REGISTER 3 ........................................................................................................ 99
14.6.DTMF DETECTION REGISTER............................................................................................................. 100
14.6.1.DTMF CONTROL 1 ................................................................................................................................ 100
14.6.2.DTMF CONTROL 2 ................................................................................................................................ 101
14.6.3.DTMF CONTROL 3 ................................................................................................................................ 101
14.6.4.DTMF STATUS (READ ONLY) .............................................................................................................. 102
14.6.5.DTMF THRESHOLD .............................................................................................................................. 102
14.6.6.DTMF PRESENT DETECT TIME ........................................................................................................... 102
14.6.7.DTMF ABSENT DETECT TIME ............................................................................................................. 103
14.6.8.DTMF ACCEPT TIME ............................................................................................................................ 103
14.6.9.DTMF RECEIVE DATA STATUS ........................................................................................................... 104
14.6.10.DTMF ROW FREQUENCY .................................................................................................................... 104
14.6.11.14/15 DTMF COLUMN FREQUENCY .................................................................................................... 105
14.7.LINE REGISTERS .................................................................................................................................. 106
14.7.1.AC PATH GAIN ...................................................................................................................................... 106
14.7.2.HYBRID BALANCE ................................................................................................................................ 106
14.7.3.COMMON RINGING BIAS ADJUST DURING RINGING ...................................................................... 107
14.7.4.LINE AUTOMATIC MANUAL CONTROL ............................................................................................... 107
14.7.5.LINEFEED STATUS ............................................................................................................................... 108
14.7.6.LOOP CURRENT LIMIT ......................................................................................................................... 108
14.7.7.RING TRIP DETECT STATUS/ LOOP CLOSURE STATUS (READ ONLY) ......................................... 109
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 12 of 164 January 2010
14.7.8.LOOP CLOSURE DEBOUNCE .............................................................................................................. 110
14.7.9.RING TRIP DEBOUNCE INTERVAL ...................................................................................................... 110
14.7.10.PWM PERIOD ........................................................................................................................................ 110
14.7.11.DC/DC CONTROLLER CONTROL ........................................................................................................ 111
14.7.12.ON-HOOK VOLTAGE ............................................................................................................................ 111
14.7.13.GROUND MARGIN VOLTAGE .............................................................................................................. 112
14.7.14.HIGH BATTERY VOLTAGE ................................................................................................................... 112
14.7.15.LOW BATTERY VOLTAGE .................................................................................................................... 112
14.7.16.LOOP CLOSURE DETECT/RING TRIP DETECT COEFFICIENT ......................................................... 113
14.7.17.LOOP CLOSURE DETECT THRESHOLD WITHOUT / WITH HYSTERESIS ....................................... 113
14.7.18.RING TRIP DETECT THRESHOLD ....................................................................................................... 114
14.7.19.OFFSET VOLTAGE ............................................................................................................................... 114
14.7.20.DC/DC TIME ON .................................................................................................................................... 114
14.7.21.DAC/ADC AUTOMUTE FUNCTION ....................................................................................................... 115
14.8.GROUND KEY DETECTION .................................................................................................................. 116
14.8.1.LINEFEED CONTROL ........................................................................................................................... 116
14.8.2.GROUND KEY DETECT HIGH/LOW THRESHOLD .............................................................................. 116
14.8.3.GROUND KEY DETECT DEBOUNCE TIME ......................................................................................... 117
14.8.4.GROUND KEY DETECT FILTER COEFFICIENT LOW/ HIGH .............................................................. 117
14.8.5.DC RING TRIP DEBOUNCE FILTER COEFFICIENT LOW ................................................................... 117
14.8.6.DC RING TRIP CURRENT THRESHOLD .............................................................................................. 118
14.8.7.DC RING TRIP DEBOUNCE TIME ........................................................................................................ 118
14.8.8.EXTERNAL BATTERY SWITCH OUTPUT CONFIGURATION 1 .......................................................... 119
14.8.9.DC/DC HEAVY CURRENT CONVERTER ............................................................................................. 119
14.8.10.DC/DC TARGET VOLTAGE (READ ONLY) ........................................................................................... 120
14.9.MONITORING REGISTERS .................................................................................................................. 121
14.9.1.MONITOR CURRENT FOR RING TRIP AND LOOP CLOSURE ........................................................... 121
14.9.2.MONITOR CURRENT FOR RING TRIP AND LOOP CLOSURE ........................................................... 121
14.10.LINE CONTROL REGISTERS ............................................................................................................... 122
14.10.1.VOLTAGE REGISTERS ......................................................................................................................... 122
14.10.1.1.BATTERY VOLTAGE SENSE (READ ONLY) ........................................................................................ 122
14.10.1.2.TIP/RING VOLTAGE SENSE (READ ONLY) ......................................................................................... 122
14.10.1.3.TIP/RING TRANSISTOR 3 EMITTER VOLTAGE SENSE (READ ONLY) ............................................. 122
14.11.TRANSISTOR CURRENT REGISTERS (TIP/RING TRANSISTOR 1/2/3 CURRENT SENSE) ............. 123
14.12.LOOP SUPERVISION ............................................................................................................................ 124
14.12.1.LONGITUDINAL CURRENT .................................................................................................................. 124
14.12.2.LOOP VOLTAGE SENSE (READ ONLY) ............................................................................................. 124
14.12.3.TIP, RING, AND LOOP CURRENT (READ ONLY) ................................................................................ 125
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 13 of 164 January 2010
14.12.4.POLARITY .............................................................................................................................................. 125
14.12.5.COMMON MODE VOLTAGE ................................................................................................................. 126
14.12.6.TIP EMITTER VOLTAGE FOR TRANSISTORS QT1 SENSE (READ ONLY) ....................................... 126
14.12.7.TIP VOLTAGE FOR TRANSISTOR QT1 SENSE (READ ONLY) .......................................................... 126
14.12.8.RING EMITTER VOLTAGE FOR TRANSISTOR QT1 SENSE (READ ONLY) ...................................... 127
14.12.9.RING VOLTAGE FOR TRANSISTOR QT1 SENSE (READ ONLY) ....................................................... 127
14.12.10.TEMPERATURE SENSE (READ ONLY) ............................................................................................... 127
14.12.11.BAND GAP VOLTAGE ........................................................................................................................... 127
14.12.12.PEAK TO PEAK LOOP VOLTAGE (READ ONLY)................................................................................. 128
14.12.13.PEAK TO PEAK LOOP CURRENT (READ ONLY) ................................................................................ 128
14.13.POWER ALARM LPF POLE REGISTERS ............................................................................................. 129
14.13.1.POWER ALARM COUNTER .................................................................................................................. 129
14.13.2.POWER ALARM LOW PASS FILTER POLE FOR TRANSISTORS 1/2/3 ............................................ 129
14.13.3.POWER ALARM THRESHOLD FOR TRANSISTOR 1-3 ....................................................................... 130
14.14.IMPEDANCE MATCHING 1/2 ................................................................................................................ 130
14.14.1.TEMPERATURE ALARM THRESHOLD ................................................................................................ 131
14.14.2.LOOP CLOSURE MASK COUNT .......................................................................................................... 131
14.14.3.COARSE CALIBRATION INTERNAL RESISTOR ................................................................................. 131
14.14.4.OSCILLATOR 2 RINGING PHASE DELAY ............................................................................................ 131
14.15.CALIBRATION ....................................................................................................................................... 132
14.16.DC OFFSET REGISTERS ..................................................................................................................... 133
14.16.1.DC OFFSET (RING, TIP, AND VBAT) ................................................................................................... 133
14.16.2.PWM COUNT (READ ONLY) ................................................................................................................. 133
14.17.TONE GENERATION REGISTERS ....................................................................................................... 134
14.17.1.OSCILLATOR CONTROL ...................................................................................................................... 134
14.17.2.RING CONTROL .................................................................................................................................... 134
14.17.3.OSCILLATOR 1 AND 2 INITIAL CONDITION LOW/HIGH ..................................................................... 134
14.17.4.OSCILLATOR 1 AND 2 COEFFICIENT LOW/HIGH .............................................................................. 135
14.18.OSCILLATOR 1 AND 2 ACTIVE/ INACTIVE TIME LOW/HIGH ............................................................. 135
14.19.GENERAL TONE GENERATION ........................................................................................................... 136
14.19.1.RING OFFSET ....................................................................................................................................... 136
14.19.2.ADC/DAC DIGITAL GAIN ....................................................................................................................... 136
14.19.3.PWM DC/DC FINE TUNING .................................................................................................................. 137
14.19.4.PWM DC/DC FINE TUNING SKIP PERIOD ........................................................................................... 137
14.19.5.PWM DC/DC FINE TUNING .................................................................................................................. 138
14.19.6.IMPEDANCE MATCH REGISTER ......................................................................................................... 139
14.19.6.1.IMPEDENCE MATCHING COEFFICIENT RAM .................................................................................... 139
14.19.6.2.IMPEDANCE MATCHING DELAY COUNT ............................................................................................ 139
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 14 of 164 January 2010
14.19.6.3.IMPEDANCE MATCHING COEFFICIENT RAM CONTROL .................................................................. 139
14.19.6.4.PCM SCALING ....................................................................................................................................... 140
14.19.6.5.RESERVED REGISTERS ...................................................................................................................... 140
14.19.6.6.FILTER BYPASS .................................................................................................................................... 140
15.TIMING DIAGRAM ................................................................................................................................. 141
15.1.PCM TIMING DIAGRAM FOR NON-GCI ............................................................................................... 141
15.2.PCM TIMING DIAGRAM FOR GCI ........................................................................................................ 142
15.3.SPI TIMING DIAGRAM .......................................................................................................................... 144
16.DIGITAL I/O ............................................................................................................................................ 150
16.1.1.µ-LAW ENCODE DECODE CHARACTERISTICS ................................................................................. 150
16.2.A-LAW ENCODE DECODE CHARACTERISTICS ................................................................................. 151
16.3.µ-LAW / A-LAW CODES FOR ZERO AND FULL SCALE ...................................................................... 151
16.3.1.µ-LAW / A-LAW CODES FOR 0DBM0 OUTPUT (DIGITAL MILLIWATT) .............................................. 152
16.4.16-BIT LINEAR PCM CODES FOR ZERO AND FULL SCALE .............................................................. 152
16.5.16-BIT LINEAR PCM CODES FOR 1 KHZ DIGITAL MILLIWATT.......................................................... 152
17.TYPICAL APPLICATION CIRCUITS ...................................................................................................... 153
17.1.DC/DC APPLICATION ........................................................................................................................... 153
17.2.DISCRETE LINE DRIVER ...................................................................................................................... 154
17.3.DC DC .................................................................................................................................................... 155
17.4.TRIPLE BATTERY SWITCH APPLICATION .......................................................................................... 156
17.5.N681386/87 DCDC APPLICATION USE WITH SLFC N681622 ............................................................ 157
17.6.N681622 LINEFEED CIRCUIT ............................................................................................................... 158
18.PACKAGE SPECIFICATION .................................................................................................................. 159
18.1.LQFP-48 (10X10X1.4MM FOOTPRINT 2.0MM) .................................................................................... 159
18.2.QFN-48 ................................................................................................................................................... 160
18.3.QFN 20L 4X4 MM2, PITCH:0.50 MM ...................................................................................................... 161
19.ORDERING INFORMATION .................................................................................................................. 162
20.VERSION HISTORY .............................................................................................................................. 163
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 15 of 164 January 2010
7. LIST OF FIGURES
Figure 1: N681386/87 Pin Configuration ........................................................................................................................ 2
Figure 2: N681622 Subscriber Line Feed Circuit (SLFC) Pin Configuration .................................................................. 3
Figure 3: N681386/87 Block Diagram ............................................................................................................................ 7
Figure 4: AC signal Path .............................................................................................................................................. 25
Figure 5: DC Feed Regions ......................................................................................................................................... 26
Figure 6: Line Loop Control .......................................................................................................................................... 27
Figure 7: Example State Diagram ................................................................................................................................ 30
Figure 8: Block Diagram Oscillator 1 ............................................................................................................................ 38
Figure 9: Zero Crossing for Tone Generation .............................................................................................................. 39
Figure 10: Trapezoidal Ringing .................................................................................................................................... 42
Figure 11: Positive DC offset for Trapezoidal Ringing .................................................................................................. 43
Figure 12: Programming VCMR voltage for Trapezoidal Ringing ................................................................................... 43
Figure 13: Unbalanced Ringing on TIP ........................................................................................................................ 44
Figure 14: RING Trip Detection Mechanism ................................................................................................................ 45
Figure 15: Loop Closure Detector Block Diagram ........................................................................................................ 47
Figure 16: Ground Key Detection Circuitry ................................................................................................................... 49
Figure 17: The Architecture of Linear FSK Waveform Generator................................................................................. 50
Figure 18: DTMF Detector - Functional Block Diagram ................................................................................................ 53
Figure 19: Characteristic Line Impedance .................................................................................................................... 56
Figure 20: Diagnostics Support Block Diagram ............................................................................................................ 59
Figure 21: Voltage Tracking in Forward Active State ................................................................................................... 61
Figure 22: Dynamic Battery Target .............................................................................................................................. 61
Figure 23: Three Voltage External Battery switching ................................................................................................... 62
Figure 24: Two Battery Supply Control Circuit ............................................................................................................. 62
Figure 25: Wideband 8kHz Frame Sync PCM interface ............................................................................................... 66
Figure 26: Wideband 16kHz Frame Sync PCM interface ............................................................................................. 67
Figure 27: Register write operation through a 8-bit SPI port ........................................................................................ 70
Figure 28: Register read operation through a 8-bit SPI port ......................................................................................... 70
Figure 29: Register write operation through a 16-bit SPI port ...................................................................................... 70
Figure 30: Register read operation through a 16-bit SPI port ....................................................................................... 70
Figure 31: Three Chip Daisy Chain connection ............................................................................................................ 71
Figure 32: Device/Register Address for Three Device Daisy Chain application ........................................................... 71
Figure 33: DATA for Three Device Daisy Chain application ......................................................................................... 72
Figure 34: Burst mode operation (BST=1) ................................................................................................................... 72
Figure 35: SPI 12-bits Read sequence ........................................................................................................................ 74
Figure 36: N681622 Equivalent Internal diagram ......................................................................................................... 76
Figure 37: PCM Timing for Non-GCI .......................................................................................................................... 141
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 16 of 164 January 2010
Figure 38: GCI PCM Timing ....................................................................................................................................... 142
Figure 39: SPI Timing (Non-Daisy Chain Mode) ........................................................................................................ 144
Figure 40: In-band Transmit Frequency Response .................................................................................................... 145
Figure 41: In-band Receive Frequency Response ..................................................................................................... 145
Figure 42: Transmit Group Delay Distortion ............................................................................................................... 146
Figure 43: Receive Group Delay Distortion ................................................................................................................ 146
Figure 44: 2-Wire to PCM Signal to Distortion Mask (A-Law) .................................................................................... 147
Figure 45: 2-Wire to PCM Signal to Distortion Mask (µ-Law) ..................................................................................... 147
Figure 46: Wideband In-band Transmit Frequency Response ................................................................................... 148
Figure 47: Wideband Transmit Group Delay Distortion .............................................................................................. 148
Figure 48: Wideband Receive Group Delay Distortion ............................................................................................... 149
Figure 49: Typical Application Block Diagram ............................................................................................................ 153
Figure 50: Discrete Line-driver ................................................................................................................................... 154
Figure 51: Inductor based circuit 12V supply ............................................................................................................. 155
Figure 52: Triple Battery based Switch 1 ................................................................................................................... 156
Figure 53: N681386/87 Pro-X Application diagram to be used with N681622 ........................................................... 157
Figure 54: N681622 Linefeed circuit .......................................................................................................................... 158
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 17 of 164 January 2010
8. LIST OF TABLES
Table 1: N681386/87 Pin Description ............................................................................................................................. 5
Table 2: N681622 Pin Description .................................................................................................................................. 6
Table 3: Programmable Ranges for DC Line Feed ...................................................................................................... 26
Table 4: Linefeed States .............................................................................................................................................. 28
Table 5: Operation Modes ............................................................................................................................................ 29
Table 6: Associated Registers for Linefeed Control ..................................................................................................... 30
Table 7: TIP and RING Voltage Targets ...................................................................................................................... 31
Table 8: Registers Associated with Line Monitoring – Measured ................................................................................. 31
Table 9: Registers Associated with Line Monitoring – Calculated ................................................................................ 31
Table 10: Registers for Polarity Reversal ..................................................................................................................... 33
Table 11: PWM DC/DC Power Alarm Counter ............................................................................................................. 34
Table 12: Registers Associated with Thermal Overload ............................................................................................... 34
Table 13: Associated Registers for Oscillator Control (Oscillator 1 Example) .............................................................. 36
Table 14: Example Register settings for Oscillator m ................................................................................................... 37
Table 15: Registers for RING Generation .................................................................................................................... 40
Table 16: Example Ringer Register settings ................................................................................................................ 41
Table 17: Registers for RING Trip Detection ................................................................................................................ 46
Table 18: Recommended RING Trip Values for Ringing .............................................................................................. 46
Table 19: Loop Closure Detection Registers ................................................................................................................ 48
Table 20: Ground Key Detection Registers .................................................................................................................. 49
Table 21: Registers for FSK Generation ...................................................................................................................... 51
Table 22: DTMF frequency mapping ............................................................................................................................ 51
Table 23: Digital Gain Adjust Coefficients and Attenuation weightings ........................................................................ 55
Table 24: Examples of Resistive Impedance Matching ................................................................................................ 56
Table 25: Examples of Complex Impedance Matching ................................................................................................ 57
Table 26: Registers for Automute................................................................................................................................. 57
Table 27: Registers associated with DC/DC Conversion ............................................................................................. 60
Table 28: Example Standard Interface modes ............................................................................................................. 64
Table 29: Wideband or Narrowband Hardware Selection ............................................................................................ 65
Table 30: PLL and Prescaler in Wideband ................................................................................................................... 67
Table 31: Device Address Bit pattern ........................................................................................................................... 68
Table 32: 12-bit byte Selection ..................................................................................................................................... 69
Table 33: Interrupt Registers ....................................................................................................................................... 75
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 18 of 164 January 2010
9. ABSOLUTE MAXIMUM RATINGS
9.1. Single Programmable Extended Codec/SLCC (N681386/87)
Condition Value
Junction temperature 1500C
Storage temperature range -650C to +1500C
LQFP-48 Thermal Resistance, typical 76 oC/W
QFN-48 Thermal Resistance, typical 27.1 oC/W
Voltage applied to any pin (VSS - 0.3V) to (VDD + 0.3V)
Input current applied to any digital input pin +/- 10 mA
ESD (Human Body Model) 2000 V
VDD - VSS -0.5V to +3.63V
Power Dissipation 0.7W
1. Stresses above those listed may cause p ermanent damage to the devic e. Exposure to the absolute
maximum ratings may affect device reliability. Functional operation is not implied at these conditions.
9.2. Subscriber Line Feed Circuit (N681622)
Parameter Symbol Value Unit
VDD Supply Voltage VDD -0.5 - 5 V
VBAT Supply Voltage VBAT -104 V
Input Voltage HV IO VINHV (VBAT-0.3) to (VDD+0.3) V
Input Voltage LV IO VINLV -0.3 to (VDD+0.3) V
ESD, HBM JESD22 Class 1C V
Operating Temperature ** TA -40 - 100 C
Storage Temperature TS -40 - 150 C
Thermal Resistance QFN20 Rthja 45 C/W
Power Dissipation Pmax 0.9 W
** When the dice temperature reaches over 130°C, the device reliability may be adversely affected.
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 19 of 164 January 2010
10. OPERATING CONDITIONS
10.1. Single Programmabl e Extended Codec/SLCC (N681386/87)
Condition Symbol Min Typ Max Unit
Industrial operating temperature TA -40 +85 C
Supply voltage (VDD) VDD 3.13 3.47 V
Ground voltage (VSS) VSS 0 V
Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and
reliability of the device.
10.2. Subscriber Line Feed Circuit (N681622)
Parameter Symbol Min Typ Max Unit
Industrial operating temperature TA -40 85 C
Supply voltage (VDD) VDD 3.13 3.3 3.47 V
VBAT Supply Voltage VBAT -100 - -9 V
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 20 of 164 January 2010
11. ELECTRICAL CHARACTERISTICS
11.1. GENERAL PARAMETERS (N681386/87)
VDD=3.13 V to 3.47 V; VSS=0 V; TA = -400C to +850C;
Symbol Parameters Conditions Min (2) Typ (1) Max (2) Units
VIL Logic Input LOW Voltage -0.3 -- 0.8 V
VIH Logic Input HIGH Voltage 2 -- 3.6 V
VT Threshold point 1.41 V
VOL Logic Output LOW Voltage INTB,FS,PCMT,SDO: IOL = 4 mA
DCP, DCN: IOL = 16 mA -- -- 0.4 V
VOH Logic Output HIGH Voltage FS,PCMT,SDO: IOH = 4mA
DCP, DCN: IOH = 16 mA 2.4 -- V
IIL Input HIGH & LOW Leakage
Current
VSS<VIN<VDD
No pull-up or pull-down -- -- +/-10
uA
IOZ Tri-state Leakage Current VSS<VO<VDD
High Z State -- -- +/-10
uA
CIN Digital Input Capacitance -- 3 -- pF
COUT Digital Output Capacitance VO High Z -- 3 -- pF
1. Typical values: TA = 25°C , VDD = 3.3 V
2. All min/max limits are guaranteed by Nuvoton via electrical testing or characteri zation. Not all specific ations are
100 percent tested.
11.2. SUPPLY PARAMETERS DISCRETE SOLUTION (N681386/87 AND DISCRETE LINE DRIVER)
VDD=3.13 V to 3.47 V; VSS=0 V; TA=-400C to +850C;
Symbol Parameters Conditions Min Typ (1) Max (2) Units
IPD Total Power Down
Supply Current
RESETb = 0V, Vdd1..Vdd3
FS=BCLK=0V
12 100 uA
ISB Total Standby Supply
Current
RESETb = VDD, VDD1 .. VDD3
FS=BCLK=0V, Line state Open
8.0 11.3 mA
IVDD
Total Supply Current for
all supplies @3.3V
(linefeed states)
Open (ADC and DAC disabled) 21 mA
Forward/Reverse Active ILIM=20 mA 66 mA
Forward/Reverse ON-HOOK
Transmission
45 mA
Forward/Reverse Idle (ADC and
DAC disabled)
29 mA
TIP/RING Open 28 mA
Ringing, Sine wave, REN=1,
VPK=56 V
50 mA
IVBAT Total Battery Supply Open, VBAT = 72V 0.72 mA
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 21 of 164 January 2010
Symbol Parameters Conditions Min Typ (1) Max (2) Units
Current Forward/Reverse Active ILIM=20
mA,
30 mA
Forward/Reverse ON-HOOK
Transmission, XBTA:XTBOT=0,
VBAT = 54V
12 mA
Forward/Reverse Idle, VBAT = 54V 1.3 mA
TIP/RING Open, VBAT = 54V 1.0 mA
Ringing, Sine wave, REN=1, VBAT
= 71V
6.0 mA
1. Typical values: TA = 25°C , VDD = 3.3 V
2. All min/max limits are guaranteed by Nuvoton via electrical testing or characterization. Not all specifications are
100 percent tested.
3. The supply current for the DC/DC converter can be calculated by : IDC/DC=IVBAT*VBAT/(efficiency*VDC/DC)
11.3. SUPPLY PARAMETERS SLFC SOLUTION (N681386/87 AND N681622)
Parameter Symbol Condition MIN TYP Max Unit
VDD Supply Current
IDDO Open State 24.0 mA
IDDI Low Power Idle State, VBAT=-50V 21.4 mA
IDDA Active State 63.3 mA
IDDR Ringing, 1REN, 40Vrms TBD mA
IDDOT On-Hook Transmit 47.9 mA
IDDTO Tip/Ring Open TBD mA
VBAT Supply Current
IBTO Open State 0.4 mA
IBTI Low Power Idle State, VBAT=-50V - 0.2 1.2 mA
IBTA Active State 29.0 mA
IBTR Ringing, 1REN, 40Vrms TBD mA
IBTOT On-Hook Transmit 14.1 mA
IBTTO Tip/Ring Open TBD mA
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 22 of 164 January 2010
11.4. MONITORING A/D PARAMETERS
VDD=3.13 V to 3.47 V; VSS=0 V; TA=-400C to +850C
Symbol Parameters Min Typ Max Units
INL Integral Nonlinearity (8-bit resolution) +/-0.5 LSB
DNL Differential Nonlinearity (8-bit resolution) +/-0.5 LSB
Gain Error (Current) 20 %
Gain Error (Voltage) 10 %
Sample Rate per channel -- -- 800 Hz
Number of channels -- 16 --
Typically at 12-bit the INL and DNL is 2 LSB.
11.5. ANALOG SIGNAL LEVEL AND GAIN PARAMETERS
VDD=3.13 V to 3.47 V; VSS=0 V; TA=-400C to +850C; Loading 600
PARAMETER SYM. CONDITION TYP.
TRANSMIT
(A/D) RECEIVE (D/A)
UNIT
MIN. MAX. MIN. MAX.
Absolute Level LABS 0 dBm0 = 0 dBm @ 600 1.0954
--- --- --- --- VPK
Max. Transmit Level TXMAX
3.17 dBm0 for u-Law
3.14 dBm0 for A-Law(1)
1.5779
1.5725
---
---
---
---
---
---
---
---
VPK
VPK
Absolute Gain (0 dBm0 @
1020 Hz; TA=+25°C) GABS
0 dBm0 @ 1020 Hz, VDD =3.3V;
TA=+25°C;
assuming ideal line impedance
matching
0 -0.40 +0.40 -0.40 +0.40 dB
Absolute Gain variation with
Temperature GABST
TA=0°C to TA=+70°C
TA=-40°C to TA=+85°C 0 -0.10
-0.20
+0.10
+0.20
-0.10
-0.20
+0.10
+0.20 dB
Absolute Gain variation with
Supply Voltage GABSS VDD=3.13 V – 3.47 V; 0dBm0 @
1020 Hz; TA=+25°C 0 -0.10 +0.10 -0.10 +0.10 dB
Frequency Response GRTV See Figure
Gain Variation vs. Level Tone
(1020 Hz relative to –10
dBm0)
GLT
+3 to –40 dBm0
-40 to –50 dBm0
-50 to –60 dBm0
---
---
---
-0.3
-0.6
-1.6
+0.3
+0.6
+1.6
-0.3
-0.6
-1.6
+0.3
+0.6
+1.6
dB
Gain Step Variation GST -6 dB to 6 dB 0 - +/-
0.025 - +/-0.025 dB
Absolute Group Delay TABS 1200 Hz --- 633 650 286 300 usec
Group Delay Distortion
(relative to group delay @
1200 Hz)
TD See Figure
1. Default Gain Setting
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 23 of 164 January 2010
11.6. 2-WIRE TO 4-WIRE CONVERSION PARAMETERS
VDD=3.13 V to 3.47 V; VSS=0 V; TA=-400C to +850C; Loading 600
PARAMETER SYM. CONDITION MIN. TYP. MAX. UNIT
Return Loss RL 200 Hz to 3.4 kHz, 600 Ohm 26 40 dB
Trans hybrid Balance HB 200 Hz to 3.4 kHz, 600 Ohm 26 40 dB
11.7. 2-WIRE PARAMETERS
VDD=3.13 V to 3.47 V; VSS=0 V; TA=-400C to +850C; Loading 600
PARAMETER SYM. CONDITION MIN TYP MAX UNIT
Longitudinal Conversion
Loss
LCL 300 Hz to 600 Hz 40 --- dB
600 Hz to 3.4 kHz, 46
Longitudinal to Metallic or
PCM Balance
LML 300 Hz to 600 Hz 40 52 --- dB
LMH 600 Hz to 3.4 kHz, 46 55 --- dB
Longitudinal Impedance LZ 300 Hz to 3.4 kHz --- 18.5 Ohms
Longitudinal Current LI Active OFF-HOOK; 300 Hz to 3.4 kHz --- 6.7 mA
11.8. LINEFEED CHARACTERISTICS
VDD=3.13 V to 3.47 V; VSS=0 V; TA=-400C to +850C; Loading 600
Parameter Sym. Condition MIN TYP MAX Unit
RING amplitude VTR
5 REN load; sine wave;
RLOOP =160 Ohm;
VBAT = –75 V
44 45 --- VRMS
Loop closure / Ground start
threshold accuracy Ilt Ilt = 11.43 mA --- --- +/-20 %
RING trip threshold
accuracy Irt Irt = 40.64 mA --- --- +/-20 %
Trapezoidal RING crest
factor accuracy Crest factor = 1.3 --- --- +/-
0.05
Sinusoidal RING crest
factor Rcf 1.35 --- 1.45
Ringing frequency accuracy F = 20 Hz --- --- +/-1 %
Ringing cadence accuracy Accuracy of on/off time --- --- +/-50 ms
DC Loop Current Accuracy ILIM = 20 mA, RLOAD = 500 ohm --- +/-20 %
DC Open Circuit Voltage
Accuracy Active Mode; VOH = 48 V,
VTIP – VRING --- +/-4 V
Power alarm threshold
accuracy Power Threshold = 300 mW --- --- +/-25 %
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 24 of 164 January 2010
11.9. ANALOG DISTORTION AND NOISE PARAMETERS
VDD=3.13 V – 3.47 V; VSS=0 V; TA=-400C to +850C; Loading 600
PARAMETER SYM. CONDITION TRANSMIT (A/D) RECEIVE (D/A) UNIT
MIN TYP MAX MIN TYP MAX
Total Distortion vs. Level
Tone u-Law DLTu 1020 Hz, C-Message Weighted
See Figure See Figure
Total Distortion vs. Level
Tone, A-Law DLTA 1020 Hz, Psophometric
Weighting
Audio Tone Generator
Signal-to-Distortion Ratio DLTT 0 dBm0, Active OFF-HOOK and
OHT, ideal impedance matching 45 --- --- 45 --- --- dB
Spurious Out-Of-Band
(300 Hz to 3400 Hz @
0dBm0)
DSPO
4600 Hz to 7600 Hz
7600 Hz to 8400 Hz
8400 Hz to 100000 Hz
NA NA NA ---
-70
-70
-65
-30
-40
-30
dB
Spurious In-Band (700 Hz
to 1100 Hz @ 0dBm0) DSPI 300 to 3200 Hz --- --- -47 --- --- -47 dB
Intermodulation Distortion
(300 Hz to 3400 Hz
–4 to –21 dBm0)
DIM Two tones --- --- -45 --- --- -45 dB
Idle Channel Noise NIDL
u-Law; C-message
A-Law; Psophometric
16-bit Linear
---
---
---
13
-74
18
-69
---
---
---
1
-90
14
-76
dBrnc0
dBm0p
Power Supply Rejection PSRRA VDDA; DC to 3.4 kHz 40 --- --- 40 --- --- dB
Power Supply Rejection PSRRB VBAT; DC to 3.4 kHz 40 --- --- 40 --- --- dB
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 25 of 164 January 2010
12. FUNCTIONAL DESCRIPTION
Figure 4: AC signal Path
Impedance
Matching
N681386/87 AC Diagram
A/μLaw
Compander
G.712
Digital LP
Decimation
Filter
Anti -
Aliasing
Filter
8/16
low Pass @ 3600 Hz
High Pas s @ 150 Hz
TX
A/μLaw
Expander
G.712
Digital LP
Interpolation
Filter
8/16
Digital Rx Gain
REG:0xDE,0xDF
DTMF
Generation
THB
PCM Interface Rx
Analog Rx Gain
REG:ARXC
Analo g Tx Gain
REG:ATXC
Digital Tx Gain
REG:0xDD,0xDF
FSK
Generation
.
PCMR
FS
PCMT
PCM IF Tx
Smoothing
Filter
Rx
Rx
Off Chip
On Chip
BCLK
High
Pass
Filter
G.712
HP
Filter
DLP2 ALP1
I
buf
+
+
Tip
Ring
DLP1
(1)
DLP1
DLP3 ALP2
(1)
Closed if DLP1=0
DTMF
Detection
REG:ZCPEN,0x23
ZR1C, 0xA8
REG:
DAGAIN2X
0x41
Impedance
Matching
+
THB
TX
+
REG:
TXGAIND2
0x41
REG:0x20
REG:0x20
REG:
APBC
0x41
REG:ZSW0C
0xA9
Impedance
Matching
N681386/87 AC Diagram
A/μLaw
Compander
G.712
Digital LP
Decimation
Filter
Anti -
Aliasing
Filter
Anti -
Aliasing
Filter
8/16
low Pass @ 3600 Hz
High Pas s @ 150 Hz
low Pass @ 3600 Hz
High Pas s @ 150 Hz
TX
A/μLaw
Expander
G.712
Digital LP
Interpolation
Filter
8/16
Digital Rx Gain
REG:0xDE,0xDF
DTMF
Generation
THB
PCM Interface Rx
Analog Rx Gain
REG:ARXC
Analo g Tx Gain
REG:ATXC
Digital Tx Gain
REG:0xDD,0xDF
FSK
Generation
.
PCMR
FS
PCMT
PCM IF Tx
Smoothing
Filter
Smoothing
Filter
Rx
Rx
Off Chip
On Chip
BCLK
High
Pass
Filter
G.712
HP
Filter
DLP2 ALP1
I
buf
I
buf
+
+
Tip
Ring
DLP1
(1)
DLP1
DLP3 ALP2
(1)
Closed if DLP1=0
DTMF
Detection
REG:ZCPEN,0x23
ZR1C, 0xA8
REG:
DAGAIN2X
0x41
Impedance
Matching
+
THB
TX
+
REG:
TXGAIND2
0x41
REG:0x20
REG:0x20
REG:
APBC
0x41
REG:ZSW0C
0xA9
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 26 of 164 January 2010
12.1. BORSCHT FUNCTIONALITY
The N681386/87 connects to the TIP and RING (POTS - Plain Old Telephone Service) interface and performs the so-
called BORSCHT and AC transmission functions. Following are the BORSCHT functions:
¡ Battery Feed
¡ Over-Voltage Protection
¡ Ringing (Balanced / Unbalanced)
¡ Supervision (Signaling)
¡ Coding
¡ Hybrid (2 / 4-wire conversion)
¡ Testing
12.1.1. BATTERY FEED
The N681386/87, has two DC feed regions; a constant voltage region and a constant current region. As illustrated in
Figure 4 the current limit ILIM determines the constant current region. The ON-HOOK voltage, VOH, determines the
constant voltage region. The device has an inherent output resistance of typically 50 in non-ringing states. The
Ground Margin Voltage, VGM, determines the offset of the most positive terminal (TIP in Forward polarity state and
RING in Reverse polarity state) with respect to ground ILIM, VOH, and VGM are programmable as shown in Table 2.
Figure 5: DC Feed Regions
Register Address Parameter Programmable Range Step Size Default Value Unit
LCL 0x45 ILIM 20 – 41 3 20 mA
OHV 0x4C VOH 0 to –93.5 1.484 -47.488 V
GMV 0x4D VGM 0 to –93.5 1.484 -2.968 V
Table 3: Programmable Ranges for DC Line Feed
DCFeed
|V
TIP
-V
RING
|
(Volt)
I
LOOP
(mA)
V
OH
I
LIM
V
I=50typical
V
I>10ktypical
DCFeed
|V
TIP
-V
RING
|
(Volt)
I
LOOP
(mA)
V
OH
I
LIM
V
I=50typical
V
I>10ktypical
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 27 of 164 January 2010
The control circuit for TIP or RING is illustrated in Figure 5 and utilizes a three transistor discrete Linefeed circuit.
Transistors Q1 and Q2 drive the voltages on the subscriber loop while transistor Q3 provides additional isolation.
The Line Driver DC feedback loop is completed via DC isolation resistors RVBAT and RVE to the chip. TIP and RING
signals are derived from the common mode and differential mode signal block. This information is, in turn, used to
exercise control over the external transistors. Voice band signals are passed over a decoupling capacitor in the AC
feedback loop.
Figure 6: Line Loop Control
Control and monitoring of these transistors is done both individually and in groups. For example, TIP and RING
Linefeed circuits each have a Q1 transistor. Both share the same register to set their Power Alarm Threshold values.
But each TIP and RING transistor has a separate Power Alarm Interrupt bit in the interrupt register.
The control circuit for TIP and RING whenN681622 is utilized follows the same general principles.
Q1
Q2
Q3
VDD
On- chip LLC-v1
OTA
+
Mux
AC Loop
DC Loop
TIP or RING
VBAT
IOUT
Discrete
Linefeed
Common Mode
Differential Mode
Signals
+
+
-
RVE
RVBAT
RQE RB3
Q1
Q2
Q3
VDD
On- chip LLC-v1
OTA
+
Mux
AC Loop
DC Loop
TIP or RING
VBAT
IOUT
Discrete
Linefeed
Common Mode
Differential Mode
Signals
+
+
-
+
-
RVE
RQE RB3
Sigma/Delta
ADC
Sigma/Delta
DAC
LineFeed
ADC
LineFeed
DAC
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 28 of 164 January 2010
12.1.1.1. LI NEF EED STATES OF OPERATION
The N681386/87 can operate in eleven states, as shown below.
State LS Settings
MSB LSB Description
Open 0 0 0 0 TIP and RING tri-state
Forward Active 0 0 0 1 VTIP > VRING
Forward ON-HOOK Transmission 0 0 1 0 VTIP > VRING; audio signal paths powered on
TIP Open 0 0 1 1 TIP tri-stated, RING active; used for ground start
Ringing 0 1 0 0 Ringing waveform applied to TIP and RING
Reverse Active 0 1 0 1 VRING > VTIP
Reverse ON-HOOK Transmission 0 1 1 0 VRING > VTIP; audio signal paths powered on
RING Open 0 1 1 1 RING tri-stated, TIP active
Forward Idle 1 0 0 1 VTIP > VRING
Reverse Idle 1 1 0 1 VRING > VTIP
Calibration 1 1 1 0 VTIP = VRING~Vbat+2
Table 4: Linefeed States
12.1.1.1.1. OPEN STATE
Current to the external linefeed circuitry is shut off, effectively making TIP and RING tri-stated and it can also be used
for fault condition detection. DC output impedance is 150K ohm.
12.1.1.1.2. ACTIVE, IDLE AND ON-HOOK TRANSMISSION STATES
¡ Active, Idle and ON-HOOK Transmission states all have both Forward and Reverse incarnations
¡ In Forward state TIP is the more positive lead
¡ In Reverse state RING is the more positive lead
¡ In Idle states the external linefeed circuitry is ON but the audio signal paths are not powered up.
¡ In both Active states the external linefeed circuitry is ON and the audio signal paths are powered up.
¡ In both ON-HOOK Transmission states audio signal paths are powered up to allow ON-HOOK transmission.
The Forward and Reverse incarnations of the Active, Idle and ON-HOOK Transmission states are determined solely
by setting the LS register. Fpr automatic transitions Forward and Reverse incarnations are determined by the VOH
polarity in OHV:SB[6] address location (0x4C).
12.1.1.1.3. T I P OPEN STATE
¡ All control currents to the external circuitry associated with TIP are shut off.
¡ Linefeed is provided to RING.
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 29 of 164 January 2010
12.1.1.1.4. RING OPEN STATE
¡ All control currents to the external circuitry associated with RING are shut off and keeps TIP active.
12.1.1.1.5. RINGING STATE
¡ Drives the ringing waveforms onto the loop
12.1.1.1.6. CALIBRATION STATE
Calibration state is used to compensate or correct for external component imperfections. It should be performed
following the system power up. This state is enabled by setting LS:LS[3:0] address (0x44) to ‘1110’. The line should
be on-hook during calibration. RING or TIP must not be connected to ground during the calibration. All automatic
linefeed transitions should be disabled when performing calibration. After calibration is completed, the Linefeed state
should be reset to a normal operating state and the automatic Linefeed transitions can be enabled again. Calibration
state is not applicable to SLFC. For a more detailed explanation, please refer to the Calibration Application note.
Please note that Calibration state is not applicable to Subscriber Line Feed Circuit (SLFC).
12.1.1.2. OPERATION MODES
The N681386/87 can operate under two battery supply operation modes. The modes are selected with a pin XBAT
as illustrated below.
Operation Mode XBAT
Pin
Per Channel
DC/DC
VBAT Switch [DCN/DCP Line
state dependent Control]
On-Chip DC/DC Controller 0V On Off
External Battery Supplies 3.3V Off On
Table 5: Operation Modes
12.1.1.3. AUTOMATIC TRANSITIONS
In addition, some automatic state transitions may also be enabled:
12.1.1.3.1. POWER ALARM AUTOMATIC REACT
¡ Setting LAMC:PAA[2] address (0x43) bit will make the channel automatically enter the Open state upon the
occurrence of a power alarm.
12.1.1.3.2. SETTING RING AUTOMATIC
¡ Setting LAMC:RGA[1] address (0x43) bit makes the channel automatically enter the Active state from the
Ringing State upon RING Trip Detect
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 30 of 164 January 2010
12.1.1.3.3. SETTING LOOP CLOSURE DETECT AUTOMATIC REACT
Setting LAMC:LCDA[0] address (0x43) bit makes the channel automatically enter the Active state from the ON-HOOK
Transmission, Idle, TIP Open, and RING Open states upon Loop Closure Detect. Furthermore, the channel will
transition from Active to Idle state if the Loop Closure Detect circuitry indicates a loop closure is no longer present,
and back to Active state upon a reoccurrence of Loop Closure Detect.
When the above automatic transitions do occur, LS:LS[3:0] address (0x44) will be updated automatically to reflect the
newly entered state. In all cases the shadow linefeed status bits, LS:SLS[3:0] address (0x44) reflect the actual
linefeed status. This includes switching between ‘Ringing’ during the ring burst and ‘ON-HOOK Transmission’ during
the cadence. This RING/cadence transition is not considered an automatic transition and LS:LS[3:0] address (0x44)
will continue to reflect Ringing state. The following example state diagram illustrates LS:SLS[3:0] address (0x44)
states including automatic transitions, RING/Cadence transition and several possible transitions solely governed by
software.
Figure 7: Example State Diagram
Register Bit(s) Address Parameter Description / Range
LS LS[3:0] 0x44 Programmed Linefeed Status Eleven states
SLS[7:4] 0x44 Shadow Linefeed Status Reflects actual state
LAMC
PAA[2] 0x43 Power Alarm Automatic React Enable/Disable
RGA[1] 0x43 RING Automatic Enable/Disable
LCDA[0] 0x43 Loop Closure Detect Automatic React Enable/Disable
Table 6: Associated Registers for Linefeed Control
Ringing
On Hook
Transmission
(F/R)
Ring Cadence
&
LS[3:0] = Ringing
LFSDS
LC_Auto = RTLC:LCD = 1 & LAMC:LCDA= 1
!
LC_Auto = RTLC:LCD= 0 & LAMC:LCDA= 1
RT_Auto = RTLC:RTD = 1 & LAMC:RGA= 1
PA_Auto = Power Alarm Event & LAMC:PAA = 1
F/R = Forward / Reverse
n = 1, 2
RT_Auto
Ring Burst
&
LS[3:0] = Ringing
SW
SW
SW
Active
(F/R)
Any State TIP Open
Any State RING Open
SW
Any State Open
PA_Auto
SW
Any State
Idle
(F/R)
SW
LC_Auto
LC_Auto
LC_Auto
!LC_Auto
SW
SW
LC_Auto
SW
Open
LFSDS
LC_Auto = RTLC:LCD = 1 & LAMC:LCDA= 1
!
LC_Auto = RTLC:LCD= 0 & LAMC:LCDA= 1
RT_Auto = RTLC:RTD = 1 & LAMC:RGA= 1
PA_Auto = Power Alarm Event & LAMC:PAA = 1
F/R = Forward / Reverse
n = 1, 2
SW
LC_Auto
!LC_Auto
Any State Calibration
SW
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 31 of 164 January 2010
The device continuously monitors voltages on the line driver, driving them to target voltages appropriate to the actual
linefeed state as summarized below.
Linefeed State TIP Target RING Target
Open High Z High Z
Forward Active VTIP > VRING
Forward ON-HOOK Transmission VTIP > VRING
TIP Open High Z Active
Ringing RING Signal RING Signal
Reverse Active VTIP < VRING
Reverse ON-HOOK Transmission VTIP < VRING
RING Open Active High Z
Forward Idle VTIP > VRING
Reverse Idle VTIP < VRING
Table 7: TIP and RING Voltage Targets
The device monitors the currents in the external transistors and makes these values available in registers. These
registers and the internal A/D are updated at a rate of 800 Hz or every 1.25 msec. Other useful voltages and currents
are calculated internally and made available in registers.
Register Bits(s) Address Parameter Description / Range
BATV VB[7:0] 0x80 Battery Voltage 0V to -94.6V in 0.371V steps
SCM SCM[11:0] 0x92 Common Mode Voltage +93.5V to -93.5V in 0.023 V steps
QT3V QT3V[7:0] 0x83 Transistor QT3 Emitter Voltage 0V to -94.6V in 0.371V steps
QR3V QR3V[7:0] 0x84 Transistor QR3 Emitter Voltage 0V to -94.6V in 0.371V steps
QT3I QT3I[11:0] 0x85 Transistor QT3 Current 0A to 78.54 mA in 19.2 µA steps
QR3I QT3I[11:0] 0x86 Transistor QR3 Current 0A to 78.54 mA in 19.2 A steps
Table 8: Registers Associated with Line Monitoring – Measured
Register Bit(s) Address Parameter Description / Range
LPV VLP[11:0] 0x8D Loop Voltage +93.5V to -93.5V in 0.023 V steps
QT1I QT1I[11:0] 0x87 Transistor QT1 Current 0A to 78.54 mA in 19.2 A steps
QT2I QT2I[11:0] 0x88 Transistor QT2 Current 0A to 9.95 mA in 2.5 A steps
QR1I QR1I[11:0] 0x89 Transistor QR1 Current 0A to 78.54 mA in 19.2 A steps
QR2I QR2I[11:0] 0x8A Transistor QR2 Current 0A to 9.95 mA in 2.5 A steps
LGI ILG[11:0] 0x8C Longitudinal Current +77.62 mA to –77.62 mA in 19uA
TIPI ITLP[11:0] 0x8E TIP Current +77.62 mA to –77.62 mA in 19uA
RINGI IRLP[11:0] 0x8F RING Current +77.62 mA to –77.62 mA in 19uA
LPI ILP[11:0] 0x90 Loop Current +77.62 mA to –77.62 mA in 19uA
Table 9: Registers Associated with Line Monitoring – Calculated
In addition the following loop voltages and currents are derived from the above measurements and reported
separately.
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 32 of 164 January 2010
12.1.1.4. POLARITY REVERSAL
The Linefeed states which have Forward or Reverse incarnation (Active, Idle and ON-HOOK Transmission states)
can have the polarity reversed two different ways. In addition, the line (TIP or RING) which is at VOH can be
collapsed towards ground by using the wink function.
¡ Hard polarity reversal
¡ Soft polarity reversal
12.1.1.4.1. HARD POLARITY REVERSAL
Hard polarity is achieved by abruptly reversing the voltage between TIP and RING without any ramp-rate control. This
is achieved by simply changing the linefeed register from Forward to Reverse incarnation or vice versa. A Hard
polarity reversal will be performed provided that soft polarity reversal is not enabled APG:PREN[6] address (0x40) bit
to 0. The sign bit (OHV:SB[6]) is used to determine the polarity of the line when going from Idle to Active States. If
the new polarity is to be retained in future Idle to Active transitions, it is recommended that this bit be also changed
appropriately when polarity is reversed.
12.1.1.4.2. SOFT POL ARITY REVERSAL
Soft polarity is achieved by reversing the voltage between TIP and RING with ramp-rate control. Soft polarity reversal
is enabled by setting APG:PREN[6] = “1” address (0x40). The ramp rate at which the reversal will occur is selected in
APG:RAMP[8] address (0x40). The Ramp is triggered by toggling WINK bit APG:PREN[6] = “1” address (0x40). Soft
polarity reversal can be used from Forward Active to Reverse Active or vice versa. The table below illustrates the
sequence of events for a Forward to Reverse soft polarity reversal. For Reverse to Forward Polarity Reversal step 2
would involve TIP and step 4 would involve RING.
Step(s) Register Name Bit(s) Bit State Step Description
1 APG PRE[6] 1 Enables soft polarity reversal
2 APG VOHZ[5] 1 Wink line (RING towards 0V)
3 Use Line state register to reverse the line from Forward to Reverse
4 APG VOHZ[5] 0 Un-wink line (TIP side towards VOH)
5 APG PRE[6] 0 Disable soft polarity reversal
Note that the negative going ramp rate can be limited by the settling speed of the DCDC converter. Setting the
minimum on time (0x57) to 0x0B before the ramp and back to the initialization value after the ramp will prevent this
The sign bit (OHV:SB[6]) is used to determine the polarity of the line during an automatic transition into idle, Active,
and On-Hook transition states. If the new polarity is to be retained in future automatic transitions, it is recommended
that OHV:SB[6] be also changed appropriately when polarity is reversed.
Addr Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x40 APG RAMP PREN VOHZ RES ARX[1:0] ATX[1:0] 0x00
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 33 of 164 January 2010
The ramp rate for steps 2 and 4 above is determined by the Ramp Rate bit APG:RAMP[7].
12.1.1.5. WINK FUNCTION POLARITY REVERSAL
A Wink function is used for the ‘message waiting’ lamp in telephone sets. For this function to take place no Linefeed
state change is necessary. The Wink function is a variation of Soft Polarity Reversal but without any Linefeed state
change. In this case Soft Polarity reversal is enabled as before (APG:PREN[6] address (0x40) bit to “1”, with
APG:RAMP[7] address (0x40) selecting the ramp rate). Now the OHV:VOHZ[5] address (0x4C) bit can be used to
directly ramp the RING line towards 0V or back to VRING. For example, in Forward Idle mode VTIP is at VGM and VRING
is VGM+VOH. If VOHZ bit is set to “1” the Ring Voltage will ramp towards 0V. If the bit is toggled it will eventually
return to the nominal VRING setting. The user has full control of the Wink function cadence.
Register Bit(s) Address Parameter Programmable Range
APG VOHZ[5] 0x40 Wink Function (Smooth transition to VOH=0V) 0 = Return to previous VOH
1 = Ramp to 0V
APG PRE[6] 0x40 Soft Polarity Reversal Enable 0 = Disabled
1 = Enabled
APG RAMP[7] 0x40 Soft Polarity Reversal Ramp Rate 0 = 1.5 V/125 µs
1 = 3.0 V/125 µs
LS LS[3:0] 0x44 Linefeed Status
OHV SB[6] 0x4C Polarity Reversal Status (Sign) 0 = Forward
1 = Reverse
Table 10: Registers for Polarity Reversal
12.1.2. OVER-VOLTAGE PROTECTION
It is a common requirement for electronic circuits to have to withstand some degree of over-voltage and/or reverse
voltage on the power-supply lines. Integrated circuits are designed to operate from a nominal 3.3V power supply.
Some kind of protection circuit is therefore needed to prevent voltages greater than the maximum allowable from
being applied to the IC pins. The N681386/87 device needs to be protected from surges and AC power shorts. This
should be implemented using external components and a variety of commercial approaches are typically employed.
However, N681386/87 device has on-chip voltage and line monitoring capabilities which allow the system to report
line faults, crossovers, and other line conditions in order to facilitate remote service. It also has sense inputs can be
configured such that blown fuse can be detected. The on-chip DC/DC controller is equipped with three protection
shutdown mechanisms. It detects
a) DCDC output voltage (VBAT) 10% above full scale or
b) DCDC supply voltage (VDDC) too low or
c) DCDC supply current (IVDDC) too high;
A counter is tracking the three cases of DC/DC power alarm. The counter will automatically reset upon being read,
allowing the user to monitor the number of power alarms within a specific time period. This register is a read ONLY
register resets upon a read command.
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 34 of 164 January 2010
Register Bit(s) Address Parameter Programmable Range
APG PALT[7:0] 0x9F Power Alarm Counter Increment on every rising edge of LOW
VDC or HIGH IDC; clip at 255;
Table 11: PWM DC/DC Power Alarm Counter
12.1.2.1. THERMAL OVERLOAD
In addition to voltage and current monitoring described in section 6.1.1.1 “Linefeed States of Operation”, N681386/87
continuously monitors the power dissipation of each external transistor in the Linefeed circuitry. After Low Pass
Filtering, the power dissipation is compared against thresholds which are listed in Table 10. The threshold and the
Low Pass Filter pole are both programmable and should be set according to the characteristics of the individual
transistor as follows. The Low Pass Filter pole for QT1 and QR1 is given by the equation:
13
TC
2
T800
1
1]0:12[C1Q ×
×
=
Where TTC is the thermal time constant of the external transistor. The threshold should be programmed according to
the maximum power dissipation of the external transistor. If the threshold is exceeded a power alarm event is
deemed to have occurred. An associated interrupt may be enabled. An automatic state transition into Open state
may be enabled by setting Power Alarm Automatic React (LAMC:PAA[2]) address (0x43)).
Register Bit(s) Address Parameter Description / Range
PALPQ1
PALPQH1
PALPQH2
Q1C[7:0]
Q1C[11:8]
Q1C[12]
0xA1
0xA3
0xA4
PA Low Pass Filter Pole for QT1
and QR1 See Register Description
PALPQ2
PALPQH1
PALPQH2
Q2C[7:0]
Q2C[11:8]
Q2C[12]
0xA0
0xA3
0xA4
PA Low Pass Filter Pole for QT2
and QR2 See Register Description
PALPQ3
PALPQH2
PALPQH2
Q2C[7:0]
Q3C[11:8]
Q3C[12]
0xA2
0xA3
0xA4
PA Low Pass Filter Pole for QT3
and QR3 See Register Description
PATHQ1 Q1TH[7:0] 0xA6 PA Threshold for QT1 and QR1 0 to 7.7 W in 30.4 mW steps
PATHQ2 Q2TH[7:0] 0xA5 PA Threshold for QT2 and QR2 0 to 0.97 W in 3.8 mW steps
PATHQ3 Q3TH[7:0] 0xA7 PA Threshold for QT3 and QR3 0 to 7.7 W in 30.4 mW steps
INT1 0x26 Power Alarm Interrupt Enable/Disable
IE1 0x27 Power Alarm Interrupt Enable Enable/Disable
LAMC PAA[2] 0x43 Power Alarm Automatic React Enable/Disable
Table 12: Registers Associated with Thermal Overload
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 35 of 164 January 2010
12.1.2.2. TEMPERATURE MONITOR
The device contains an on-chip temperature sensor that senses the temperature inside the package. The sensor is
read through TEMP:TS[7:0] register (0x99) which is RE AD ONLY register. The temperature T in °C is given by the
following equation.
For example TEMP:TS[7:0] = 0x23, (35 decimal) indicates a temperature T=-32°C and TEMP:TS[7:0]=0xCD (205
decimal) indicates T=138°C. Similarly threshold temperatures TTH can be set in register THAT:THAT[7:0] address
(0xAA). The TTH is calculated by the following equation.
By enabling the temperature sensor interrupt in IE3:TMPE[0] address (0x2B), an interrupt will be generated if the
temperature reaches this threshold. This facilitates control of the temperature should the device get close to the
junction temperature. Note that there is no filtering associated with this temperature alarm since the package has an
intrinsic thermal time constant. It is recommended that the temperature alarm threshold be set to 125°C. The actual,
TINT, internal temperature can be estimated by the following equation.
×+= P
J
R
A
T
INT
T
TA – Ambient Temperature, RJ – Thermal Resistance, P – Power Dissipation
For example, the maximum power dissipation for the QFN device is 0.7 W. The thermal resistance of the 48-pin QFN
package is 27.1°C/W. So at TA=85°C, the estimated internal temperature would be:
C
1040.7*27.185
INT
T=+=
12.1.3. RINGING
There is a built-in RING generator that can generate balanced sinusoidal or trapezoidal ringing without the need for
external components. Both trapezoidal and sine wave ringing signals can be generated. The Frequency, Amplitude,
DC offset and ringing cadence of the ringing signal are programmable. In the case of trapezoidal waveforms the
crest factor is also programmable. The choice of sinusoidal or trapezoidal will depend on requirements of the end
user; sinusoids are required in many parts of the world to minimize cross talk between the many tip/ring pairs in a
typical wiring bundle from the central office, whereas a trapezoid will deliver more power to the phone due to its low
crest factor. As Ringing utilizes the Tone Generation block, we will first examine this function.
67]0:7[TST =
[]
670:7TATHTTH =
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 36 of 164 January 2010
12.1.3.1. TONE GENERATION
There are two tone generators Oscillator1 (OS1), and Oscillator2 (OS2). These can be used to generate signals
such as dial tone, busy tone, and various test tones which can be sent either on the transmit or receive paths. Each
tone generator has a similar architecture and contains a two-pole oscillator circuit with a sample rate of 8 kHz.
Register Bit(s) Address Parameter Description / Range
OS1ICL
OS1ICH O1IC[15:0] 0xC2
0xC3 Oscillator 1 Amplitude Coefficient Sets Amplitude
OS1CL
OS1CH O1C[15:0] 0xC6
0xC7 Oscillator 1 Frequency Coefficient Sets Frequency
OS1ATL
OS1ATH O1ON[15:0] 0xCA
0xCB Oscillator 1 Active Timer 0 to 8 sec
OS1ITL
OS1ITH O1OFF[15:0] 0xCE
0xCF Oscillator 1 Inactive Timer 0 to 8 sec
RMPC TOR[3] 0xC1 Tone Route Towards D/A or A/D
OSN O1E[0]
O2E[1]
0xC0
0xC0 Oscillator Control Control
IE2
O1AE[0]
O1IE[1]
O2AE[2]
O2IE[3]
0x29
0x29
0x29
0x29
Interrupt Mask / Enable Control
INTV
IINT2 0x24
0x28
Interrupt Vector Low Register
Interrupt Status Status
Table 13: Associated Registers for Oscillator Control (Oscillator 1 Example)
For a desired frequency ft the oscillator coefficient for Oscillator m, OmC[15:0], can be calculated with the following
equations. The following equations can be used for both Narrowband and Wideband. The resulting hexadecimal
coefficients are inputs to registers OSmCH and OSmCL.
15
t2*
kHz16
f**2
COS]0:15[C1O
π
=
17
t2*
kHz16
f**2
COS]0:17[C2O
π
=
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 37 of 164 January 2010
The initial condition for Oscillator m, OSmICL[15:0], can be calculated using the following equation. The following
equations can be used for both Narrowband and Wideband.
15
t2*
kHz16
f**2
sin*A]0:15[OmIC
π
= (m: 1 , 2)
“A” is calculated as the ratio of desired peak amplitude, APK, with a peak D/A output of 1.5779 VPK. APK cannot
exceed 1.2 VPK. The resulting hexadecimal coefficient is input to registers OSmICH and OSmICL.
Frequency
(Hz) O1C[15:0] APK
(Volts) O1IC[15:0] Frequency
(Hz) O2C[17:0] APK
(Volts) O2IC[15:0]
697 0x7B3C 0.31 0x06C5 697 1ECF0 0.31 0x06C5
770 0x7A37 0.31 0x0775 770 1E8C5 0.31 0x0775
852 0x78E7 0.31 0x0839 852 1E39B 0.31 0x0839
941 0x775C 0.31 0x090B 941 1DD70 0.31 0x090B
1209 0x71D8 0.55 0x145B 1209 1C75E 0.55 0x145B
1336 0x6EC9 0.55 0x164E 1336 1BB22 0.55 0x164E
1477 0x6B11 0.55 0x1868 1477 1AC43 0.55 0x1868
1633 0x6692 0.55 0x1AA4 1633 19A48 0.55 0x1AA4
Table 14: Example Register settings for Oscillator m
5779.1
A
APK
=
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 38 of 164 January 2010
Figure 8: Block Diagram Oscillator 1
Each tone generator contains two timers, one for setting the active period and the other for the inactive period. Each
period can be programmed between 0 seconds (timer disabled) to 8 seconds in 125µs increments. In addition,
interrupts can be enabled on the expiration of either timer. The device has programmable cadence where the signal
is generated during the active period and suspended during the inactive period.
One-shot control of the oscillation can be achieved by controlling OSN:O1E[0] and OSN:O2E[1] address (0xC0)
together with the active timer and the interrupt for durations up to 8 seconds. For longer durations or for direct
software control of the oscillation, enabling the active timer by setting it to any non-zero value while simultaneously
disabling the inactive timer completely will put the oscillator under direct control of the OSN:OmE bit. Zero crossing
detect can be enabled by setting the OSN:OmZC bit for the corresponding tone generator. Setting this bit will ensure
that each oscillator pulse will end without a DC component as illustrated below.
16-Bit
Modulo
Counter
Zero Cross
Logic
OS1IT
RMPC:TR
OS1C
OS1AT
OS1IC
Load Logic
Two-pole
Resonance
Oscillator
Signal
Routing
To TX Path To RX Path
8 kHz Clock
Enable
Register
Load
8 kHz Clock
INT Logic INT Logic
IE2:O1AE
IE2:O1E
INT2:O1A INT2:O1I
IT
Expire
AT
Expire
O1EN
Zero
Cross
OSNC:O1ZC
OSC1S
16-Bit
Modulo
Counter
Zero Cross
Logic
OS1IT
RMPC:TR
OS1C
OS1AT
OS1IC
Load Logic
Two-pole
Resonance
Oscillator
Signal
Routing
To TX Path To RX Path
8 kHz Clock
Enable
Register
Load
8 kHz Clock
INT Logic INT Logic
IE2:O1AE
IE2:O1E
INT2:O1A INT2:O1I
IT
Expire
AT
Expire
O1EN
Zero
Cross
OSNC:O1ZC
OSC1S
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 39 of 164 January 2010
Figure 9: Zero Crossing for Tone Generation
Oscillator 2 is also specifically used to generate the Ringing signal and is unavailable for other functions during
ringing. FSK generation does not utilize either one of the tone generation oscillators.
12.1.3.2. RING SIGNAL GENERATION
The N681386/87 supports balanced and unbalanced Ringing up to 90 VPK (5 REN up to 4 kft, 4REN up to 4.5 kft, 3
REN up to 8 kft). Oscillator 2 from the Tone Generation block is used to generate the Ringing waveform. However,
programming the waveform, sinusoidal or trapezoidal, involves some slight modifications to the procedures described
for Tone Generation. The active and inactive timers of oscillator 2 can be programmed between 0 seconds (timer
disabled) and 8 secs in 125us increments. A Ring phase delay can also be programmed in the
OS2RPD:O2RPD[7:0] address (0xAD).
All other oscillator operations are standard and follow the description in the tone generation section. Interrupts can
be enabled on the expiration of either timer, so that, for instance, Caller ID can be inserted between tones. Cadence
is activated when a non-zero value is programmed into both the active and inactive timers. In this case, these timers
effectively govern the transitions in and out of the Ringing state as described in Linefeed States of Operation in
Section 6.1.1.1.
When the Ring Automatic bit LAMC:RGA[1] address (0x43) is set, the oscillator is automatically enabled when the
Ringing state is entered and disabled when exited. If the Ring Automatic bit is enabled the transition from Ringing to
Active state (Forward or Reverse) occurs automatically upon Ring Trip Detect. The oscillator enable and ring enable
bits are automatically updated accordingly OSN:O2E[1] address (0xC0) and RMPC:R1EN[5] address (0xC1).
One-shot control of the oscillation can be achieved by controlling OSN:O2E[1] address (0xC0) together with the
active timer and the active timer interrupt for durations up to 8 seconds. For longer durations or for direct software
control of the oscillation, enabling the active timer by setting it to any non-zero value, while simultaneously disabling
the inactive timer completely, will put the oscillator under complete direct control of the OSN:O2E[1] address (0xC0)
bit. Zero crossing detect can be enabled by setting the OSN:O2ZC[3] address (0xC0). Setting this bit will ensure that
cadence cadence
tonetone
cadence cadence
tonetone
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 40 of 164 January 2010
the RING signal will end without a DC component. It is recommended that settings be reprogrammed only when the
oscillator is disabled.
Register Name Register Name Address Parameter Description / Range
RMPC TRAP[7] 0xC1 Ringing Waveform Sine/Trapezoid
OS2CL
OS2CH O2C[17:0]
0xC8
0xC9
0xDC
Ringing Frequency 15 to 100 Hz for Sine Trapezoid
Ramp Slope
OS2ICL
OS2ICH O2IC[15:0] 0xC4
0xC5 Ringing Amplitude 0 to 93.5 V Trapezoid tRISE /
tPEAK
OS2RPD OS2RPD[7:0] 0xAD Ringing Phase Delay 0 to 32 ms
OSN O2E[1] 0xC0 Ringing Oscillator Enable Enable/Disable
OS2ATL
OS2ATH O2ON[15:0] 0xCC
0xCD Ringing Oscillator Active Timer 0V to 8 seconds
OS2ITL
OS2ITH O2OFF[15:0] 0xD0
0xD1 Ringing Oscillator Inactive Timer 0V to 8 seconds
OSN O2ZC[5] 0xC0
Ringing Oscillator Zero Cross
Enable Enable/Disable
LS LS[3:0] 0x44
Linefeed Status Control (Initiates
Ringing State) Ringing State = 0100b
VBHV VBATH[5:0] 0x4E VBATH High Battery Voltage /2 0V to -93.5V in 1.484V steps
VCMR VCMR[5:0] 0x42
VCMR Common Ringing Bias
Adjust During Ringing 0V to -93.5V in 1.484V steps
ROFFS ROS[5:0] 0xDC Ringing DC voltage offset 0V to +47.488 V in 1.484V steps
IE2 0x29 Interrupt Enable Controls
INTV
INT2 0x24
0x28 Interrupt Status
Table 15: Registers for RING Generation
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 41 of 164 January 2010
12.1.3.2.1. SINUSOIDAL RINGING
Sinusoidal Ringing is selected by setting RMPC:TRAP[7] address (0xC1) to LOW. For a desired frequency fR is
calculated and programmed as before (see section Tone Generation). The oscillator initial condition for oscillator 2 is
set in register O2IC[15:0] address (0xC4 – 0xC5) according to the following equation.
Description Equation
Desired frequency fR
The resulting hexadecimal coefficient is input to registers
OS2CH and OS2C and ROFFS
17
2*
kHz8
R
f**2
COS0]:[17O2C
=
Oscillator initial condition for oscillator 2
The resulting hexadecimal coefficient is input to registers
OS2ICH and OS2ICL
15
2*
kHz8
R
f**2
sin*A0]:[15O2IC
=
A is calculated from the desired peak amplitude,
APK, in volts 96
PK
A
A=
Note that A is calculated differently for Tone Generation. Finally the precise phase position where the sinusoidal
ringing signal begins transmitting can be controlled by programming a transmission or phase delay of up to 31.8 ms
into OS2RPD:O2RPD[7:0] address (0xAD). If the zero-crossing feature is enabled signal transmission will end at the
equivalent phase position.
Target
Frequency
(Hz)
Frequency (Hz) O2C[17:0]
10 11.12 1FFFB
11 11.12 1FFFB
12 12.18 1FFFA
13 13.15 1FFF9
14 14.07 1FFF8
15 15.73 1FFF6
16 16.49 1FFF5
17 17.22 1FFF4
18 18.60 1FFF2
19 19.27 1FFF1
20 20.51 1FFEF
25 25.37 1FFE6
50 50.26 1FF9A
Table 16: Example Ringer Register settings
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 42 of 164 January 2010
12.1.3.2.2. TRAPEZOIDAL RINGING
Trapezoidal Ringing is selected by writing RMPC:TRAP[7] = 1 address (0xC1). Three parameters are required to
specify a Trapezoidal RING Signal and they as follows:
Desired frequency ft (period T)
Desired amplitude APK
Crest factor, CF
Three values are programmed across O2C[17:0] and O2IC[15:0] to describe the waveform.
Figure 10: Trapezoidal Ringing
Description Equation
Calculated rise time (tRISE)
= 2
CF
1
1*T*0.375
RISE
t
The rise time, expressed as an integer number of periods of 8 kHz,
OS2ICL
The resulting hexadecimal coefficient is input to registers OS2ICL kHz8*
RISE
t0]:O2IC[7 =
Calculated peak time (tPK)
(
)
(
)
RISE
t*2T*0.5
PK
t=
The peak time, expressed as an integer number of periods of 8
kHz, OS2ICH
The resulting hexadecimal coefficient is input to registers OS2ICH
kHz8*
PK
t8]:O2IC[15 =
Calculated ramp rate is specified in O2C[15:0]
Oscillator 2 has 18-bit register. The resulting hexadecimal coefficient is
written to registers ROFFS:O2C[7:6], OS2CL and OS2CH kHz8*
RISE
t
15
2*
96
PK
A
0]:O2C[15
=
Precise position where the trapezoidal signal begins transmitting. If
the zero-crossing feature is enabled signal transmission will end at
the equivalent phase position.
OS2RPD = transmission or phase delay of up
to 32 ms
TR_v1
VTIP-RING
Time
t
RISE
T = 1/f
T
A
PK
t
PK
TR_v1
VTIP-RING
Time
t
RISE
T = 1/f
T
A
PK
t
PK
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 43 of 164 January 2010
12.1.3.2.3. RINGING DC OFFSET AND COMMON MODE BIAS
A Ringing DC offset voltage VROFF can be defined by setting ROFFS:ROS[5:0]
6
2*
96
ROFF
V
0]:ROS[5
=
Ringing DC Offset is enabled when ROFFS:ROS[5:0] contains a non-zero value. VROFF is added to, or subtracted
from, the AC ringing signal depending on the setting. Similarly a Common Ringing Bias voltage VCMR can be defined
by setting the VCMR Register.
Figure 11: Positive DC offset for Trapezoidal Ringing
Figure 12: Programming VCMR voltage for Trapezoidal Ringing
CMR
V
TIP
V
BATH
V
BATH
/2
V
RING
V
CMR
= 0 V
CMR
> 0
A
PEAK
V
TIP
V
RING
A
PEAK
V
CMR
0V
Volts
time
CMR
V
TIP
V
BATH
V
BATH
/2
V
RING
V
CMR
= 0 V
CMR
> 0
A
PEAK
V
TIP
V
RING
A
PEAK
V
CMR
0V
Volts
time
RG
V
TIP
V
ROFF
V
ROFF
V
BATH
V
BATH
/2
V
RING
V
TIP
V
ROFF
= 0 V
ROFF
> 0
0V
Volts
time
V
RING
A
PEAK
A
PEAK
A
PEAK
RG
V
TIP
V
ROFF
V
ROFF
V
BATH
V
BATH
/2
V
RING
V
TIP
V
ROFF
= 0 V
ROFF
> 0
0V
Volts
time
V
RING
A
PEAK
A
PEAK
RG
V
TIP
V
ROFF
V
ROFF
V
BATH
V
BATH
/2
V
RING
V
TIP
V
ROFF
= 0 V
ROFF
> 0
0V
Volts
time
V
RING
A
PEAK
A
PEAK
A
PEAK
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 44 of 164 January 2010
12.1.3.2.4. LINEFEED CONSIDERATIONS DURING RINGING
To maintain proper biasing of the external bipolar transistors the generated Ringing signal should stay between the
Ringing voltage rails (GNDA and VBATH). If the ringing signal approaches the rails the signal will distort. Furthermore
excessive power dissipation in the external transistors will also occur. This can be prevented if VBATH is programmed
such that:
12.1.3.3. INTE RNAL UNBALANCED RINGING
An unbalanced ringing waveform can be generated by the N681386/87. This feature is enabled by setting
GMV:UBR[7] address (0x4D) to “1”. The Ringing signal is only applied to the RING lead and the TIP lead remains at
the programmed VGM voltage. The Ringing signal is programmed as described in section 9.1.3.1. A DC offset can be
used to provide DC current for Ring Trip Detection (section 9.1.3.2.3). Positive VROFF values will cause the DC offset
point to move closer to ground. The internal unbalanced Ringing waveform is shown below.
Figure 13: Unbalanced Ringing on TIP
The DC offset value should be set to less than half the ringing amplitude or the ringing signal will be clipped. Reverse
unbalanced Ringing waveform can be achieved by setting the GMV:UBR[7] address (0x4D) bit to 1 (the TIP lead
oscillates while the RING lead stays constant). In this mode, the polarity of VROFF must also be reversed.
CMR
V
VROFF
APEAK
2
BATH
V+
+×>
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 45 of 164 January 2010
12.1.3.4. RING TRIP DETECTION
The Ring Trip Detection mechanism is used to recognize an off-hook event during Ringing. The N681386/87
monitors the Loop current through the Loop current circuitry (available at LPI:ILP[11:0] address (0x90)). If the
shadow Linefeed state LS:SLS[7:4] address (0x44)indicates a Ringing state the loop current can used to evaluate
whether a Ring Trip event has occurred under two alternative methods - AC path or DC path.
Figure 14: RING Trip Detection Mechanism
For the AC path the AC component of the loop current is determined by passing it first through a full-wave rectifier to
remove the DC component and then through a Low Pass Filter for smoothing. The resulting value is compared to the
AC path Ring Trip Threshold in register RTTA:ARTT[5:0] address (0x55). A subsequent debounce filter is
programmed with an AC Path debounce interval from register RTDBA:ARTDI[7:0] address (0x48). If this interval is
satisfied, a valid Ring Trip is judged to have occurred. However, RTLC:RTDUA[3] address (0x46) bit records the
unfiltered status of the AC path Ring Trip Detect without regard to the debounce interval.
For the DC path the DC component of the loop current is determined by passing it first through a Low Pass Filter to
remove the AC component and then though a rectifier to ensure a positive value. The resulting value then compared
against the DC path Ring Trip Threshold in register RTTD:DRTT[5:0] address (0x67) and tested against the DC path
debounce interval from register RTDBD:DRTDI[7:0] address (0x68). If this interval is satisfied, a valid Ring Trip is
judged to have occurred. However, RTLC:RTDUD[4] address (0x46) bit records the unfiltered status of the DC path
Ring Trip Detect without regard to the debounce interval.
If a RingTrip is judged to have occurred either on the AC path or on the DC path RTLC:RTD[1] address (0x46) bit is
set. If enabled, a Ring Trip Interrupt will occur. If LAMC:RGA[1] address (0x43) is set the channel will automatically
transition into the Active state (Forward or Reverse) upon a valid Ring Trip Detect.
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 46 of 164 January 2010
In general, only one detection path should be utilized at one time by maximizing the Ring Trip Threshold value of the
unwanted path.
Register Bit(s) Address Parameter Description / Range
RTTA
RTTD
ARTT[5:0]
DRTT[5:0]
0x55
0x67 RING Trip Threshold AC & DC 0 to 80 mA in 1.27 mA steps
RTDBA
RTDBD
ARTDI[7:0]
DRTDI[7:0]
0x48
0x68 RING Trip Detect Debounce Interval 0 to 159 milliseconds
RTDFCLD
DCHA
RTDFCLD
DCHD
ARTDFC[7:0]
ARTDFC[11:8]
DRTDFC[7:0]
DRTDFC[11:8]
0x51
0x52
0x65
0x66
RING Trip Filter Coefficient For Digital LPF
INT1 RT[0] 0x26 RING Trip Interrupt Pending Status
IE1 RTE[0] 0x27 RING Trip Interrupt Enable Enable/Mask
RTLC RTD[1] 0x46 RING Trip Loop Closure Detect Status Status
LS SLS[3:0] 0x44 Linefeed Status Control Ringing Shadow Status
LAMC RGA[1] 0x43
Enable Oscillators and Transitions
Automatically Control
Table 17: Registers for RING Trip Detection
The cutoff frequency, fLP, of the Digital LPF is programmed in the Ring Trip Filter coefficient RTDFCA[11:0] and
RTDFCD[11:0]:
12
2*
800Hz
LP
f
**2-10]:RTDFCD[11
π=
12
2*
800Hz
LP
f
**2-10]:RTDFCA[11
π=
Values for RTDFCA, RTDFCD, RTTA, RTTD, RTDBD and RTDBA vary according to the programmed ringing
frequency. The following table can be used for reference.
Ringing
Frequency
RTDFCD[11:0]
RTDFCA[11:0]
RTTA
RTTD
RTDBD
RTDBA
Hz Decimal Hex Decimal Hex Decimal Hex
16.667 3561 0x0DE9 34 mA 3600 15 ms 0x0C
20 3453 0x0D7D 34 mA 3600 12.5 ms 0x0A
30 3132 0x0C3C 34 mA 3600 8.75 ms 0x07
40 2810 0x0AFA 34 mA 3600 7.5 ms 0x06
50 2489 0x09B9 34 mA 3600 5 ms 0x04
60 2167 0x0877 34 mA 3600 5 ms 0x04
Table 18: Recommended RING Trip Values for Ringing
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 47 of 164 January 2010
12.1.4. SUPERVISION (SIGNALING)
12.1.4.1. LOOP CLOSURE DETECTION
The recognition of an off-hook event outside Ringing is controlled by the Loop Closure Detect mechanism. Figure 16
shows the functional block.
Figure 15: Loop Closure Detector Block Diagram
Loop current monitoring circuitry provides a Loop Current value which can be read at LPI:ILP[11:0] address (0x90)
register. If the shadow linefeed state LS:SLS[7:4] address (0x44) indicates any state other than Open or Ringing
state, the Loop Current value is fed to a digital Low Pass Filter to remove unwanted AC components. The cutoff
frequency, fLP, of the Digital LPF is programmed in the Loop Closure Detect Filter coefficient LCDCL:LCDC[11:0]
address (0x50).
12
2*
800Hz
LP
f
**2-10]:LCDC[11
π=
The resulting value is compared to a Loop Current Detect Threshold value in register LCT[5:0] address (0x53).
However if the transition is an off-hook to an on-hook transition with hysteresis is enabled LCTHY:LCHYEN[6]=1
address (0x54), the threshold value in LCTHY:LCTOFF[5:0] address (0x54) is used in the comparison. A subsequent
debounce filter is programmed with a debounce interval from register LCDB:LCDI[7:0] address (0x47). In addition, a
special mask counter LCMCNT:LCMCNT[7:0] address (0xAB) can be enabled using RTLC:LCM[6] address (0x46) to
guard against detects due to transients on the line, which can occur with reactive ringers. The RTLC:LCDU[2]
address (0x46) bit records the unfiltered status of Loop Closure Detect without regard to the debounce interval or the
Mask count. If the interval is satisfied a valid Loop Closure is judged to have occurred and the RTLC:LCD[0] address
(0x46) bit is set. An interrupt can be enabled when the Loop Closure Interrupt occurred.
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 48 of 164 January 2010
Register Bit(s) Address Parameter Description / Range
LCT LCT[5:0] 0x53 Loop Closure Threshold Current Based: 0-80 mA @ 1.27 mA
Voltage based: 0-93.5V @ 1.484V
LPI ILP[11:0] 0x90 Loop Closure Current Based: 0-78.74 mA @ 1.25
mA
LCTHY LCHYEN[6] 0x54 Enable Hysteresis
LCTHY LCTOFF[5:0] 0x54 Loop Closure Threshold Off-Hook to
ON-HOOK state Enable Hysteresis
When hysteresis enabled only
opposite transition governed by LCT.
Current Based: 0-80 mA @ 1.27 mA
Voltage based: 0-93.5V @ 1.484V
LCDB LCDI[7:0] 0x47
Loop Closure Detect Debounce
Interval 0 to 159 milliseconds
LCDCL
DCH
LCDC[7:0]
LCDC[11:8]
0x50
0x52 Loop Closure Filter Coefficient For Digital LPF
INT1 LC[1] 0x26 Loop Closure Interrupt Pending Status
IE1 LCE[1] 0x27 Loop Closure Interrupt Enable Enable/Mask
RTLC LCD[0] 0x46 Loop Closure Detect Status Status / Enable Voltage-based
Loop Closure
LCMC LCMCNT[7:0] 0xAB Loop Closure Detect Mask Counter 0 to 319 ms in 1.25 ms steps
LAMC LCDA[0] 0x43 Enable Automatic Transitions Control
Table 19: Loop Closure Detection Registers
If LAMC:LCDA[1] address (0x43) is set the channel will automatically transition from the Idle (Forward or Reverse),
ON-HOOK Transmission (Forward or Reverse) as well as TIP Open or RING Open into the Active (Forward or
Reverse) state upon a valid Loop Closure Detect.
Voltage based Loop Closure Detect can also be enabled by setting bit RTLC:VBLC[5] address (0x46). In this case
the input signal is the Loop Voltage and the thresholds are interpreted as voltages. All other functionality is the same.
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 49 of 164 January 2010
12.1.4.2. GROUND KEY DETECTION
Ground Key Detect (GKD) senses a DC current imbalance between the TIP and RING terminals when the RING
terminal is connected to ground. This feature is commonly associated with PBX signaling. The feature is enabled in
all states except Ringing. Figure below shows the functional blocks for ground key detector.
Figure 16: Ground Key Detection Circuitry
Ground Key Detection is enabled by setting the GKDFCH:GKDEN[7] address (0x64). The input to the GKD circuitry
is the longitudinal current, which is available in register LGI:ILG[11:0] address (0x8C). If the shadow linefeed state
LS:SLS[7:4] address (0x44) indicates a non-Ringing state, the longitudinal current is fed to a programmable Digital
Low Pass Filter to remove any unwanted AC components. If fLP is the desired cutoff frequency LPF the Low Pass
Filter Coefficient GFDFC:FCGKD[11:0] address (0x63) is calculated using the following equation:
12
2*
800Hz
LP
f
**2-10]:FCGKD[11
π=
A typical value of 10 (CKDFC:FCGKD[11:0] = 00A) is sufficient to filter out any unwanted ac artifacts while allowing
the dc information to pass through the filter.
Register Bit(s) Addr Parameter Range Increment Resolution
INT3 GKDE[3] 0x2A Ground Key Interrupt Pending Yes/No N/A N/A
IE3 GKDIE[3] 0x2B Ground Key Interrupt Enable Yes/No N/A N/A
GKDDT DTGKD[7:0] 0x62
Ground Key Detect Debounce
Interval 0 to 320ms 1.25ms 1.25ms
LGI ILG[11:0] 0x8C Longitudinal Current Monitor only 500uA
GKDH HGKD[5:0] 0x60 Ground Key Threshold (enabled) 0 to 80 mA 1.27mA 1.27mA
GKDL LGKD[5:0] 0x61 Ground Key Threshold (released) 0 to 80 mA 1.27mA 1.27mA
GKDFC FCGKD[11:0] 0x63 Ground Key Filter Coefficient 0 to 4000h N/A N/A
Table 20: Ground Key Detection Registers
LS
Input
Signal
Processor
Digital
LPF
LGI
GDKFC
+
-Debounc
e Filter
GKDDT
Interrupt
Logic GKDE
GDKIE
Ground
Key
Threshold
GKDH
GKDL
Input
Signal
Processor
Digital
LPF
GDKFC
+
-Debounce
Filter
GKDDT
Interrupt
Logic
Ground
Key
Threshold
GKDH
GKDL
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 50 of 164 January 2010
The resulting value from the Low Pass Filter is compared to a Ground Key Detect High Threshold GKDH:HGKD[5:0]
address (0x60) value. Hysteresis is enabled automatically by programming a second threshold GKDL:LGKD[5:0]
address (0x61) to detect when the Ground Key is released. The output of the comparator is connected to a
programmable debounce filter. It can be programmed with a debounce interval GKDDT address (0x62).
12.1.4.3. CALLER ID AND FSK GENERATION
The N681386/87 provides an optimized Frequency-shift keying (FSK) generator for sending Caller ID information.
Both Bell 202 and ITU-T V.23 standard FSK are supported. The FSK generation supports both Type I and Type II
Caller ID with ability to generate CPE Alerting Signals (CAS tones) of 2130 Hz and 2750 Hz. The linear FSK
waveform generator provides a mechanism to generate the linear code of FSK with continuous phase.
Figure 17: The Architecture of Linear FSK Waveform Generator
Bell Freq0
V23 Freq0
Bell Freq1
V23 Freq1
FSK Signal
FSK:LCR
FSK Data
FSKC:SPEC
FSKS:FEP
FSKS:SRE
FSKC
FSKTD
INT Logic
IE1:FSKE
INT1:FSC
FSKS:FF
P: Package bit
PY: Parity bit
FSK Signal
Generator
MUX
FSK FIFO
P
P
P
P
P
P
P
P
P
PY
PY
PY
PY
PY
PY
PY
PY
PY
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 51 of 164 January 2010
As the above figure illustrates, an 8-byte FIFO substantially reduces CPU intervention in generating FSK.
Transmitted FSK data is placed in the FIFO by writing to the FSKTD:FSK[7:0] address (0x11) register. The writing
process can be controlled by the status bits in the FSKS address (0x12) register which inform on the FIFO’s current
status.
FSK transmission is initiated by asserting FSKC:TX[3] address (0x10). The FSK transmit data is clocked out of the
FIFO one byte at a time beginning with the LSB. If package mode is enabled a ‘start bit’ (Space) will automatically be
amended to the head of the FSK transmit data. Furthermore, one or two ‘stop bits’ (Mark) are added to the end of the
FSK transmit data, depending on the setting of FSKC:STOP[2] address (0x10). If package mode is not enabled the
FSK transmit data is transmitted as it appears in the FSK FIFO.
There is one FSK generation engine available inside the N681386/87. An FSK interrupt is generated if the FIFO is
empty. The gain of the FSK signal can also be adjusted using FSKLCR:GAIN[3:0] address (0x13) register.
Register Bit(s) Address Parameter Description / Range
FSKC 0x10 FSK Control Register Control
FSKTD FSK[7:0] 0x11 FSK Transmit Data Binary signal to be transmitted
FSKS FF[2]
FEP[0] 0x12 FSK Status Register FIFO and Shift Register Status
FSKLCR GAIN[3:0] 0x13 FSK Gain See Register Description
FSKTCR FSKR[1] 0x14 FSK Route Route FSK Data
INT2 FSKI[7] 0x28 Interrupt Status Registers Status
IE2 FSKIE[7] 0x29 Interrupt Enable Register Enable/Mask
Table 21: Registers for FSK Generation
12.1.4.4. DTMF GENERATOR
In Dual Tone Multi Frequency (DTMF) two tones are used to generate a DTMF digit. One tone is chosen from four
possible row tones, and one tone is chosen from four possible column tones. The sum of these two tones constitutes
one of 16 possible DTMF digits.
Row Frequency
Hz Column frequency
1209 1336 1477 1633
697 1 2 3 A
770 4 5 6 B
852 7 8 9 C
941 * 0 # D
Table 22: DTMF frequency mapping
DTMF tone generation can be achieved by using both oscillator 1 and oscillator 2. The table below illustrates the
oscillator coefficient and initial condition which are required for the standard DTMF tone frequencies. For timing
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 52 of 164 January 2010
integrity both oscillators should be enabled simultaneously. Tones can be directed either towards the line or the PCM
interface by programming the RMPC:TRAP[7] bit address (0xC1).
Frequency
(Hz) APK (Volts) O1C[15:0] or O2C[17:2] OmIC[15:0]
Decimal Hex Decimal Hex
697 0.31 31548 7B3C 1733 06C5
770 0.31 31281 7A31 1909 0775
852 0.31 30951 78E7 2105 0839
941 0.31 30556 775C 2315 090B
1209 0.55 29144 71D8 2930 0B72
1336 0.55 28361 6EC9 3211 0C8B
1477 0.55 27409 6B11 3513 0DB9
1633 0.55 26258 6692 3834 0EFA
Table 22: DTMF frequency settings (APK values for line impedance =600 )
For a desired frequency fD the oscillator coefficient for Oscillator m, O1C[15:0] or O2C[17:2], can be calculated with
the following equation. The following equations can be used for both Narrowband and Wideband. The resulting
hexadecimal coefficients are register data of OSmCH and OSmCL.
15
D2*
kHz16
f**2
cos]0:15[C1O
π
=
17
D2*
kHz16
f**2
cos]0:17[C2O
π
=
The initial condition for Oscillator m, OSmICL[15:0], can be calculated using the following equation. The following
equations can be used for both Narrowband and Wideband.
15
D2*
kHz16
f**2
sin*A]0:15[OmIC
π
= (m: 1 , 2)
Where A is calculated from the desired peak amplitude, APK, in volts in the following equation
5779.1
A
APK
=
The resulting hexadecimal coefficient is input to registers OS2ICH and OS2ICL.
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 53 of 164 January 2010
12.1.4.5. DTMF DETECTION
Dual Tone Multi Frequency (DTMF) tones consist of a low tone of 697Hz, 770Hz, 852Hz or 941Hz and high tone of
1209Hz, 1336Hz, 1477Hz or 1633Hz. The incoming signal is separated into high-group and low-group tones, and
detected by high-group and low-group tone detectors respectively. When valid data is detected the result is pushed
onto a FIFO which can be read by the host through the SPI interface.
When DTMF detection is enabled channel data is scanned for DTMF tones. Three critical time periods associated
with detection can be programmed. A signal must be present for a minimum of PDT (Present Detect Time) before
tone detection is triggered. Once valid tone is triggered, the tone must be present for ACCT seconds. Once this is
true, DTMFRDY is active and the received data is pushed onto the FIFO. When the tone is removed, no detection is
triggered for ADT (Absent Detect Time) seconds. DTMFRXDATA is decoded from the row and column frequency
according to Table 22. The sensitivity and precision of detection can also be programmed.
When a DTMF tone is detected the N681386 can be configured to generate an interrupt to the host processor for
service.
Figure 18: DTMF Detector - Functional Block Diagram
Row Frequency
Column frequency
1209 Hz 1336 Hz 1477 Hz 1633 Hz
697 Hz 1 2 3 A
0x01 hex 0x02 hex 0x03 hex 0x0D hex
770 Hz 4 5 6 B
0x04 hex 0x05 hex 0x06 hex 0x0E hex
852 Hz 7 8 9 C
0x07 hex 0x08 hex 0x09 hex 0x0F hex
941 Hz * 0 # D
0x0B hex 0x0A hex 0x0C hex 0x00 hex
Table 22: DTMF Tone Decoding
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 54 of 164 January 2010
12.1.5. CODEC
The N681386/87 converts the analog transmit signal into a PCM code, either by using µ-Law, A-Law or linear PCM,
and vice versa. A-Law, µ-Law and PCM encoding and decoding is performed according to the recommendations in
the ITU-T G.711 specification. In the linear PCM mode a 16-bit 2s complement data format is used. Details of the
Decode and Encode Characteristics are to be found in Section 11.
12.1.6. HYBRID
12.1.6.1. AC PATH
The N681386/87 is used for digitizing and reconstructing the human voice. To digitize intelligible voice requires a
signal to distortion ratio (S/D) of about 30 dB over a dynamic range of about 40 dB. N681386/87 meets this
requirement by a large margin. The complete AC signal path block diagram is shown in Figure 3.
12.1.6.1.1. NARROWBAND TRANSMIT PATH
The gain of this amplifier can be set by programming in APG:ATX[1:0] so that the signal takes advantage of the full
range of the A/D. An anti-aliasing filter also precedes the A/D. The A/D produces a 16-bit linear PCM data stream
sampled at 8 kHz. The A/D not only exceeds ITU G.712 and G.711 but also expands the voice-band cut-off
frequency from a standard 3.4 kHz to 3.6 kHz for enhanced voice quality. High pass filter HXP implements the high-
pass attenuation requirements for signals below 65 Hz. The linear PCM data stream is then amplified by the A/D
digital gain amplifier, programmable from –inf dB to 6 dB and allowing fine gain adjustments down to a resolution of
0.1 dB. When enabled, the DTMF decoder can access this data stream at this point. Finally, if companding is
selected, A-law or -law compression reduces the data stream to 8 bits wide. The timeslot on the PCM interface can
be configured with either 8-bit compressed or 16-bit uncompressed data in mind.
12.1.6.1.2. NARROWBAND RECEIVE PATH
In the receive path, data taken from the PCM highway can be 16-bit uncompressed or A-law / -law 8-bit
compressed. In the latter case it is first expanded to 16-bit data. The linear PCM data stream is then amplified by the
D/A digital gain amplifier, programmable fromdB to 6 dB and allowing fine gain adjustments down to a resolution
of 0.1 dB. The data stream is then put through an optional high pass filter to filter out signals below 65 Hz and a low-
pass interpolation filter again with 3.6 KHz cutoff frequency for enhanced voice quality before being passed to the
D/A. Finally, the analog signal is amplified by the Analog Receive Amplifier. The gain of this amplifier can be set by
programming in APG:ARX[1:0] before the signal is output from the chip.
The 12-bit digital gain blocks in both the transmit and receive paths provide 11 bits (1024 steps) for fine tuning the
audio signals while the MSB can be used to invert the signal. To calculate the gain setting Y based on the desired dB
setting X, the equation is:
(
)
20
XdB
101024Y ×=
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 55 of 164 January 2010
Conversely, to calculate the dB value of the gain based on known gain step values, the equation is:
(
)
1024
Y
10log20dBX ×=
The table below contains a sample of possible gain settings.
dB Gain Gain Setting (Y)
- Off 0x000
-24 1 / 8 0x040
-12 1 / 4 0x100
-6 1 / 2 0x200
0 1 0x400
6 2 0x7FF
Table 23: Digital Gain Adjust Coefficients and Attenuation weightings
The device exceeds the maximum ITU requirements for frequency response, group delay distortion and signal to
distortion as can be verified from the diagrams in Section 11. Audio signals larger than 0dBm0 can be processed
without clipping in either compression scheme. The maximum PCM code generated for a sine wave is 3.17 dBm0 (-
law) or 3.14 dBm0 (A-law).
The N681386/87 overload clipping limits are driven by the PCM encoding process. The presence of a high-pass filter
transfer function ensures at least 30 dB of attenuation for signals below 65 Hz. The Low Pass Filter transfer function
which attenuates signals above 3.6 kHz has to exceed the requirements specified by ITU G.714 and it is
implemented as part of the A/D. The receive path transfer function requirement is very similar to the transmit path
transfer function. We have added the high-pass filter portion as a user controlled option. Pass-band has been defined
between 300 Hz to 3600 Hz. As the PCM data rate is 8 kHz, no frequencies greater than 4 kHz can be digitally
encoded in the data stream.
12.1.6.1.3. AN ALOG TR ANSHYBRID BALANCING
The N681386/87 provides fully programmable hybrid balancing to cancel transmit and receive signal echo on the full-
duplex 2-wire pair. The hybrid balancing is performed at the internal 4-wire port. It is measured as the ratio of the
un-cancelled return signal to the reference signal (digital-to-digital gain). Although the ITU standard recommends a
hybrid balance below –18 dB within the voice band, care has been taken to reduce this further to –30 dB in order to
avoid unacceptable voice quality for packet based networks.
The Tran hybrid Balance is internally set to subtract a –6 dB level from the transmit path signal, corresponding to the
ideal case when the impedance matching perfectly matches the subscriber loop. This level can be adjusted from -
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 56 of 164 January 2010
2.77 dB to +4.08 dB around this ideal setting by programming HB address (0x41). This register can also be used to
disable the Tran hybrid balancing completely. It should also be noted that Tran hybrid Balance adjustments are
independent of any other gain adjustment stages as the level shift occurs on the transmit path before any gain
stages, as can be seen on Figure 3.
12.1.6.1.4. IMPEDANCE MATCHING
The device provides on-chip programmable two-wire impedance settings to meet a wide variety of worldwide two-wire
return loss requirements.
Figure 19: Characteristic Line Impedance
Figure above illustrates the characteristic line impedance model implemented on-chip. Examples of the standard
impedances which the N681386/87 supports are shown below.
Country Requirement Impedance Element
(
Unit
)
R1
(
Ohm
)
R2
(
Ohm
)
C
(
Farad
)
US PBX, Korea, Taiwan 600 Open Short
Standard 900 Open Short
Table 24: Examples of Resistive Impedance Matching
Pure Resistive Impedance Settings (for example 600 Ohm and 900 Ohm) can be selected in IM1:ZR1[3:0]. In this
case Complex Impedance Matching should be disabled by setting IMCTRL:IMEN[2] to 1. Register ILIM:ZCPEN[6]
address (0x23) allows magnitude of the AC signal to be increased to compensate for the additional loss at the high
end of the audio frequency range. ILIM:ZCPEN[6] should be enabled for Pure Resistive Impedance Matching cases.
Country Requirement Impedance Element
(
Unit
)
R1
(
Ohm
)
R2
(
Ohm
)
C
(
Farad
)
Japan CO 600 Open 1u
Bellcore 900 Open 2.2u
CTR21 270 750 150n
China CO 200 680 100n
China PBX 200 560 100n
Japan PBX 100 1000 100n
R1 C
R2
Zline
R1 C
R2
Zline
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 57 of 164 January 2010
Country Requirement Impedance Element
(
Unit
)
R1
(
Ohm
)
R2
(
Ohm
)
C
(
Farad
)
India, New Zealand 370 620 310n
Germany (Legacy) 220 820 115n
UK (Legacy) 320 1050 230n
Australia 220 820 120n
Table 25: Examples of Complex Impedance Matching
Complex Impedance Settings are realized using the Impedance Matching Coefficients loaded into IMRAM 0xF3 using
control functions in IMCTRL 0xF5. In this case IM1:ZR1[3:0] should be should be set to 0 (600 Ohm Setting).
ILIM:ZCPEN[6] should be disabled for Complex Impedance Settings.
12.1.6.1.5. DAC/ADC AUTOMUTE
When the selected input data source is equal to zero for 1024 consecutive sample cycles, a mute signal is asserted
to the analog front end to mute the line output signal. The control output is de-asserted on the first non-zero sample.
Automute is enabled by setting AUTOMT:AUTOMTEN[7] address (0x5E). Automute has the capability of selecting
two different options such as either DAC and ADC data or only DAC data by AUTOMTSEL[6] address (0x5E).
Register Bit(s) Address Parameter Description / Range
AMT AMTEN[7] 0x5E Automute Enable
0 = Automute disabled (default)
1 = Automute enabled
AMT AMTSEL[6] 0x5E Automute Select 0 = DAC data+ADC data (default)
1 = DAC data only
Table 26: Registers for Automute
Automute Threshold
Modes AMTTHR[5:0]
Linear 0
u-Law 0
A-law 8
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 58 of 164 January 2010
12.1.7. TESTING
The N681386/87 includes extensive test and diagnostics features. Real-time DC linefeed measurements are
available through the several voltages and current registers. GR-909 line test capabilities can also be supported. In
addition five loop back test options, three digital loop backs (DLP1, DLP2 and DLP3) and two analog loop backs
(ALP1, ALP2) are available. Figure 3, details the AC path architecture and also indicates the precise locations of the
test loop backs.
12.1.7.1. LOOP BACK TESTS
The full analog loop back LB:ALP2[4] address (0x21) allows the testing of almost all the circuitry of both transmit and
receive paths. The compressed 8-bit/16-bit linear transmit data stream is fed back serially to the input of the receive
path expander. The signal path starts with the analog signal at the input of the transmit path and ends with an analog
signal at the output of the receive path. LB:ALP1[3] address (0x21) takes the digital stream at the output of the A/D in
the transmit path and feeds it back to the input of the D/A in the receive path. As with LB:ALP2[4] address (0x21) the
signal path starts with the analog signal at the input of the transmit path and ends with an analog signal at the output
of the receive path.
Full digital loop back LB:DLP1[0] address (0x21) tests practically all transmit and receive path circuitry. The analog
signal at the output of the receive path is fed back to the input of the transmit path by way of the Trans-hybrid filter
path. The Trans-hybrid balance may be set to unity gain so that the return signal is not attenuated. A switch in the
receive path is opened when this loop is selected so that no signal appears on the line during this loop back. The
signal path starts with 8-bit/16-bit PCM data input to the receive path and ends with 8-bit/16-bit PCM data at the
output of the transmit path. The user can bypass the companding process and interface directly to the 16-bit data.
LB:DLP2[1] address (0x21) takes the digital stream at the input of the D/A in the receive path and feeds it back to the
output of the A/D in the transmit path. The signal path starts with 8-bit/16-bit PCM data input to the receive path and
ends with 8-bit/16-bit PCM data at the output of the transmit path. This loop back option allows the testing of the
digital signal processing circuitry of the N681386/87 independent of any analog signal processing activity. DLP3
loops the digital data stream just beyond the PCM interface, taking the 8-bit/16-bit output of the PCM receive
interface and looping directly to the input of the PCM transmit interface.
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 59 of 164 January 2010
12.1.7.2. DIAGNOSTICS SUPPORT
The N681386/87 provides a variety of registers which proved both voltages and current values from the line which
are either measured or calculated (see tables 7 and 8). These registers are updated at a rate of 800 Hz or every 1.25
msec. Furthermore, the N681386/87 provides several mathematical and sampling resources to derive additional data
useful in diagnostics (see illustration below). For example, peak to peak measurement results of the loop current
and loop voltage is available in registers ILPP2P:LPIP2P[11:0] address (0x9C) and VLPP2P:LPVP2P[11:0] address
(0x9B). These measured calculated and derived register values can be used to do GR-909 diagnostic tests.
Figure 20: Diagnostics Support Block Diagram
12.1.8. POWER INTERFACE
The N681386/87 utilizes low-cost external components for to perform the DC/DC conversion to the high voltages
required for the subscriber line interface (SLIC). The external discrete circuitry is controlled by on on-chip pulse width
modulation (PWM) driver.
The battery voltage circuit and PWM driver provide a closed loop system for battery voltage regulation. Battery
voltage, VBAT, is monitored and compared to an internal target and adjustments are made accordingly. The target
voltage will change, depending on different architectures and such factors as the linefeed state. As illustrated in
DCREN
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 60 of 164 January 2010
Figure 21 for example, if the device is operating in the constant voltage region the VBAT target is a combination of VOV,
VOH and VGM. A combination of coarse and fine adjustments ensures rapid convergence on the target voltage.
Two different DC/DC conversion architectures are supported and described in the following sections. Two different
internal PLL master clocks (13.824 MHz, or 27.648 MHz) can be selected depending on the settings of
PON:CDCC[7] address (0x22) and PLLS:PLLCM address (0x04). The width of the pulse generated by the PWM is
programmed in PWMT:PT[7:0] address (0x49). A minimum off-time is programmable in the DDCC:DCOFF[7:0]
address (0x4A) to allow sufficient time for stored energy to be transferred to the output capacitor. For reference
monitoring the actual PWM pulse width can be checked in the read only PWCT:PWCT[7:0] address (0xB5) register.
For example, if the PWCT indicates a maximum pulse width consistently, this might indicate an overload condition or
a short circuit. The values for PWMT, DDCC and PWCT are based on multiples of the internal PLL master clock
period.
Register Bit(s) Address Parameter Description / Range
PON CDCC[7] 0x22 Inductor Architecture
PWMT PT[7:0] 0x49
Sets PWM Pulse Width for
DC/DC converter
Step size and initial value dependant on
internal PLL clock selection
DDCC DCOFF[7:0] 0x4A
Sets PWM minimum Off time
for DC/DC convertor
Step size and initial value dependant on
internal PLL clock selection
PWCT PWCT[7:0] 0xB5 PWM Count Register For Reference (Read only)
DCTR VTR[7:0] 0x77 DC/DC Target Voltage 0V to -93.5V in 1.484V increments
OHV VOH[5:0] 0x4C VOH On-Hook Voltage 0V to -93.5V in 1.484V increments
GMV VMV[5:0] 0x4D VGM Ground Margin Voltage 0V to -93.5V in 1.484V increments
VBHV
VBLV
VBATH[5:0]
VBATL[5:0]
0x4E
0x4F
VBATH High Battery Voltage
VBATH Low Battery Voltage 0V to -93.5V in 1.484V increments
VOV VOV[3:0] 0x56 VOV Offset Voltage 0V to 24 V in 1.484 V increments
BATV VB[7:0] 0x80 VBAT Battery Voltage 0V to –95.88V in 0.376 V increments
Table 27: Registers associated with DC/DC Conversion
12.1.8.1. DC/DC CONVERSION (INDUCTOR)
A current sensing input for the DC/DC converter provided. The PWM pulse will be muted during each PWM cycle if
the current exceeds a predetermined threshold level. This prevents the external discrete transistors from damage
due to overload conditions. Similarly, the supply voltage is also monitored. The PWM pulse will be muted during
each PWM cycle if the supply voltage falls below a predetermined level. The PWM pulse will also be muted if the
battery voltage exceeds 10% of the maximum value. If this threshold is too high, an external clamp can be added in
the application. See application diagram.
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 61 of 164 January 2010
The Figure below illustrates how voltage regulation occurs in the Forward Active state.
Figure 21: Voltage Tracking in Forward Active State
The values for VGM, VOH and VOV are set in VCMR, OHV, and VOV registers respectively. When operating in the
constant voltage region the VBAT is simply the sum of these three settings (VGM + VOH + VOV). If the Loop current
attempts to exceed ILIM the constant current region is entered. In this case the values for VOV and VGM are maintained
but the VOH is adjusted to track the RLOOP, which adjusts VBAT accordingly. If tracking is enabled, VOV:TR=1, tracking
will continue below VBATL. Otherwise, tracking will stop and VBAT will not go lower than VBATL. A similar mechanism is
implemented in the Reverse Active state.
During the Ringing state, the VBAT must be increased to accommodate the ring signal. Conventionally VBAT is set to a
fixed value of VBATH. However, the discrete linefeed circuit dissipates significant power particularly when a large REN
load is applied. As an alternative the N681386/87 allows a dynamic battery target to be selected by setting the
LCTHY:DBTR[7] address (0x54). In this case VBAT will dynamically track the actual ring signal, minimizing the power
dissipation and improving efficiency during Ringing. Dynamic Battery Target is available only for DC/DC conversion
architecture.
Figure 22: Dynamic Battery Target
VBATL
VGM
ILIM
VOH
RLOOP
VTIP
|VTIP
–V
RING|
VOH
VOV
VRING
VBAT
VOV
V
VOV:TR=0
Constant I
Region Constant V
Region
CIVR-v4
VOV:TR=1
0V
VBATL
VGM
ILIM
VOH
RLOOP
VTIP
|VTIP
–V
RING|
VOH
VOV
VRING
VBAT
VOV
V
Constant I
Region Constant V
Region
CIVR-v4
0V
Ring
DC
VBATH
VBATH /2
0V
Volts
time
Ring
DC
VTIP
VTIP
VTIP
VRING
VTIP
VRING
VTIP
VTIP
VBATH
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 62 of 164 January 2010
12.1.8.2. EXTERNAL BATTERY SWITCHING
The N681386/87 device can also operate from two or three external battery supplies. The external battery supply
architecture can be enabled by pulling the XBAT Pin HIGH. This will also power down the on-chip PWM controllers.
In this case the N681386/87 utilizes the DCPn and the DCNn pins to control the selection of externally supplied
VBATR, VBATH and VBATL for VBAT by means of a external circuit such as the one illustrated below.
Figure 23: Three Voltage External Battery switching
The VBAT voltage selection is dependent on the linefeed state and the relationship is programmable. The mapping of
the DCNn pins output to the linefeed state can be uniquely programmed in the XBSDCN address (0x6A) register as
illustrated in the table below. The XBSDCP address (0x6B) register serves the same purpose for the DCPn pins.
The combination of DCNn, DCPn outputs and the external selection circuitry allows either VBATR, VBATH or VBATL
to be selected in any state.
When two external battery supplies are used (VBATH and VBATL) VBAT selection can be controlled by the one pin
alone. Therefore, DCNn should be used to control the external battery switching.
Figure 24: Two Battery Supply Control Circuit
DCN
VBATH
VBATL
VBAT
DC-to-DC
Control
BATR
DC-to-DC
Control
DCN
VBATH
VBATL
V
DCP
VBAT
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 63 of 164 January 2010
12.2. DIGITAL INTERFACE
12.2.1. CLOCK GENERATION
The N681386/87 will generate the necessary internal clock frequencies from the BCLK input. BCLK must be
synchronous to the 8 kHz frame sync clock and run at one of the following rates:
Binary Clock Decimal Clock
256 kHz 1.000 MHz
512 kHz 2.000 MHz
768 kHz 4.000 MHz
1.024 MHz 8.000 MHz
1.152 MHz
1.536 MHz
1.544 MHz
2.048 MHz
4.096 MHz
8.192 MHz.
The frame sync can either be supplied externally or it can be generated internally by the N681386/87, by setting the
PCMFS:FSS[2] address (0x05) bit to “1”. If frame sync is supplied externally (PCMFS:FSS=0), the ratio of the BCLK
rate to the frame sync rate is determined via a counter clocked by BCLK which can be read at the PLLS:BCFS[4:1]
address (0x04). This value is used to control the internal PLL, which multiplies BCLK appropriately to generate the
internal clock frequency required to run the internal circuitry.
If the frame sync is supplied internally (PCMFS:FSS=1), the user must set PCMFS:BF[3:0] to indicate BCLK so that
an appropriate multiple is calculated to generate the required internal frequency. If the frame sync is generated
internally its width can be selected by programming PCMFS:IFST[3] address (0x05).
¡ 1-bit clock long (for Short Frame Sync, GCI and IDL modes)
¡ 8-bit clocks long (for 8-bit Long Frame Sync mode)
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 64 of 164 January 2010
12.2.2. PCM INTERFACE
N681386/87 supports a flexible PCM interface structure which can be configured to perform multiple industry
standard PCM modes. Data is received serially through the PCMR pin and transmitted serially through the PCMT
pin.
Timeslots for data transmission and reception are independently configured using registers. Two registers, one for
each direction combination, control the selection of the start point for the data timeslot:
¡ TTS[9:0]: Transmit Timeslot Start
¡ RTS[9:0]: Receive Timeslot Start
¡ The start point is defined in terms of a particular the BCLK period within the frame. Once the start of the timeslot
is assigned the transfer will continue sequentially.
¡ For an 8-bit transfer the timeslot will run from the start point to the start point + 7 BCLK cycles.
¡ For a 16-bit transfer the timeslot will run from the start point to the start point + 15 BCLK cycles.
By setting the specific timeslot start points, the N681386/87 can be programmed to support many industry standard
PCM interfaces including many Long Frame Sync and Short Frame Sync variants, IDL2 8-bit, 10-bit, B1 and B2
channel timeslots. The table below illustrates this by showing how some standard interface modes may be
programmed.
Clocking mode BCLK PERIODS
PER DATA BIT
TTS [7:0]
RTS [7:0]
Long Frame Mode 1 0x00000 (slot 1)
Short Frame Mode 1 0x00001 (slot 1)
GCI Mode 2 0x00000
IDL Mode 1 0x00001
Table 28: Example Standard Interface modes
However N681386/87 allows even more flexibility. It can support BCLK up to 8192 kHz, or up to 1024 BCLK periods
per 125usec frame. Therefore 10-bit timeslot assignment registers have sufficient flexibility to assign any timeslot
start point within the frame. Care should also be taken when dealing with a BCLK lower than 8192 kHz to ensure that
the timeslot start point is within the boundary of the frame, including sufficient headroom for the complete timeslot.
For example, if BCLK is 512 kHz there are 64 BCLK cycles within the frame. However, for all modes except Short
Frame Sync the highest valid start position for 8-bit PCM data would be 56, sufficient for the full byte to be
accommodated within the frame. For 16-bit data the highest start position would be 48. In Short Frame mode the
LSB can be located up to the first BCLK of the next frame so the highest valid position is 56 for 8-bit or 48 for 16-bit.
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 65 of 164 January 2010
The PCMT pin is high impedance except for the duration of the PCM transmit. PCMT will return to high impedance
either on the negative edge of BCLK during the LSB, or on the positive edge of BCLK following the LSB depending
on the setting of PCMC:TRI[2] address (0x00). Tri-stating on the negative edge allows the transmission of data by
multiple sources in adjacent timeslots without the risk of driver contention.
12.2.2.1. WI DEBAND AND NARROWBAND OPERATION
Nuvoton’s newest design in the Pro-X product line is a Narrowband and Wideband audio codec. The N681386 is
limited to Narrowband audio codec communication, meaning 8kHz sampling and 8kHz frame sync with frame sync
master mode capability. The Narrowband audio codec communication is compatible with the W681388, N681386, &
W684386. The user could write to a reserved register that is used for Wideband operation on N681386 without any
effect to the Narrowband operation.
The N681387 is capable of both Narrowband and Wideband audio communication. The WBAND pin which is only
available on N681387 selects the Narrowband and Wideband. When WBAND pin is LOW the device is in
narrowband mode and when the WBAND pin is HIGH the devices is operating in Wideband mode. However, a
register PCMFS:WBEN[1] address (0x05) also needs to be programmed to ‘1’ in order to enable wideband operation.
This supports two scenarios:
1) The user permanently ties the ‘WBAND’ pin to VDD, while the PCMFS:WBEN[1] address (0x05) register is
toggled to enable/disable Wideband
2) The user sets the register PCMFS:WBEN[1] address (0x05) to ‘1’ and controls the WBAND pin to
enable/disable the Wideband operation.
The table below shows the modes of operation.
WBANDPin WBEN[1] FSRATE[5] FS Frequency Band Operation
(Filter & PCM)
GND 0
0 8kHz
Narrow (Default)
GND 1 Narrow
VDD 0 Narrow
VDD 1
0
8kHZ
(1 FS with 2
Sample) Wide
1 16kHz
(1 FS with 1Sample)
Table 29: Wideband or Narrowband Hardware Selection
The Narrowband mode is limited to 8kHz sampling and frame sync of 8kHz. The Wideband mode of operation is
limited to 16kHz sampling and an option of 8kHz or 16kHz frame sync. The user needs to write a register
PLLS:FSRATE[5] address (0x04) to indicate whether 8kHz (‘0’) or 16kHz (‘1’) frame sync rate is being used.
There is no frame sync master mode supported in wideband operation.
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 66 of 164 January 2010
12.2.2.2. TOGGL I NG BETWEEN W I DEB AND AND N ARROWBAND
It is not recommended to toggle between Wideband and Narrowband when 16kHz frame sync is used, since it could
unlock the PLL. However, the architecture may allow it when the pin is toggled at the right time.
For Wideband, using 8kHz frame sync, the user can toggle the WBAND pin or PCMFS:WBEN[1] address (0x05)
register, while keeping the frame sync and bit clock running as is. The internal filter and PCM interface of the
N681387 will switch to adjust to the Narrowband or Wideband mode of operation. This could lead to temporary
glitches on the output while switching the filter. One could briefly mute the DAC and ADC path through the firmware
code to prevent the glitches from being audible.
12.2.2.3. PCM INTERFACE IN WIDEBAND OPERATION
12.2.2.3.1. PCM INT ERF ACE 8KHZ F RAME SYNC
During Wideband operation and 8kHz frame sync the PCM data will be transmitted and received as two samples per
frame sync. The location of the MSB of each sample on the PCM bus with respect to the frame sync pulse is
programmable through two independent time slot registers. The time slots need to be programmed such that they
are 62.5usec apart. An internal data ready signal will be generated to synchronize with the filters to indicate the data
is ready and to synchronize the sample rate. The approximate timing diagram is shown below.
Figure 25: Wideband 8kHz Frame Sync PCM interface
M
S
B
L
S
B
M
S
B
L
S
B
M
S
B
L
S
B
M
S
B
L
S
B
M
S
B
M
S
B
125usec
TS1 TS2
FS
BCLK
PCMT
PCMR
Data
Ready
approximate
62.5usec 62.5usec
M
S
B
L
S
B
M
S
B
L
S
B
M
S
B
L
S
B
M
S
B
L
S
B
M
S
B
M
S
B
125usec
TS1 TS2
FS
BCLK
PCMT
PCMR
Data
Ready
approximate
62.5usec 62.5usec
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 67 of 164 January 2010
12.2.2.3.2. PCM INT ERF ACE 16 KHz FRAME SYNC
During Wideband operation and 16kHz frame sync the PCM data will be transmitted and received as one sample per
frame sync. The location of the MSB of each sample on the PCM bus with respect to the frame sync pulse is
programmable through one time slot register. The second timeslot register is not used in this case. Below is shown
the approximate timing diagram for this case.
Figure 26: Wideband 16kHz Frame Sync PCM interface
12.2.2.4. PLL & PRESCALER IN WIDEBAND OPERATION
The prescaler determines the external bit clock frequency based on the ratio of the frame sync and bit clock
frequency. When the frame sync switches to 16kHz (Wideband) it needs a signal to indicate this change in order to
determine the correct bit clock frequency. In wideband and narrowband mode using 8kHz frame sync it doesn’t need
to adjust. Therefore, the PLL & prescaler operation can be summarized by the following truth table:
WBAND pin WBEN[1] FSRATE[5] PLLWBANDEN
(switches prescaler)
GND ‘0’ ‘0’ 0
GND ‘0’ ‘1’ 0
GND ‘1’ ‘0’ 0
GND ‘1’ ‘1’ 0
VDD ‘0’ ‘0’ 0
VDD ‘0’ ‘1’ 0
VDD ‘1’ ‘0’ 0
VDD ‘1’ ‘1’ 1
Table 30: PLL and Prescaler in Wideband
M
S
B
L
S
B
M
S
B
L
S
B
M
S
B
L
S
B
M
S
B
L
S
B
M
S
B
M
S
B
62.5usec 62.5usec
TS1 TS1
FS
BCLK
PCMT
PCMR
Data
Ready
approximate
M
S
B
L
S
B
M
S
B
L
S
B
M
S
B
L
S
B
M
S
B
L
S
B
M
S
B
M
S
B
62.5usec 62.5usec
TS1 TS1
FS
BCLK
PCMT
PCMR
Data
Ready
approximate
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 68 of 164 January 2010
12.2.3. SERIAL PERIPHERAL INTERFACE (SPI)
The Serial Peripheral Interface (SPI) is one of the widely accepted communication interfaces implemented in
Nuvoton’s Pro-X portfolio. SPI is a software protocol allowing operation on a simple 4-wire bus where the data is
transferred MSB first. The SPI interface consists of a clock (SCLK), chip select (CSb), serial data input (SDI), and
serial data output (SDO) to configure all the internal register contents. SCLK is static, allowing the user to stop the
clock and then start it again to resume operations where it left off. The SCLK can run any speed up to internal PLL
master clock (13.824MHz, 24MHz, or 27.648MHz depending on selected architecture). In the case of a write, DATA
is sent by the micro-controller. In the case of a read, DATA is read by the micro-controller. To write data to the chip
the controller must follow the following sequence
There are two different Read/Write architecture
8-bits Data Read/Write
The 8-bits data Write consists of 8-bits of Device Address, 8-bits of Register Address, and 8-bits of DATA.
The 8-bits data Read consists of 8-bits of Device Address, 8-bits of Register Address, and 8-bits of DATA.
16-bits Data Read/Write
The 16-bits data Write consists of 8-bits of Device Address, 8-bits of Register Address, and 16-bits of DATA.
The 16-bits data Read consists of 8-bits of Device Address, 8-bits of Register Address, and 16-bits of DATA.
The first byte, Device Address, sent to the N681386/87 from the host controller, following a CSb going HIGH to LOW,
contains read/write bit, the Device type Identifier bits (wideband and narrowband selection information), and the burst
mode. The 8-bits of the Device Address are explained below.
Name C7 C6 C5 C4 C3 C2 C1 C0
Device Address RW 0 0 0 0 CH XP BST
Table 31: Device Address Bit pattern
Bit
Location Bit Description Bit Name Bit Value
0 1
0
Burst mode allows multiple consecutive registers to be written
to or read using in a single sequence. The complete register
address space (256 locations) can be read and written to
using burst mode.
BST Disable Enable
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 69 of 164 January 2010
Bit
Location Bit Description Bit Name Bit Value
0 1
1 Control bit to select 12-Bits monitoring XP Bits[11-4] Bits[3-0]
2 This is a channel selection bit. In case of a single channel
device this bit must be set to “0” CH 0 NA
3 - 6 Must be set to “0” for all operation - - -
7 Read/Write control bit RW Write Read
CH XP Command
0 0 Register Address (8-bits)
0 1 2nd byte of 12-Bits monitoring
Table 32: 12-bit byte Selection
12.2.4. RE AD/WRITE SEQUENCE (8-BIT OR 16-BIT)
The device is accessed via the SDI input with data clocked in on the rising edge of SCLK. DATA transfer is
synchronized to the SCLK input. Data is clocked out onto SDO on the falling edges of SCLK. SCLK is the only
reference of SDI and SDO pins. The SDO pin will go tri-state when goes CSb HIGH
The first two pictures below illustrate the Read/Write Sequence for an 8-bit architecture. Both Read/Write sequences
consist of three 8-bit transmissions, Device address, Register Address and Data. Each 8-bit transmission starts with
the falling edge of the CSb line. At the end of every 8-bit transmission is complete the CSb transitions from LOW
back to HIGH. After a valid Device Address and Register Address for Read, 8-bit Data is shifted out on the SDO line.
The last two pictures below illustrate the Read/Write Sequence for a 16-bit architecture. Both Read/Write sequences
consist of two 16-bit transmissions, the first 16-bit transmission consisting of Device address and Register Address
bytes and the second 16-bit transmission consists of Data. Each 16-bit transmission starts with the falling edge of the
CSb line. At the end of every 16-bit transmission CSb transitions from LOW back to HIGH. After a valid Device
address and Register Address for Read, 16-bits of Data is shifted out on the SDO line. Since all the registers are 8-
bits long, the least significant byte of the 16-bit Data word should be ignored. If additional clocks are sent by the
master the device will provide the same data when BST is LOW.
The SPI state machine soft resets whenever CSb asserts during an operation on an SCLK cycle that is not a multiple
of eight, including burst mode. This is a mechanism for the controller to force the state machine to a known state
when the controller and the device are out of synchronization.
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 70 of 164 January 2010
Figure 27: Register write operation through a 8-bit SPI port
Figure 28: Register read operation through a 8-bit SPI port
Figure 29: Register write operation through a 16-bit SPI port
Figure 30: Register read operation through a 16-bit SPI port
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 71 of 164 January 2010
12.2.5. SPI D AISY CHAIN
When using multiple N681386/87 devices, SPI programming can be accomplished using a daisy chain architecture
which allows all chips to share one CSb and one SCLK. To enable the daisy chain configuration, the DSY pin should
be set HIGH. In this configuration the SDO pin will no longer tri-state in order to pass the serial data to the next
device in the chain. An internal 16-bit shift register in each device facilitates the daisy chain. After CSb goes LOW,
SDI is clocked into this shift register at each rising edge of SCLK. At each falling edge of SCLK the contents of the
shift register are shifted to SDO. SDO can then be connected to the SDI of the next chip in the daisy chain
sequence. Each device evaluates the data in the internal shift register at the rising edge of CSb. Figure 35 illustrates
a three-device daisy chain arrangement.
Figure 31: Three Chip Daisy Chain connection
For daisy chain operation, the length for Device address, Register Address and CSb should be 16xD bits, where D is
the total number of devices in the daisy chain. Figure below illustrates the Device address, and Register Address
structure for three-device daisy chain architecture. Three 16-bit Device address and Register Address words are
sent sequentially, the first word for the first device in the daisy chain, the second word for the second device, etc.
Device addressing is still enabled during daisy chain mode. Therefore, if a command needs to be ignored an
unmatched device address can be sent with the command. If a command needs to be ignored a NOP can be sent
with the command by sending a ‘1’ for any bit of C6 to C3.
Figure 32: Device/Register Address for Three Device Daisy Chain application
Figure below illustrates the DATA structure for three-device daisy chain architecture. Three 8-bit DATA bytes are
sent sequentially, the first byte for the first device in the daisy chain, the second byte for the second device, etc.
SDI
SCLK
SDO Chip 3 SDI SDO Chip 2 SDI SDO Chip 1 SDI
CSb
SDO
Micro-
Controller
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 72 of 164 January 2010
Figure 33: DATA for Three Device Daisy Chain application
12.2.6. SPI BURST MODE
The N681386/87 also supports a burst mode which allows multiple consecutive registers to be written to or read
using a single Device address and Register address with BST=1. The complete register address space (256
locations) can be read/ written to using burst mode.
Figure 34: Burst mode operation (BST=1)
The data stored in memory at the next address can be read sequentially by continuing to provide clock pulses. The
address is automatically incremented to the next higher address after each byte of data is shifted out. When the
highest address is reached, the address counter rolls over to address (0x00) allowing the read cycle to be continued
indefinitely.
When the BST bit in Device address is set during a write operation the N681386/87 will accept multiple 8-bit DATA
blocks which will be written to sequential address locations beginning with the address specified in Register address.
The length of the burst is determined by the Chip Select (CSb). Note that if there is a location within the sequence
without a register assignment a dummy byte should be sent at the corresponding location in the DATA sequence.
Similarly during a burst read operation the device will output DATA as long as CSb is LOW. The device will output a
dummy byte (0x00) when locations without register assignments are within the sequence. Register bits
PCMC:BDAEN[3] address (0x00) and PCMC:BCEN[1] address (0x00) is be used to determine the broadcasting
preferences. By default, after a reset, the device will accept all burst write commands without decoding bits C3 to C6.
Once the PCMC:BCEN[1] address (0x00) bit is set, the device will only accept burst write data for the channel. Once
the PCMC:BDAEN[3] address (0x00) bit is set, the device will only accept burst write data when C3 to C6 are ‘0’.
8 Bit
16 Bit
(8 Bit CMD + 8 Bit Address)
CSb
BST = 1
8 Bit 8 Bit 8 Bit 8 Bit8 Bit
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 73 of 164 January 2010
12.2.7. SPECIAL READ SEQUENCE FOR 12-BIT WIDE REGISTER
Although N681386/87 has 8-bit wide register map, it includes some additional register bits for accurate ADC
monitoring. N681386/87 includes a special SPI Read feature. This read feature allows the user to read the 12-bits
wide registers. It can be used in the 8-bits or 16-bits wide register data read mode. One important thing to remember
is that BURST Mode cannot be use for 12-bit register read.
12.2.7.1. 12-BIT READ SEQUENCE
Two separate read sequences I required to successfully read 12-bit register. Whether it is 8-bits or 16-bits wide
register data N681386/87 still requires two byte read sequence. Selection of the second byte read is shown on one
of the above table.
8-bits or 16-bits Data Read sequence for 12-bts ADC monitoring data
Sequence Read
1st byte Read
Device Address bits[2:1] – 00 binary
Register Address any of the ADC monitoring registers
The 8 bits[7:0] of the first read data are the bits[11:4] of the 12-bits register
2nd byte Read
Device Address bits[2:1] – 01 binary
Register Address any of the ADC monitoring registers
The 4 MSB bits[7:4] of the second read data are the bits[3:0] of the 12-bits register
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 74 of 164 January 2010
Figure 35: SPI 12-bits Read sequence
12.3. POWER-ON RESET
The following Power-on Reset procedure is recommended for the N681386/87.
¡ The Reset pin (RESETb) should be held LOW as power is applied.
This allows logic levels to rise so that all output pins and all registers reach their default values while the system
is in reset mode. This process should take less than 100 s if the external supply is settled.
¡ Clocking should be applied (BCLK and, if necessary, FS)
¡ Ensure CSb and SCLK are set HIGH before setting RESETb HIGH
¡ Wait at least 400s to ensure the PLL is locked. The status can be read in register PLLS:PL[0] address (0x04)
¡ Initialize all appropriate country specific registers and mode registers according to specific operating mode
12345678 12345678
CSb
SCLK
SDO
DEVICE ADDRESS ADDRESS DATA [7:0]
12345678
SDI
12345678 12345678
CSb
SCLK
SDO
DEVICE ADDRESS ADDRESS DATA [7:0]
12345678
SDI
1234567891011 0
Read 1
Read 2
12-bit Read data
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 75 of 164 January 2010
12.4. INTERRUPT HANDLING
A number of events are capable of generating an interrupt. However, an interrupt signal is generated only if the bit
corresponding to that particular interrupt event is enabled in the Interrupt Enable Register. In that case the
corresponding bit is set in the Interrupt Status Register. An umbrella Interrupt Vector Register, INTV, indicates which
Interrupt Status Registers have bits currently set. This vectoring allows an interrupt service routine to quickly
determine which interrupt event has just occurred.
Once the interrupt has been serviced the Interrupt Status Register can be cleared by writing a one to that respective
bit. The Interrupt Vector Register INTV bits will be cleared when there are no pending interrupts in the corresponding
Interrupt Status Registers
Register
Name Address Parameter Description / Range
INTV 0x24 Interrupt Vector Register Vectors the interrupt location
INT1 0x26
Interrupt Status Register 1 Power Alarms, RING Trip and Loop Closure Interrupts
IE1 0x27
Interrupt Enable Register 1 Enables for Register 1 interrupts
INT2 0x28
Interrupt Status Register 2 FSK, DTMF, RING and Oscillator Interrupts
IE2 0x29
Interrupt Enable Register 2 for Enables for Register 2 interrupts
INT3 0x2A
Interrupt Status Register 3 Temperature Interrupts
IE3 0x2B
Interrupt Enable Register 3 Enables for Register 3 interrupts
Table 33: Interrupt Registers
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 76 of 164 January 2010
13. GENERAL DESCRIPTION FOR N681622 (LINEFEED CIRCUIT)
The N681622 is the first supporting chip of its kind in the Nuvoton’s Pro-X line of products. It integrated the high
voltage linefeed circuit. It can be used with N681386, N681387, N682386 and N682387. N681622 is designed to
reduce substantial board space compared to the existing discrete implementation of the linefeed circuit. The
N681622 operates from a 3.3V supply voltages. A small QFN20 package with exposed pad for thermal
considerations allows for easy assembly and PCB design.
13.1. FUNCTIONAL DESCRIPTION FOR N681622 (LINEFEED CIRCUIT)
The N681622 integrates the following six transistors of the discrete line driver: QT1, QT2, QT3, QR1, QR2, and QR3.
In the following register description there are some references to currents or voltages for these individual transistors.
For the N681622 the important transistors are QT1, QT3, QR1, QR3. The following diagram shows a virtual circuit
showing the equivalent positions of the these transistors inside the N681622.
Figure 36: N681622 Equivalent Internal diagram
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 77 of 164 January 2010
14. REGISTER DESCRIPTION
Please refer to the SPI command description to read and write instruction. For maximal forward compatibility, it is
recommended that “0” be written to reserved bits.
RES” in the register map means Reserved.
ASYNC means the device does not require a clock to be able to read or write
12-Bits – specific register has 12-bits
Addr
(Dec) Addr
(Hex) Name D7 D6 D5 D4 D3 D2 D1 D0 Default
(Hex) R/W
A
SYNC
/12Bit
PCM CONTROL REGISTERS
0 00 PCMC CMS[1:0] BM GCLK BDAEN TRI
RES EN 00 R/W
ASYNC
(D5-D0)
1 01 TTLNB TTSNB[7:0] 00 R/W ASYNC
2 02 RTLNB RTSNB[7:0] 00 R/W ASYNC
3 03 TCH RTSWB[9:8] TTSWB[9:8] RTSNB[9:8] TTSNB[9:8] 50 R/W ASYNC
4 04 PLLS PLLCM CLK1544EN FSRATE BCFS[3:0] (RO) PL (RO) D9 R/W ASYNC
(D7,D5)
5 05 PCMFS BCF[3:0] IFST FSS WBEN SRES 00 R/W
ASYNC
(D7-D1)
6 06 SIREV SIREV[7:0] 00 R
7 07 DVID VER[7:0] C0 R
8 08 TTLWB TTSWB[7:0] 00 R/W ASYNC
9 09 RTLWB RTSWB[7:0] 00 R/W ASYNC
FSK REGISTERS
16 10 FSKC PE PEN PTYP POL TX STOP SPEC EN 00 R/W
17 11 FSKTD FSK[7:0] 00 R/W
18 12 FSKS RES FF
RES FEP 03 R
19 13 FSKLCR RES GAIN[3:0] 00 R/W
20 14 FSKTCR RES FSKR FMT 00 R/W
Diagnostics
21 15 DIAGCTRL0 FIFOIP DCREN ACLPFEN DCLPFEN FIFOEN SIGNED RES DIAGEN 00
22 16 DIAGCTRL1 TRACNEG ACSEL[2:0] TRDCNEG DCSEL[2:0] 00
23 17 DIAGCTRL2 VHI[7:0] 00
24 18 DIAGCTRL3 RES SELT[2:0] VHI[11:8] 00
25 19 DIAGCTRL4 VLO[7:0] 00
26 1A DIAGCTRL5 DCRDC DCRAC DCRRC RES VOL[11:8] 00
27 1B DIAGCTRL6 TIMER[7:0] (RO) 00
28 1C DIAGCTRL7 TMREN RES TIMER[12:8] (RO) 00
29 1D DIAGCTRL8 DCDP[11:0] (RO) ACDP[11:0] (RO) 00 RO
30 1E DIAGFIFO0 FIFO0[31:0] (RO) 00 RO
31 1F DIAGFIFO1 FIFO1[31:0] (RO) 00 RO
SYSTEM REGISTERS
32 20 PHF RES DACFF[1:0] ADCFF[1:0]
ADCHP DACHP 80 R/W
33 21 LB DACPOL ADCPOL RES ALP2 ALP1 DLP3 DLP2 DLP1 00 R/W
34 22 PON CDCC RES DACPP ADCPP DCC 01 R/W
35 23 ILIM ZCPINV ZCPEN RNGGAIN RIPS TINS ILMGAIN CALTR1 CALTR0 00 R/W
INTERUPT REGISTERS
36 24 INTV RES IR3C1 IR2C1 IR1C1 00 R/W
38 26 INT1 PAT3 PAR3 PAT1 PAR1 PAR2 PAT2 LC RT 00 R/W
39 27 IE1 PAT3E PAR3E PAT1E PAR1E PAR2E PAT2E LCE RTE 00 RO
40 28 INT2 FSKI DTMFI RI RA O2I O2A O1I O1A 00 R/W
41 29 IE2 FSKIE DTMFIE RIE RAE O2IE O2AE O1IE O1AE 00 R/W
42 2A INT3 RES GKDI RES TMP 00 R/W
43 2B IE3 RES GKDIE RES TMPE 00 R/W
DTMF REGISTERS
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 78 of 164 January 2010
Addr
(Dec) Addr
(Hex) Name D7 D6 D5 D4 D3 D2 D1 D0 Default
(Hex) R/W
A
SYNC
/12Bit
48 30 DTMFCTRL1 DTMFEN ADCOSEL DTMFFDEV[1:0] DTMFTC[3:0] 00 R/W
49 31 DTMFCTRL2 RES DTMFCLR 00 R/W
50 32 DTMFCTRL3 RES DTMFRCVDT[3:0] 00 RO
51 33 DTMFST RES DTMFEMT 01 RO
52 34 DTMFTHRH DTMFTHR[15:8] 01 R/W
53 35 DTMFTHRL DTMFTHR[7:0] 00 R/W
54 36 DTMFPDT DTMFPDT[7:0] 00 R/W
55 37 DTMFADT DTMFADT[7:0] 00 R/W
56 38 DTMFACT DTMFACT[7:0] 00 R/W
58 3A DTMFRDT DTMFRDY DTMFST RES DTMFRDT[3:0] 00 RO
59 3B DTMFRFH DTMFRF[15:8] 00 RO
60 3C DTMFRFL DTMFRF[7:0] 00 RO
61 3D DTMFCFH DTMFCF[15:8] 00 RO
62 3E DTMFCFL DTMFCF[7:0] 00 RO
LINE REGISTERS
64 40 APG RAMP PRE VOHZ RES ARX[1:0] ATX[1:0] 00 R/W
65 41 HB DACG ADCG RES AHYB[2:0] 1B R/W
66 42 VCMR RES VCMR[5:0] 00 R/W
67 43 LAMC RES PAA RGA LCDA 07 R/W
68 44 LS SLS[3:0] LS[3:0] 00 RO
69 45 LCL LGCRT LGCRR LGCM[1:0] LGCRT RES ILM[2:0] 00 R/W
70 46 RTLC RTM LCM VBLC RTDUD RTDUA LCDU RTD LCD 00 R/W
71 47 LCDB LCDI[7:0] 00 R/W
72 48 RTDBA ARTDI[7:0] 00 R/W
73 49 PWMT PT[7:0] FF R/W
74 4A DDCC DCOFF[7:0] 76 R/W
76 4C OHV RES SB VOH[5:0] 20 R/W
77 4D GMV UBR RES VGM[5:0] 02 R/W
78 4E VBHV XBATR RES VBATH[5:0] 32 R/W
79 4F VBLV RES VBATL[5:0] 10 R/W
80 50 LCDCL LCDC[7:0] 00 R/W
81 51 RTDFCLD ARTDFC[7:0] 00 RO
82 52 DCHD ARTDFC[11:8] LCDC[11:8] 00 RW
83 53 LCT RES LCT[5:0] 00 RO
84 54 LCTHY DBTR LCHYEN LCTOFF[5:0] 00 R/W
85 55 RTTA RES ARTT5:0] 00 R/W
86 56 VOV RES TR VOV[3:0] 00 R/W
87 57 DCTON RES TONDC[4:0] 00 R/W
94 5E AMT AMTEN AMTSEL AMTTHR 00 R/W
95 5F XBTC RES ASQH CBP XTBEN XTBOT[1:0] XTBA[1:0] 00 R/W
GROUND KEY DETECTION REGISTERS
96 60 GKDH RES HGKD[5:0] 00 RO
97 61 GKDL RES LGKD[5:0] 00 R/W
98 62 GKDDT DTGKD[7:0] 00 R/W
99 63 GKDFCL FCGKD[7:0] 02 R/W
100 64 GKDFCH GKDEN RES FCGKD[11:8] 32 R/W
101 65 RTDFCLD DRTDFC[7:0] 10 R/W
102 66 DCHD RES DRTDFC[11:0] 00 R/W
103 67 RTTD RES XRTR DRTT5:0] 00 R/W
104 68 RTDBD DRTDI[7:0] 00 R/W
106 6A XBSDCN DCNXB[7:0] 00 R/W
107 6B XBSDCP DCPXB[7:0] 00 R/W
110 6E LOAD RES LOAD 00 R/W
119 77 DCTR VTR[7:0] C8 RO
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 79 of 164 January 2010
Addr
(Dec) Addr
(Hex) Name D7 D6 D5 D4 D3 D2 D1 D0 Default
(Hex) R/W
A
SYNC
/12Bit
MONITOR
120 78 RTMNT MNTRT[7:0] 00 RO
121 79 LCMNT MNTLC[7:0] 00 RO
122 7A MNT5 MNTQ1[7:0] (QT1) 00 RO
123 7B MNT7 MNTQ2[7:0] (QR1) 00 RO
124 7C MNT9 MNTQ3[7:0] (QR2) 00 RO
125 7D MNT11 MNTQ4[7:0] (QT2) 00 RO
126 7E MNT13 MNTQ5[7:0] (QR3) 00 RO
127 7F MNT15 MNTQ6[7:0] (QT3) 00 RO
LINE CONTROL REGISTERS
VOLTAGE REGISTERS
128 80 BATV VB[7:0] 02 RO
129 81 VTIP VTIP[11:0] 000 RO 12-Bits
130 82 VRING VRING[11:0] 000 RO 12-Bits
131 83 QT3V QT3V[7:0] (VTVE) (VQT2) 02 RO
132 84 QR3V QR3V[7:0] (VRVE) (VQR2) 02 RO
TRANSISTOR CURRENT REGISTERS
133 85 QT3I QT3I[11:0] 005 RO 12-Bits
134 86 QR3I QR3I[11:0] 003 RO 12-Bits
135 87 QT1I QT1I[11:0] 003 RO 12-Bits
136 88 QT2I QT2I[11:0] 003 RO 12-Bits
137 89 QR1I QR1I[11:0] 003 RO 12-Bits
138 8A QR2I QR2I[11:0] 003 RO 12-Bits
LOOP SUPERVISION
140 8C LGI ILG[11:0] 001 RO 12-Bits
141 8D LPV VLP[11:0] 001 RO 12-Bits
142 8E TIPI ITLP[11:0] 002 RO 12-Bits
143 8F RINGI IRLP[11:0] 000 RO 12-Bits
144 90 LPI ILP[11:0] 001 RO 12-Bits
145 91 POL RES P2PEN ILGP ILPP IRLPP ITLPP VLPP 1A R/W
146 92 SCM SCM[11:0] 02 RO 12-Bits
147 93 VEQT1 VEQT1[7:0] 00 RO
148 94 VQT1 VQT1[7:0] 00 RO
149 95 VEQR1 VEQR1[7:0] 00 RO
150 96 VQR1 VQR1[7:0] 00 RO
153 99 TEMP TS[7:0] (Vtemp) 00 RO
154 9A VBGAP VBG[7:0] 4A RO
155 9B VLPP2P LPVP2P[11:0] 000 RO 12-Bits
156 9C ILPP2P LPIP2P[11:0] 000 RO 12-Bits
POWER ALARM LPF POLE REGISTERS
159 9F PALCNT PALCNT[7:0] 00 RO
160 A0 PALPQ2 Q2C[7:0] 00 R/W
161 A1 PALPQn Q1C[7:0] 00 R/W
162 A2 PALPQ3 Q3C[7:0] 00 R/W
163 A3 PALPQHn Q1C[11:8] Q2C[11:8] 00 R/W
164 A4 PALPQH2 RES Q3C12 Q1C12 Q2C12 Q3C[11:8] 00 R/W
165 A5 PATHQ2 Q2TH[7:0] 00 R/W
166 A6 PATHQn Q1TH[7:0] 00 R/W
167 A7 PATHQ3 Q3TH[7:0] 00 R/W
IMPEDE NCE MATCHING REGISTERS
168 A8 IM1 ZC[3:0] ZRn[3:0] 00 R/W
169 A9 IM2 RES ZSW ZCP[1:0] ZR2C[3:0] 00 R/W
170 AA THAT THAT[7:0] 00 R/W
171 AB LCMCNT LCMCNT[7:0] 00 RO
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 80 of 164 January 2010
Addr
(Dec) Addr
(Hex) Name D7 D6 D5 D4 D3 D2 D1 D0 Default
(Hex) R/W
A
SYNC
/12Bit
172 AC CC RES CBGSW CTRIM[2:0] 00 RO
173 AD OS2RPD O2RPD[7:0] 00 RO
CALIBRATION REGISTERS
175 AF CAL1 SDAT[3:0] VBATT[3:0] 79 RO
176 B0 CAL2 TVTE1[3:0] SDBT[3:0] 97 RO
177 B1 CAL3 SCMT[3:0] RVTE1[3:0] 79 RO
DC OFFSET REGISTERS
180 B4 IQTROS HISENSE BTVR ILFDB DACSFC RES 00 R/W
181 B5 PWCT PWCT[7:0] 00 RO
182 B6 CAL4 XVRTS[3:0] XIRTT[1:0]
RES 78 R/W
TONE GENERATION REGISTERS
192 C0 OSN RES O2ZC O1ZC O2E O1E 08 R/W
193 C1 RMPC TRAP LBAC R1EN RES TOR RES 00 R/W
OSCILLATOR INITIAL CONDITION & COEFFICIENT REGISTERS
194 C2 OS1ICL O1IC[7:0] 00 R/W
195 C3 OS1ICH O1IC[15:8] 00 R/W
196 C4 OS2ICL O2IC[7:0] 00 R/W
197 C5 OS2ICH O2IC[15:8] 00 R/W
198 C6 OS1CL O1C[7:0] 00 R/W
199 C7 OS1CH O1C[15:8] 00 R/W
200 C8 OS2CL O2C[9:2] 00 R/W
201 C9 OS2CH O2C[17:10] 00 R/W
OSCILLATOR ACTIVE & INACTIVE TIME REGISTERS
202 CA OS1ATL O1ON[7:0] 00 R/W
203 CB OS1ATH O1ON[15:8] 00 R/W
204 CC OS2ATL O2ON[7:0] 00 R/W
205 CD OS2ATH O2ON[15:8] 00 R/W
206 CE OS1ITL O1OFF[7:0] 00 R/W
207 CF OS1ITH O1OFF[15:8] 00 R/W
208 D0 OS2ITL O2OFF[7:0] 00 R/W
209 D1 OS2ITH O2OFF[15:8] 00 R/W
GENERAL TONE GENERATION REGISTERS
220 DC ROFFS O2C[1:0] ROS[5:0] 00 R/W
221 DD ADCL ADC[7:0] 00 R/W
222 DE DACL DAC[7:0] 00 R/W
223 DF DGH DAC[11:8] ADC[11:8] 44 R/W
DC-DC CONFIGURATION and OTHER FUNCTIONS
224 E0 ST0L0 RES ST0L0[3:0] 02 R/W
225 E1 ST1L0 RES ST1L0[4:0] 04 R/W
226 E2 ST2L0 RES ST2L0[4:0] 06 R/W
227 E3 ST0L1 RES ST0L1[3:0] 08 R/W
228 E4 ST1L1 RES ST1L1[4:0] 10 R/W
229 E5 ST2L1 RES ST2L1[4:0] 19 R/W
230 E6 SK0L0 SK0L0[7:0] 1F R/W
231 E7 SK1L0 RES SK1L0[5:0] 04 R/W
232 E8 SK2L0 RES SK2L0[4:0] 02 R/W
233 E9 SK0L1 SK0L1[7:0] 1F R/W
234 EA SK1L1 RES SK1L1[5:0] 04 R/W
235 EB SK2L1 RES SK2L1[4:0] 02 R/W
236 EC WM0 RES WM0[4:0] 08 R/W
237 ED WM1 RES WM1[4:0] 10 R/W
238 EE WM2 RES WM2[4:0] 18 R/W
239 EF XSTEP PWMTC XS[3:0]
53 R/W
243 F3 IMRAM IMDATA 00 R/W
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 81 of 164 January 2010
Addr
(Dec) Addr
(Hex) Name D7 D6 D5 D4 D3 D2 D1 D0 Default
(Hex) R/W
A
SYNC
/12Bit
244 F4 IMDEL IMHYBDC[3:0] IMB3PDC[3:0] 00 R/W
245 F5 IMEN RES IMRW RES IMEN IMR1M IMPM 10 R/W
246 F6 PCMSCAL PCMSCAL[7:0] 00 R/W
247 F7 PCMSCAH PCMSCAL[15:8] 20 R/W
248 F8 RES 00 W
249 F9 RES 00 W
250 FA RES 00 W
251 FB IMEN RES ADCLPFBYP HBLPFBYP 00 R/W
Decimal to Hex Conversion
To convert decimal value to hex value divide the decimal number by 16, and write the remainder on the side as the
least significant digit. This process is continued by dividing the quotient by 16 and writing the remainder until the
quotient is 0. When performing the division, the remainders which will represent the hex equivalent of the decimal
number are written beginning at the least significant digit (right) and each new digit is written to the next more
significant digit (the left) of the previous digit. Consider the number 175 decimal.
Division Quotient Remainder Hex Number
175 / 16 10 = A 15 = F AF
N681386/87 includes some bits that can be written without the PLL running while some bits requires the PLL running
for the write to be effective. Any register that states the ASYNC bits means that specific DO NOT require the PLL
running for the write to be effective.
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 82 of 164 January 2010
14.1. PCM CONTROL REGISTERS
14.1.1. PCM CONTROL REGISTER
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default Async (D0 - D5)
0x00 PCMC CMS[1:0] BM GCLK BDAEN TRI
RES EN 0x00
The following table explains the PCM control register bits.
Bit
Location Bit Description Bit Name Bit Value
0 1
0 PCM path including digital receive path EN Disable Enable
2 Tri-state PCMT LSB TRI Positive edge of BCLK Negative edge of BCLK
3 Burst Device Address decode enable BDAEN All Devices in Parallel Single Device
4 GCI Clock Format (per data bit) GCLK 1 BCLK 2 BCLK
5 Must be set appropriate to PCMC:CMS
selection BM 8-bit mode 16-bit mode
There are three different CODEC Modes to choose from and they are as follows:
CODEC MODE SELECTION
CMS1 CMS0 Mode
0 0
A-Law
0 1
u-Law
1 0
Linear
1 1
Reserved
14.1.2. RECEIVE/TRANSMIT TIMESLOT (WIDEBAND AND NARROWBAND)
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
Async
0x01 TTLNB TTSNB[7:0] 0x00
0x02 RTLNB RTSNB[7:0] 0x00
0x03 TCH RTSWB[9:8] TTSWB[9:8] RTSNB[9:8] TTSNB[9:8] 0x50
Transmit and receive timeslot are expressed in number of BCLK cycles in a 10-bit word. For Narrowband, Transmit
Timeslot Start, TTSNB[9:0], determines the start point for the timeslot on the PCM interface for data in the transmit
direction and the Receive Timeslot Start, RTSNB[9:0], determines the start point for the timeslot on the PCM interface
for data in the receive direction. Timeslot Channel High, TCH address (0x03) bits are the two most significant bits of
the 10-bit word for both transmit and receive timeslot, TCH:RTSWB[9:8] and TCH:TTSWB[9:8] for Wideband and
TCH:RTSNB[9:8] and TCH:TTSNB[9:8] for Narrowband.
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 83 of 164 January 2010
14.1.3. PLL STATUS REGISTER
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default Async (D7, D5)
0x04 PLLS PLLCM CLK1544EN FSRATE BCFS[3:0] (RO) PL (RO) 0xD9
PL[0] and BCFS[4:1] are status bits which means they are READ ONLY bits in this register. Any write to these bits
will be ignored. FSRATE[5], CLK1544EN[6], and PLLM[7] are READ/WRITE bits.
Bit
Location Bit Description Bit Name Bit Value
0 1
0 PLL Lock Status (RO) PL Not Locked Locked
5 Frame Sync Rate FSRATE 8kHz 16kHz
6 Enable clock 1.544MHz
CLK1544EN Disabled Enabled
With an external 8 kHz Frame Sync set (PCMFS:FSS=0), PLL Bit Clock Frequency Status, BCFS[3:0] bits will show
the value of BCLK according to the following table. Not all clocks are supported by 16KHz frame sync [ * ].
Bit Clock Frequency DC/DC CLK Mode DC-DC Clock
Type
BCFS[3] BCFS[2] BCFS[1] BCFS[0] BCLK(kHz) PLLCM[7] PON:CDCC[7]
(Addr – 0x22)
0 0 0 0 256
0 0 MHz824.13 1
0 0 0 1 512 0 1
MHz648.27
1
0 0 1 0 768
1 0
0 0 1 1
1000* 1 1
0 1 0 0 1024
0 1 0 1 1152
0 1 1 0 1536
0 1 1 1
1544*
1 0 0 0 2000
1 0 0 1 2048
1 0 1 0 4000
1 0 1 1 4096
1 1 0 0 8000
1 1 0 1 8192
1 1 1 0 NA
1 1 1 1
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 84 of 164 January 2010
14.1.4. PCM FREQUENCY SETTING REGISTER
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default Async (D7- D1)
0x05 PCMFS BCF[3:0] IFST FSS WBEN SRES 0x00
The following table explains the PCM Frequency Setting register bits.
Bit
Location Bit Description Bit Name Bit Value
0 1
0 Soft Reset SRES Disable Enable
1 Band Select WBEN FS = 8kHz
(Narrowband)
FS = 16kHz
(Wideband)
2 Frame Sync Source FSS External Internal
3 Internal Frame Sync Type IFST Short (fixed width
1 BCLK)
Long (fixed width
8 BCLK)
When an internal 8 kHz Frame Sync is used (PCMFS:FSS=1) these bits should be programmed with the value of
BCLK Frequency, BCFS[3:0], according to the following table.
Bit Clock Frequency
BCF
[4] BCF
[3] BCF
[2] BCF
[1] BCLK
(Hz)
0 0 0 0 256
0 0 0 1 512
0 0 1 0 768
0 0 1 1 1000
0 1 0 0 1024
0 1 0 1 1152
0 1 1 0 1536
0 1 1 1 1544
1 0 0 0 2000
1 0 0 1 2048
1 0 1 0 4000
1 0 1 1 4096
1 1 0 0 8000
1 1 0 1 8192
1 1 1 0 NA
1 1 1 1
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 85 of 164 January 2010
14.1.5. SILICON VERSION ID REGISTER (READ ONLY)
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x06 SIREV SIREV[7:0] 0xEF
Silicon revision ID Register is a READ ONLY register.
14.1.6. DEVICE VERSION ID REGISTER (READ ONLY)
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x07 DVID VER[7:0] (RO) NA
Device Version ID Register is a READ ONLY register.
Device VER[7:0] Condition
N681386 0x01
N681387 0x01 WBAND Pin = GND
N681387 0x09 WBAND Pin = VDD
14.1.7. TIMESLOT (WIDEBAND)
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
Async
0x08 TTLWB TTSWB[7:0] 0xC0
0x09 RTLWB RTSWB[7:0] 0xC0
Transmit and receive timeslot are expressed in number of BCLK cycles in a 10-bit word. For Wideband, Transmit
Timeslot Start, TTSWB[9:0], determines the start point for the timeslot on the PCM interface for data in the transmit
direction and the Receive Timeslot Start, RTSWB[9:0], determines the start point for the timeslot on the PCM
interface for data in the receive direction. The two most significant bits of the 10-bit word are located on register TCH
address (0x03).
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 86 of 164 January 2010
14.2. FSK REGISTERS
14.2.1. FSK CONTROL REGISTER
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x10 FSKC PE PEN PTYP POL TX STOP SPEC EN 0x00
The following table explains the FSK Control Register bits.
Bit
Location Bit Description Bit
Name Bit Value
0 1
0 FSK Encoder EN Disable Enable
1 FSK Specification SPEC Bell 202 ITU-T V.23
2 Number of STOP bits STOP 1 Stop bit 2 Stop bits
3 FSK Encoder start to transmit
data from FSK FIFO TX Stop
Transmission
Start
Transmission
4 FSK bit stream polarity POL Non-inverted Inverted
5 Parity Bit Type PTYP Even parity Odd parity
6 Parity Bit Enable PEN Disable Enable
7 FSK Package Format PE Disable Enable
FSK Package Format automatically amends a ‘start bit’ (Space) to the head of the FSK transmit data and one or two
‘stop bits’ (Mark) to the end, depending on programming of FSKC:STOP. “Res” in the register map means Reserved.
Bell 202 ITU-T V.23
Mark ‘1’ 1200 Hz 1300 Hz
Space ‘0’ 2200 Hz 2100 Hz
14.2.2. FSK TRANSMIT REGISTER
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x11 FSKTD FSK[7:0] 0x00
FSK Transmit Register, FSK[7:0], is a WRITE ONLY register. Data written to this register will be placed into the
Internal FIFO for transmission. Note: Reading this register will always give 0x00 as data.
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 87 of 164 January 2010
14.2.3. FSK STATUS REGISTER (READ ONLY)
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x12 FSKS RES FF
(RO) RES FEP
(RO) 0x03
RES” in the register map means reserved bit(s).
FSK Status Register is a READ ONLY register. The following table explains the FSK Status Register bits.
Bit
Location Bit Description Bit
Name Bit Value
0 1
0 FSK FIFO Empty Pending FEP FSK FIFO not empty (Last set of
bit stream finished transmitting) FSK FIFO is empty
2 FSK FIFO Full FF FSK FIFO not Full FIFO Full
14.2.4. FSK LCR REGISTER
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x13 FSKLCR RES GAIN[3:0] 0x00
RES” in the register map means reserved bit(s).
The gain level is specified in linear values and referenced to the maximum linear PCM level (+3.14 dBm0). The
following table contains the adjusted levels and the attenuated value of the correspondent maximum PCM level.
FSK Encoder output signal level Attenuation to max
PCM level
GAIN3 GAIN2 GAIN1 GAIN0
0 0 0 0 -
0 0 0 1 -23.512
0 0 1 0 -17.499
0 0 1 1 -13.978
0 1 0 0 -11.48
0 1 0 1 -9.542
0 1 1 0 -7.956
0 1 1 1 -6.617
1 0 0 0 -5.458
1 0 0 1 -4.434
1 0 1 0 -3.52
1 0 1 1 -2.692
1 1 0 0 -1.937
1 1 0 1 -1.242
1 1 1 0 -0.599
1 1 1 1 0
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 88 of 164 January 2010
14.2.5. FSK TCR REGISTER
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x14 FSKTCR RES FSKR FMT 0x00
RES” in the register map means reserved bit(s).
Bit
Location Bit Description Bit
Name Bit Value
0 1
0 Fast Mode FMT Disabled Enabled
1 FSK Route FSKR Output Not Output
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 89 of 164 January 2010
14.3. DIAGNOSTIC REGISTERS
14.3.1. DIAGNOSTIC CONTROL 0
Addr Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x15 DIAGCTRL0 FIFOIP DCREN ACLPFEN DCLPFEN FIFOEN SIGNED RES DIAGEN 0x00
Bit
Location Bit Description Bit Name Bit Value
0 1
0 Enable Diagnostic Mode DIAGEN Disabled Enabled
2 Converts unsigned Source Register data to signed data SIGNED Disabled Enabled
3 Enable DIAGFIFO0 / DIAGFIFO1 FIFO Structure. FIFOEN Disabled Enabled
4
Enable Low pass filter in the DC path.
The DC Path LPF utilizes the Loop Closure Detect LPF and is
programmed in LCDCL: LCDC[11:0].
DCLPFEN Disabled Enabled
5
Enable Low pass filter in the AC path.
The AC Path LPF utilizes the AC Ring Trip Detect LPF and is
programmed in RTDFCLD:ARTDFC[11:0].
ACLPFEN Disabled Enabled
6 Enable DC Removal function in the AC path DCREN Disabled Enabled
7
Determines Data routed to DIAGFIFO0 / DIAGFIFO1 FIFO Structure
DIAGCTRL0:DIAGEN must be set.
NOTE: DIAGCTRL0:FIFOEN will be turned on automatically if ADC
PCM Data is selected.
FIFOIP DC/AC
Diagnostics
Output
ADC
PCM
data
14.3.2. DIAGNOSTIC CONTROL 1
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x16 DIAGCTRL1
TRACNEG ACSEL[2:0] TRDCNEG DCSEL[2:0] 0x00
Bit
Location Bit Description Bit Name Bit Value
0 1
3 VTIP, VRING and SCM are forced to negative values when selected
on the DC diagnostics path. TRDCNEG Disabled Enabled
7 VTIP, VRING and SCM are forced to negative values when selected
on the AC diagnostics path. TRACNEG Disabled Enabled
NOTE: Some diagnostic operations required signed operation, for example: DC removal.
ACSEL[6:4]: Select source register for the AC path diagnostics
DCSEL[2:0]: Select source register for the DC path diagnostics
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 90 of 164 January 2010
Select AC/DC source for Diagnostics
ACSEL2
DCSEL2 ACSEL1
DCSEL1 ACSEL0
DCSEL0 Source
Register
0 0 0 VTIP
0 0 1
VRING
0 1 0
LPV
0 1 1 SCM
1 0 0
TIPI
1 0 1
RINGI
1 1 0 LPI
1 1 1
LGI
14.3.3. DIAGNOSTIC CONTROL 2, 3, 4. AND 5
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x17 DIAGCTRL2 VHI[7:0] 0x00
0x18 DIAGCTRL3 RES SELT[2:0] VHI[11:8] 0x00
0x19 DIAGCTRL4 VLO[7:0] 0x00
0x1A DIAGCTRL5
DCRDC DCRAC DCRRC RES VLO[11:8] 0x00
Select MADC source for timing measurement.
SELT2 SELT1 SELT0 Source
Register
0 0 0
VTIP
0 0 1 VRING
0 1 0
LPV
0 1 1
SCM
1 0 0 TIPI
1 0 1
RINGI
1 1 0
LPI
1 1 1 LGI
VHI[11:0]: Determines VHI for DIACNTRL:TIMER[12:0] measurement.
Range, Step Size and number of valid bits same as Source Register determined by SELT.
VLO[11:0]: Determines VLO for DIACNTRL:TIMER[12:0] measurement.
Range, Step Size and number of valid bits same as Source Register determined by SELT.
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 91 of 164 January 2010
Bit
Location Bit Description Bit Name Bit Value
0 1
5 DC Removal RC Time Constant DCRRC 1.25/64ms 1.25/32ms
6 DC Removal Accelerated Convergence. DCRAC Disable Enable
7
Enable DC Removal output to DC Path LPF in addition to the
normal connection to the AC Path LPF
DIACNTRL0:DCREN must be set.
DCRDC Disable Enable
Notes:
- When enabled DC Removal is able to estimate the DC level of a selected source data and pass an AC only
signal to the AC Path LPF.
- When DC Removal is enabled both DIAGCTRL5:TRDCNEG and DIAGCTRL5:TRACNEG need to be turned
on if VTIP or VRING or SCM are selected as the source register.
14.3.4. DIAGNOSTIC CONTROL 6 AND 7 (READ ONLY)
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x1B DIAGCTRL6 TIMER[7:0] (RO) 0x00
0x1C DIAGCTRL7 TMREN RES TIMER[12:8] (RO)
TIMER[12:0] are status bits which means they are READ ONLY bits in this register. Any write to these bits will be
ignored. TMREN[5] is READ/WRITE bit.
Bit(s)
Location Bit Description Bit
Name
Bit Value
0 1
7 Capacitor Charging Timer TMREN
Reset Timer - It will increase
by at the rate of 800hz when
the monitored source is
between VLO and VHI.
The timer will accumulate the
time when the voltage of the
selected source (by SELT)
falls between VLO and VHI.
Capacitor Charging Timer
TMREN[7] (0x1C)
Minimum Maximum Increment
Range 0 ms 10.24 s 1.25 ms
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 92 of 164 January 2010
14.3.5. DIAGNOSTIC CONTROL 8 (READ ONLY)
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x1D DIAGCTRL8
DCDP[7:0] (RO) 00
RES DCDP[11:8] (RO)
ACDP[7:0] (RO) 00
RES ACDP[11:8] (RO)
DCDP[11:0]: DC Diagnostic Path Output
ACDP[11:0]: AC Diagnostic Path Output
NOTE: This register is structured to be read in 4 byte burst
14.3.6. DIAGNOSTIC FIFO 0 AND FIFO1 (READ ONLY)
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x1E DIAGFIFO0
FIFO0[7:0] (RO) 00
FIFO0[15:8] (RO)
FIFO0[23:16] (RO) 00
FIFO0[31:24] (RO)
0x1F DIAGFIFO1
FIFO1[7:0] (RO) 00
FIFO1[15:8] (RO)
FIFO1[23:16] (RO) 00
FIFO1[31:24] (RO)
DIAGFIFO0 and DIAGFIFO1 are structured as Dual FIFO Structures. Each FIFO has 16 entries, each entry
structured as a 4 byte structure illustrated above. When one FIFO is full an interrupt is generated and diagnostic data
is collected in the alternative FIFO. In Diagnostic Mode (DIAGCTRL0:DIAGEN) DIAGFIFO0 uses the Ring Trip
Detect Interrupt mechanism and DIAGFIFO1 uses the Loop Closure Detect Interrupt mechanism.
When DIAGCTRL0:FOFIP[7] is set to 0, DIAGFIFO0 and DIAGFIFO1 are used to store DC Diagnostic Path and AC
Path Output Data
- FIFOn[15:0], n=0,1 contains DCDP[11:0]: DC Diagnostic Path Output in the lower 12 bits
FIFOn[31:16], n=0,1 contains ACDP[11:0]: AC Diagnostic Path Output in the lower 12 bits
- NOTE: DC Diagnostic Path and AC Path Data is input to each FIFO at 800 Hz.
When DIAGCTRL0:FOFIP[7] is enabled DIAGFIFO0 and DIAGFIFO1 are used to store ADC PCM Data
- FIFOn[15:0], n=0,1 contains 16-bit ADC PCM data
FIFOn[31:16], n=0,1 is not output
In this case the Maximum burst read is 32 bytes per FIFO.
- NOTE: PCM Data is input to each FIFO at the sampling frequency (Wideband or Narrowband).
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 93 of 164 January 2010
14.4. SYSTEM REGISTERS
14.4.1. PCM HPF (HIGH PASS FILTER)
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x20 PHF DACLP RES DACFF[1:0] ADCFF[1:0] ADCHP DACHP 0x80
RES” in the register map means reserved bit(s).
Bit
Location Bit Description Bit Name Bit Value
0 1
0 PCM Transmit HPF (DAC) DACHP Enable Disable
1 PCM Receive HPF (ADC) ADCHP Enable Disable
7 LPF for Wideband (DAC) DACLP Disable Enable
High Pass Filter Select DAC High Pass Filter Select ADC
DACFF
[5] DACFF
[4] DAC HPF
Select (Hz) ADCFF
[3] ADCFF
[2] ADC HPF
Select (Hz)
0 0 20 0 0 20
0 1 40 0 1 40
1 0 80 1 0 80
1 1 160 1 1 160
High pass filter cutoff is only programmable in the Wideband mode.
14.4.2. LOOP BACK CONTROL REGISTER
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x21 LB DACPOL ADCPOL
RES ALP2 ALP1 DLP3 DLP2 DLP1 0x00
RES” in the register map means reserved bit(s).
The following table explains the Loop Back Control Register bits.
Bit
Location Bit Description Bit Name Bit Value
0 1
0 Digital loop back (D/A to A/D) DLP1 Disable Enable
1 Digital loop back (LP interpolation filter to LP decimation
filter) DLP2 Disable Enable
2 Digital loop back (A/u law expander to A/u law compander) DLP3 Disable Enable
3 Analog Loop back 1 ALP1 Disable Enable
4 Analog Loop back 2 ALP2 Disable Enable
6 Invert ADC input Polarity ADCPOL Disable Enable
7 Invert DAC Output Polarity DACPOL Disable Enable
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 94 of 164 January 2010
14.4.3. POWER ON
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x22 PON
CDCC RES DACPP ADCPP DCC 0x01
RES” in the register map means reserved bit(s). The following table explains the Loop Back Control Register bits.
Bit
Location Bit Description Bit
Name Bit Value
0 1
0 DC/DC Power Control Circuitry DCC DCDC On DCDC OFF
1 A/D Power Path ADCPP Disable Enable
2 DAC Power Path DACPP Disable Enable
DC/DC CLK Mode
DC-DC Clock Type
PLLS:PLLCM[7]
(Addr: 0x04) CDCC[7]
0 0 MHz824.13
1
0 1
MHz648.27
1
1 0
1 1
This table gives the PLL Period.
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 95 of 164 January 2010
14.4.4. LINEFEED TRIM
Addr Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x23 ILIM ZCPINV ZCPEN RNGGAIN RIPS TINS ILMGAIN CALTR1 CALTR0 0x00
CALIBRATION STATE
CURRENT ADJUST
CALTR1 CALTR0 Current
0 0 20mA
0 1 19.6mA
1 0 19.4mA
1 1 20.4mA
Bit
Location Bit Description Bit Name Bit Value
0 1
2 Ring Limiting Gain Adjust strength of Ring
limiting Impacts noise ILIMGAIN Default 2 x default
3 Idle State Battery Current TINS Default current Low current
4 Idle State Battery Current Stops RIP in idle
for lower power RIPS Default current Low current
5 Increase Ring feedback gain in idle and
Ring state for more accuracy RNGGAIN Default High gain
6 Line Capacitor Compensation ZCPEN Disabled Enabled
7 Line Capacitor Compensation ZCPINV Subtract Add
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 96 of 164 January 2010
14.5. INTERRUPT REGISTERS
14.5.1. INTERRUPT VECTOR LOW (READ ONLY)
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x24 INTV RES IR3C1
(RO)
IR2C1
(RO)
IR1C1
(RO) 0x00
RES” in the register map means reserved bit(s).
Interrupt Vector Register is a READ ONLY register. Each bit in this register will be cleared when there are no
pending interrupts reported in the corresponding interrupt status registers.
Bit
Location Bit Description Bit
Name Bit Value
0 1
0 Interrupt Vector 1 Low IR1C1 No INT INT1
1 Interrupt Vector 2 Low IR2C1 No INT INT2
2 Interrupt Vector 3 Low IR3C1 No INT INT3
14.5.2. INTERRUPT STATUS REGISTER 1
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x26 INT1 PAT3 PAR3 PAT1 PAR1 PAR2 PAT2 LC RT 0x00
This register displays all the Power Alarm and the Loop Closure interrupt of the device. A pending interrupt is
represented by a HIGH “1” in the respective bit. Writing 1 to that respective bit clears the pending interrupt.
Bit
Location Bit Description Bit
Name Bit Value
0 1
0 RING Trip RT No INT INT
1 Loop Closure LC No INT INT
2 Power Alarm QR2 PAT2 No INT INT
3 Power Alarm QT2 PAR2 No INT INT
4 Power Alarm QT1 PAR1 No INT INT
5 Power Alarm QR1 PAT1 No INT INT
6 Power Alarm QR3 PAR3 No INT INT
7 Power Alarm QT3 PAT3 No INT INT
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 97 of 164 January 2010
14.5.3. INTERRUPT EN ABLE REGISTER 1
Addr Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x27 IE1 PAT3E PAR3E PAT1E PAR1E PAR2E PAT2E LCE RTE 0x00
This register enables all the Power Alarm and the Loop Closure interrupt of the device. An interrupt can be enabled
by writing a HIGH “1” in the respective interrupt bit.
Bit
Location Bit Description Bit Name Bit Value
0 1
0 RING Trip RTE Masked Enabled
1 Loop Closure LCE Masked Enabled
2 Power Alarm QR2 PAT2E Masked Enabled
3 Power Alarm QT2 PAR2E Masked Enabled
4 Power Alarm QT1 PAR1E Masked Enabled
5 Power Alarm QR1 PAT1E Masked Enabled
6 Power Alarm QR3 PAR3E Masked Enabled
7 Power Alarm QT3 PAT3E Masked Enabled
14.5.4. INTERRUPT STATUS REGISTER 2
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x28 INT2 FSKI DTMFI RI RA O2I O2A O1I O1A 0x00
Bit
Location Bit Description Bit Name Bit Value
0 1
0 Oscillator 1 Active Timer O1A No INT INT Pending
1 Oscillator 1 Inactive Timer O1I No INT INT Pending
2 Oscillator 2 Active Timer O2A No INT INT Pending
3 Oscillator 2 Inactive Timer O2I No INT INT Pending
4 Ringing Active Timer RA No INT INT Pending
5 Ringing Inactive Timer RI No INT INT Pending
6 DTMF Initialize DTMFI No INT INT Pending
7 FSK Interrupt occurs when the
FSK FIFO is empty FSKI No INT INT Pending
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 98 of 164 January 2010
14.5.5. INTERRUPT EN ABLE REGISTER 2
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x29 IE2 FSKIE DTMFIE RIE RAE O2IE O2AE O1IE O1AE 0x00
Bit
Location Bit Description Bit Name Bit Value
0 1
0 Oscillator 1 Active Timer O1AE Masked Enabled
1 Oscillator 1 Inactive Timer O1IE Masked Enabled
2 Oscillator 2 Active Timer O2AE Masked Enabled
3 Oscillator 2 Inactive Timer O2IE Masked Enabled
4 Ringing Active Timer RAE Masked Enabled
5 Ringing Inactive Timer RIE Masked Enabled
6 DTMF Inactive Timer DTMFIE Masked Enabled
7 FSK Enable FSKIE Masked Enabled
14.5.6. INTERRUPT STATUS REGISTER 3
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x2A INT3 RES GKDI RES TMP 0x00
RES” in the register map means reserved bit(s).
This register displays the status of the dice Temperature interrupt of the device. A pending interrupt is represented
by a HIGH “1” in the respective bit. Writing 1 to that respective bit clears the pending interrupt.
Bit
Location Bit Description Bit Name Bit Value
0 1
0 Die Temperature Interrupt TMP No INT INT Pending
3 Ground Key Detection
Interrupt GKDI No INT INT Pending
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 99 of 164 January 2010
14.5.7. INTERRUPT EN ABLE REGISTER 3
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x2B IE3 RES GKDIE RES TMPE 0x00
RES” in the register map means reserved bit(s).
This register enables the dice Temperature interrupt of the device. An interrupt can be enabled by writing a HIGH “1”
in the respective interrupt bit. The following table explains the Interrupt Enable Register 1 bits.
Bit
Location Bit Description Bit Name Bit Value
0 1
0 Temperature Interrupt Enable TMPE Masked Enabled
3 Ground Key Detection
Interrupt Enable GKDIE Masked Enabled
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 100 of 164 January 2010
14.6. DTMF DETECTION REGISTER
14.6.1. DTMF CONTROL 1
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x30 DTMFC1 DTMFEN ADCOSEL DTMFFDEV DTMFTC 0x00
ADC output is the signal from ADC coming to DTMF decode. Therefore, the ADC Select bit select either the ADC or
PCM input to the DTMF decode. When DTMFTC[3:0] bits are set to larger values, DTMF detector needs more time
to decode the DTMF signal but the numerical precision is greater.
Bit
Location Bit Description Bit Name Bit Value
0 1
6 ADC Output Select ADCOSEL
ADC output comes from ADC.
(Receive path)
ADC output comes from PCM.
(Transmit path)
7 DTMF Enable DTMFEN Disabled Enabled
DTMF Frequency Deviation
DTMFFDEV[5] DTMFFDEV[4] Deviation
(%)
0 0 1.5
0 1 2.5
1 0 3.0
1 1 3.5
Time constant used for DTMF frequency estimation
DTMFTC3 DTMFTC2 DTMFTC1 DTMFTC0 Time
Constant
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 101 of 164 January 2010
Time constant used for DTMF frequency estimation
DTMFTC3 DTMFTC2 DTMFTC1 DTMFTC0 Time
Constant
1 0 1 0 10
1 0 1 1
11
1 1 0 0 12
1 1 0 1
13
1 1 1 0 14
1 1 1 1
15
14.6.2. DTMF CONTROL 2
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x31 DTMFCTRL2 RES DTMFCLR 0x00
RES” in the register map means reserved bit(s).
Bit
Location Bit Description Bit Name Bit Value
0 1
0 DTMF Clear previous received data. DTMFCLR Default Clear
14.6.3. DTMF CONTROL 3
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x32 DTMFCTRL3 RES DTMFRCVDT 0x00
RES” in the register map means reserved bit(s).
Row Frequency
Column frequency
1209 Hz 1336 Hz 1477 Hz 1633 Hz
697 Hz 1 2 3 A
0x01 hex 0x02 hex 0x03 hex 0x0D hex
770 Hz 4 5 6 B
0x04 hex 0x05 hex 0x06 hex 0x0E hex
852 Hz 7 8 9 C
0x07 hex 0x08 hex 0x09 hex 0x0F hex
941 Hz * 0 # D
0x0B hex 0x0A hex 0x0C hex 0x00 hex
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 102 of 164 January 2010
14.6.4. DTMF STATUS (READ ONLY)
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x33 DTMFST RES DTMFEMT
(RO) 0x01
RES” in the register map means reserved bit(s). It is a Read ONL Y bit
Bit
Location Bit Description Bit Name Bit Value
0 1
0 DTMF buffer is empty DTMFEMT Pending Data Buffer is Empty
14.6.5. DTMF THRESHOLD
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x34 DTMFTHRH DTMFTHR[15:8] 0xE4
0x35 DTMFTHRL DTMFTHR[7:0] 0xE5
This is the signal level threshold which must be present to detect a DTMF tone.
14.6.6. DTMF PRESENT DETECT TIME
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x36 DTMFPDT DTMFPDT[7:0] 0x00
DTMF PRESENT DETECT TIME
The time for which a tone must be present to be
qualified as a valid DTMF tone
Minimum Maximum Increment
Range 0 ms 127 ms 0.5 ms
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 103 of 164 January 2010
14.6.7. DTMF ABSENT DETECT TIME
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x37 DTMFADT DTMFADT[7:0] 0x00
DTMF ABSENT DETECT TIME
The time for which a tone must be absent before a
signal is considered a new DTMF tone
Minimum Maximum Increment
Range 0 ms 127 ms 0.5 ms
14.6.8. DTMF ACCEPT TIME
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x38 DTMFACT DTMFACT[7:0] 0x00
DTMF ACCEPT TIME
The time for which a tone must be stable to
be qualified as a correct tone
Minimum Maximum Increment
Range 0 ms 127 ms 0.5 ms
This guard time improves detection performance by rejecting detected signals with insufficient duration and by
masking momentary detection dropout.
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 104 of 164 January 2010
14.6.9. DTMF RECEIVE D ATA STATUS
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x3A DTMFRDT DTMFRDY DTMFST RES DTMFRDT[3:0] 0x00
RES” in the register map means reserved bit(s).
DTMF Detector received data, DTMFRDT[3:0]. This data is valid when DTMF Ready, DTMFRDY[7], is active.
Bit
Location Bit Description Bit Name Bit Value
0 1
6
DTMF State (indicates whether a valid DTMF tone
is currently being detected and DTMF Present
Time DTMFPDT[7:0], is qualified.) DTMFST Data Not
Valid
Data
Valid
7
DTMF Ready (indicates that a valid DTMF tone
has been present for required DTMF Hold Time
(ACCT) DTMFRDY Data Not
Ready
Data
Ready
Row Frequency
Column frequency
1209 Hz 1336 Hz 1477 Hz 1633 Hz
697 Hz 1 2 3 A
0x01 hex 0x02 hex 0x03 hex 0x0D hex
770 Hz 4 5 6 B
0x04 hex 0x05 hex 0x06 hex 0x0E hex
852 Hz 7 8 9 C
0x07 hex 0x08 hex 0x09 hex 0x0F hex
941 Hz * 0 # D
0x0B hex 0x0A hex 0x0C hex 0x00 hex
14.6.10. DTMF ROW FREQUENCY
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x3B DTMFRFH DTMFRF[15:8] 0x00
0x3C DTMFRFL DTMFRF[7:0] 0x00
These two bytes are for debug mode, and display the DTMF Row frequency directly.
DTMFRF[15:3] is the integer part of the DTMF Row frequency,
DTMFRF[2:0] is the decimal fraction part of the DTMF Row frequency (13.3 format).
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 105 of 164 January 2010
14.6.11. 14/15 DTMF COL UMN F REQUENCY
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x3D DTMFCFH DTMFCF[15:8] 0x00
0x3E DTMFCFL DTMFCF[7:0] 0x00
These two bytes are for debug mode, and display the DTMF Column frequency directly.
DTMFCF[15:3] is the integer part of the DTMF Column frequency,
DTMFCF[2:0] is the decimal fraction part of the DTMF Column frequency (13.3 format).
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 106 of 164 January 2010
14.7. LINE REGISTERS
14.7.1. AC PATH G AIN
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x40 APG
RAMP PREN VOHZ RES ARX[1:0] ATX[1:0] 0x00
Analog Receive Gain Analog Transmit Gain
ARX1 ARX0 Gain (dB) ATX1 ATX0 Gain (dB)
0 0 0 0 0 0
0 1 - 3.5 0 1 - 3.5
1 0 + 3.5 1 0 + 3.5
1 1 Mute 1 1 Mute
Bit
Location Bit Description Bit Name Bit Value
0 1
5 Wink function VOHZ Return to nominal VRING Ramp towards 0 VRING
6 Soft Polarity Reversal PREN Disable Enable
7 Soft Polarity Reversal ramp RAMP 1.484 V/125 µs 2.968 V/125 µs
14.7.2. HYBRID BALANCE
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x41 HB
DACG ADCG RES AHYB[2:0] 0x1B
Bit
Location Bit Description Bit Name Bit Value
0 1
6 Analog ADC Path Gain ADCG -6 dB 0 dB
7 Analog DAC Path Gain DACG 0 dB 6 dB
Audio Hybrid Balance Adjustment
AHYB2 AHYB1 AHYB0 Trans hybrid Gain
0 0 0 +4.08
0 0 1 +2.50
0 1 0 +1.16
0 1 1 0
1 0 0 - 1.02
1 0 1 - 1.94
1 1 0 - 2.77
1 1 1 Disable
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 107 of 164 January 2010
14.7.3. COMMON RINGING BIAS ADJUST DURING RINGING
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x42 VCMR RES VCMR[5:0] 0x00
“RES” in the register map means reserved bit(s).
The above register sets Common Ringing Bias Adjustment voltage during Ringing. To convert decimal value to hex
value please refer to the beginning of this section (Register Description).
COMMON RINGING BIAS ADJUST VOLTAGE
DURING RINGING
Minimum Maximum Increment
Range 0 V –93.5 V 1.484 V
14.7.4. LINE AUTOMATIC MANUAL CONTROL
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x43 LAMC RES PAA RGA LCDA 0x07
RES” in the register map means reserved bit(s).
Bit
Location Bit Description Bit Name Bit Value
0 1
0 Loop Closure Detect Automatic LCDA Manual Mode Automatic Control
1 RING Automatic RGA Manual Mode Automatic RING
Control
2
Power Alarm Automatic React
(Enters Open state automatically upon power
alarm regardless of current state)
PAA Manual Mode Automatic Control
In RING Automatic, LAMC:RGA[1] address (0x43), when entering Ringing state the RING Oscillator is automatically
enabled. Both OSN:O2E[1] address (0xC0) and RMPC:R1EN[5] address (0xC1) are set automatically. Enter Active
state from ringing state automatically upon RING Trip Detect. The RING Oscillators are automatically disabled.
Forward or Reverse states determined primarily by OHV:SB[6] address (0x4C) Upon entering Loop Closure Detect
Automatic LAMC:LCDA[0] address (0x43) the device will enter the Active state from Idle, TIP Open, RING Open and
ON-HOOK Transmission states automatically upon Loop Closure Detect. Forward or Reverse states determined
primarily by OHV:SB[6] address (0x4C).
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 108 of 164 January 2010
14.7.5. LINEFEED STATUS
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x44 LS SLS[3:0] LS[3:0] 0x00
LineFeed Status
LS3 LS2 LS1 LS0 State
0 0 0 0 Open
0 0 0 1 Forward Active
0 0 1 0 Forward ON-HOOK Transmission
0 0 1 1 TIP Open
0 1 0 0 Ringing
0 1 0 1 Reverse Active
0 1 1 0 Reverse ON-HOOK Transmission
0 1 1 1 RING Open
1 0 0 1 Forward Idle
1 1 0 1 Reverse Idle
1 1 1 0 Calibration Mode
LS:LS[3:0] is the Linefeed Status Register bits which reflects the programmed linefeed state, not necessarily the
actual linefeed state. See LS:SLS[3:0] definition. When automatic transitions occur LS:LS[3:0] will also update
accordingly.
SLS[3:0] is the Shadow Linefeed Status Register bits which reflects the actual real-time linefeed state. Automatic
operations may cause actual linefeed state to deviate from the state defined in LS:LS[3:0]. For example when
LS:LS[3:0] is programmed for ‘Ringing’ state, LS:SLS[3:0] will only indicate ‘Ringing’ during the actual RING burst.
During the RING cadence LS:SLS[3:0] will indicate ‘ON-HOOK Transmission’. This register has the same setting as
the Linefeed Status Register bits.
14.7.6. LOOP CURRENT LIMIT
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x45 LCL LGCRT LGCRR LGCM[1:0] RES ILM[2:0] 0x00
RES” in the register map means reserved bit(s). To convert Current Limit decimal value to hex value please refer to
the beginning of this section (Register Description).
CURRENT LIMIT [ILM[2:0]]
Minimum Maximum Increment
Range 20 mA [0x00] 41 mA [0x07] 3 mA
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 109 of 164 January 2010
LGCM1 LGCM0 Common Mode
Correction
0 0 Open (none)
0 1 Small (one)
1 0 Medium (two)
1 1 Large (three)
Bit
Location Bit Description Bit Name Bit Value
0 1
6 Series Resistor with CRn LGCRR OFF ON
7 Series Resistor with CTn LGCRT OFF ON
14.7.7. RING TRIP DETECT STATUS/ LOOP CLOSURE STATUS (READ ONLY)
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x46 RTLC RTM LCM VBLC RTDUD
(RO)
RTDUA
(RO)
LCDU
(RO)
RTD
(RO)
LCD
(RO) 0x00
RES” in the register map means reserved bit(s).
RING Trip Detect Unfiltered Indicator (RTDUD) bit reflects the real-time output of RING trip detects circuit before
debounce. Loop Closure Detect Unfiltered Indicator (LCDU) bit reflects the real-time output of Loop Closure Detect
circuit before debounce. Bits of register RTLC[7:5] are READ/WRITE but the bits RTLC[4:0] are READ ONLY
Bit
Location Bit Description Bit Name Bit Value
0 1
0 Loop Closure Detect (filtered output) LCD LCD has not occurred LCD has occurred
1 RING Trip Detect (filtered output) RTD RTD has not occurred RTD has occurred
2 Loop Closure Detect Unfiltered LCDU Threshold not exceeded Threshold exceeded
3 RING Trip Detect Unfiltered AC RTDUA Threshold not exceeded Threshold exceeded
4 RING Trip Detect Unfiltered DC RTDUD Threshold not exceeded Threshold exceeded
5 Voltage-Based Loop Closure VBLC LC determined by loop
current
LC determined by Tip to
RING voltage
6 Loop Closure Mask Counter LCM Disabled Enabled
7 Ring Trip Mask Control RTM Disabled Enabled
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 110 of 164 January 2010
14.7.8. LOOP CLOSURE DEBOUNCE
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x47 LCDB LCDI[7:0] 0x00
Loop Closure Detect Debounce Interval LCDI[7:0] is an 8-bit register which sets time interval (decimal value) in digital
format. To convert decimal value to hex value please refer to the beginning of this section (Register Description).
LOOP CLOSURE DEBOUNCE INTERVAL
Minimum Maximum Increment
Range 0 msec 159 msec 1.25 msec
14.7.9. RING TRIP DEBOUNCE INTERVAL
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x48 RTDBA ARTDI[7:0] 0x00
RING Trip Detect Debounce Interval ARTDI[6:0] is an 8-bit register which sets time interval (decimal value) in digital
format. To convert decimal value to hex value please refer to the beginning of this section (Register Description).
RING TRIP DEBOUNCE
Minimum Maximum Increment
Range 0 msec 159 msec 1.25 msec
14.7.10. PWM PERIOD
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x49 PWMT PT
[
7:0
]
0xFF
This register sets PWM period for the DC/DC converter. Use the following equation to calculate the period.
PWM Period = (PT[7:0] + 1) x PLL Period
The PWM period should be set to a value greater than the DC/DC Converter Minimum OFF Time
PWMT:PT[7:0] > DDCC:DCOFF[4:0]
The PLL Period (expressed in nsec) which is selected based on the setting of PON:CDCC[7] address (0x22) and
whether the BCLK is binary or decimal.
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 111 of 164 January 2010
14.7.11. DC/DC CONTROLLER CONTROL
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x4A DDCC DCOFF[7:0] 0x76
This register sets DC/DC Converter Minimum OFF Time. Use the following equation to calculate the period.
DCOFF[7:0] should be programmed to values 04 hex
TOFF = DCOFF[7:0] x PLL Period
The PLL Period (expressed in nsec) which is selected based on the setting of PON:CDCC[7] address (0x22) and
whether the BCLK is binary or decimal.
14.7.12. ON-HOOK VOLTAGE
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x4C OHV RES SB VOH[5:0] 0x20
RES” in the register map means reserved bit(s).
ON-HOOK VOLTAGE (VTIP – VRING) [VOH]
Minimum Maximum Increment Default
Range 0 V - 93.5 V 1.484 V - 47.488 V
Bit
Location Bit Description Bit
Name Bit Value
0 1
6 Determines polarity of Idle, Active, and On-hook
transition states after automatic transitions SB Forward Reverse
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 112 of 164 January 2010
14.7.13. GROUND MARGIN VOLTAGE
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x4D GMV UBR RES VGM[5:0] 0x02
RES” in the register map means reserved bit(s).
GROUND MARGIN VOLTAGE [VGM]
Minimum Maximum Increment Default
Range 0 V - 93.5 V 1.484 V -2.968 V
Bit
Location Bit Description Bit Name Bit Value
0 1
7 Unbalanced Ringing
UBR Balanced Ringing Unbalanced Ringing
14.7.14. HIGH BATTERY VOLTAGE
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x4E VBHV XBATR RES VBATH[5:0] 0x32
RES” in the register map means reserved bit(s).
HIGH BATTERY VOLTAGE [VBATH]
Minimum Maximum Increment Default
Range 0 V - 93.5 V 1.484 V - 74.2 V
Bit
Location Bit Description Bit
Name Bit Value
0 1
7 External Battery Enable XBATR Disabled Enabled
14.7.15. LOW BATTERY VOLTAGE
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x4F VBLV RES VBATL[5:0] 0x10
RES” in the register map means reserved bit(s).
LOW BATTERY VOLTAGE [VBATL]
Minimum Maximum Increment Default
Range 0 V - 93.5 V 1.484 V - 23.744 V
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 113 of 164 January 2010
14.7.16. LOOP CLOSURE DETECT/RING TRIP DETECT COEFFICIENT
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x50 LCDCL LCDC[7:0] 0x00
0x51 RTDFCLD ARTDFC[7:0] 0x00
0x52 DCHD ARTDFC[11:8] LCDC[11:8] 0x00
Loop Closure Detect Coefficient LCDC[11:0] is governed by the cutoff frequency fLP
12
2*
800Hz
LP
f
**2-10]:LCDC[11
π=
AC Ring Trip Detect Filter Coefficient ARTDFC[11:0] is governed by the cutoff frequency fLP
12
2*
800Hz
LP
f
**2-10]:ARTDFC[11
π=
14.7.17. LOOP CLOSURE DETECT THRESHOLD WITHOUT / WITH HYSTERESIS
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x53 LCT RES LCT[5:0] 0x00
0x54 LCTHY DBTR LCHYEN LCTOFF[5:0] 0x00
RES” in the register map means reserved bit(s).
Bit
Location Bit Description Condition Bit Name Range Increment
(0x53)
D0 - D5 Loop Closure
Detect Threshold
If hysteresis enabled
(LCTHY:LCHYEN=1) LCT[5:0] only
used to determine transitions from
ON-HOOK to OFF-HOOK state
Current Based
(RTLC:VBLC=0,) LCT
0 to 80 mA 1.27 mA
Voltage Based
(RTLC:VBLC=1,) 0 to 93.5 V 1.484 V
(0x54)
D0 - D5
Loop Closure
Detect Threshold
with hyster esis
Only valid if hysteresis enabled
(LCTHY:LCHYEN=1) LCTOFF[5:0]
only used to determine transitions
from OFF-HOOK to ON-HOOK state
Current Based
LCTOFF
0 to 80 mA 1.27 mA
Voltage Based
(LCDB:VBLC=1) 0 to 93.5 V 1.484 V
Bit
Location Bit Description Bit
Name Bit Value
0 1
6 Loop Closure Hysteresis
LCHYEN Disable Enable
7 Dynamic Battery Target DBTR Disable Enable
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 114 of 164 January 2010
14.7.18. RING TRIP DETECT THRESHOLD
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x55 RTTA RES ARTT[5:0] 0x00
RING TRIP DETECT THRESHOLD [ARTT]
Minimum Maximum Increment
Range 0 A 80 mA 1.27 mA
14.7.19. OFFSET VOLTAGE
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x56 VOV RES TR VOV[3:0] 0x00
RES” in the register map means reserved bit(s).
The Tracking Mode is enabled by set TR bit HIGH and disabled by setting it LOW.
Offset Voltage between TIP and RING [VOV]
Minimum Maximum Increment Default
Range 0 V 24 V 1.484 V 3.0 V
Bit
Location Bit Description Bit Name Bit Value
0 1
4 Tracking Mode TR |VBAT| will not go
below VBATL
VBAT tracks VRING in
constant current region
14.7.20. DC/DC TIME ON
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x57 DCTON RES TONDC[5:0] 0x00
RES” in the register map means reserved bit(s).
Minimum DCDC on time
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 115 of 164 January 2010
14.7.21. DAC/ADC AUTOMUTE FUNCTION
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x5E AUTOMT AMTEN AMTSEL AMTTHR 0x00
Bit
Location Bit Description Bit Name Bit Value
0 1
6 Automute Select AMTSEL DAC data + ADC
data DAC data only
7 Automute Enable AMTEN Disabled Enabled
Automute Threshold
Modes AMTTHR[5:0]
Linear 0
u-Law 0
A-law 8
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 116 of 164 January 2010
14.8. GROUND KEY DETECTION
14.8.1. LINEFEED CONTROL
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x5F XBTC RES ASQH CBP XBEN XTBOT1 XTBOT0 XTBAT[1:0] 0x00
RES” in the register map means reserved bit(s).
Bit
Location Bit Description Bit Name Bit Value
0 1
2 DC Bias Current OFF-Hook XTBOT0 8 mA 4 mA
3 DC Bias Current On-Hook TR XTBOT1 4 mA 8 mA
4 Ringer Bias Enable XBEN Disable Enable
5 Capacitor Bypass CBP capacitors CP() and CM
(C2) in circuit
Capacitors CT and CR
bypassed
6 Audio Mute ASQH STIPAC and SRINGAC
pins are not muted
STIPAC and SRINGAC
pins are muted
The DC bias current flows through external BJTs in the both On-Hook Transmission and in Active Off-Hook State.
Increasing this value (External Transistor Bias Levels) increases the TIP to RING peak of the differential AC current.
Current Limit adjustment
XTBA1 XTBA0 DC Bias Cur rent
0 0 Nominal ILIM
0 1 +1 mA
1 0 +2 mA
1 1 -1 mA
14.8.2. GROUND KEY DETECT HIGH/LOW THRESHOLD
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x60 GKDH RES HGKD[7:0] 0x00
0x61 GKDL RES LGKD[7:0] 0x00
GKD HIGH/LOW THRESHOLD
Minimum Maximum Increment
Range 0 A 80 mA 1.27mA
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 117 of 164 January 2010
14.8.3. GROUND KEY DETECT DEBOUNCE TIME
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x62 GKDDT DTGKD[7:0] 0x00
GKD DEBOUNCE TIME
Minimum Maximum Increment
Range 0 msec 320 msec 1.25 msec
14.8.4. GROUND KEY DETECT FILTER COEFFICIENT LOW/ HIGH
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x63 GKDFCL FCGKD[7:0] 0x00
0x64 GKDFCH GKDEN RES FCGKD[11:8] 0x00
Ground Key Detection Filter Coefficient governs the Ground Key Detect LPF cutoff frequency fLP
12
2*
800Hz
LP
f
**2-10]:FCGKD[11
π=
Bit
Location Bit Description Bit Name Bit Value
0 1
7 Enable Ground Key detection GKDEN Disable Enable
14.8.5. DC RING TRIP DEBOUNCE FILTER COEFFICIENT LOW
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x65 RTDCDL DRTDFC[7:0] 0x00
0x66 DCHD RES DRTDFC[11:8] 0x00
DC Ring Trip Coefficient is governed by the cutoff frequency fLP
12
LP 2x
800
)f**2(1
]0:11[DRTFC
π
=
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 118 of 164 January 2010
14.8.6. DC RING TRIP CURRENT THRESHOLD
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x67 RTTD RES XRTR DRTT[5:0] 0x00
DC Ring Trip current Threshold in Internal Ringing Mode
RING TRIP DETECT THRESHOLD [DRTT]
Minimum Maximum Increment
Range 0 A 80 mA 1.27 mA
14.8.7. DC RING TRIP DEBOUNCE TIME
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x68 RTDBD DRTD[7:0] 0x00
DC RING TRIP DEBOUNCE TIME
Minimum Maximum Increment
Range 0 msec 159 msec 1.25 msec
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 119 of 164 January 2010
14.8.8. EXTERNAL BATTERY SWITCH OUTPUT CONFIGURATION 1
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x6A XBSDCN DCNXB[7:0] 0x00
0x6B XBSDCP DCPXB[7:0] 0x00
External battery switch DCN pin and DCP output configuration for different line states
Linefeed State XBSDCN Register
XBSDCP Register
DCN output
DCP output
Open x x x x x x x 0 LOW
Open x x x x x x x 1 HIGH
Forward/Reverse Active x x x x x x 0 x LOW
Forward/Reverse Active x x x x x x 1 x HIGH
Forward/Reverse ON-HOOK Transmission x x x x x 0 x x LOW
Forward/Reverse ON-HOOK Transmission x x x x x 1 x x HIGH
TIP/RING Open x x x x 0 x x x LOW
TIP/RING Open x x x x 1 x x x HIGH
Ringing x x x 0 x x x x LOW
Ringing x x x 1 x x x x HIGH
Forward/Reverse Idle x x 0 x x x x x LOW
Forward/Reverse Idle x x 1 x x x x x HIGH
Calibration Mode x 0 x x x x x x LOW
Calibration Mode x 1 x x x x x x HIGH
14.8.9. DC/DC HEAVY CURRENT CONVERTER
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x6E LOAD RES LOAD 0x00
Bit
Location Bit Description Bit Name Bit Value
0 1
0 DC/DC Heavy Current Load LOAD Light load Heavy Current Load such as
Ringing for DC/DC converter
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 120 of 164 January 2010
14.8.10. DC/DC TARGET VOLTAGE (READ ONLY)
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x77 DCTR VTR[7:0] (RO) 0XC8
In Inductor mode the Target Voltage for DC/DC Converter is a READ ONLY register.
DC/DC TARGET VOLTAGE [VTR]
Minimum Maximum Increment Default
Range 0 V - 93.5 V 1.484 V 3.0 V
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 121 of 164 January 2010
14.9. MONITORING REGISTERS
14.9.1. MONITOR CURRENT FOR RING TRIP AND LOOP CLOSURE
Addr
(Hex) Name Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Default
(Hex) R/W
78 RTMNT MNTRT[7:0] 00 RO
79 LCMNT MNTLC[7:0] 00 RO
RING TRIP CURRENT MONITOR
LOOP CLOSURE CURRENT MONITOR
Minimum Maximum Increment
Range 0 A 80 mA 0.317 mA
14.9.2. MONITOR CURRENT FOR RING TRIP AND LOOP CLOSURE
Addr
(Hex) Name Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Default
(Hex) R/W
7A MNT5 MNTQ1[7:0] RO
7B MNT7 MNTQ2[7:0] RO
7C MNT9 MNTQ3[7:0] RO
7D MNT11 MNTQ4[7:0] RO
7E MNT13 MNTQ5[7:0] RO
7F MNT15 MNTQ6[7:0] RO
TRANSISTOR POWER DESSIPATION
TIP, RING, and LOOP CURRENT SENSE
DESCRIPTION CONDITION Range Minimum Maximum Stepsize
Dependent on the maximum
power dissipation rating of the
external transistors
QT1 and QR1 PATHQ2 0 W 7.70 W 30.4 mW
QT2 and QR2 PATHQ1 0 W 0.97 W 3.80 mW
QT3 and QR3 PATHQ3 0 W 7.70 W 30.4 mW
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 122 of 164 January 2010
14.10. LINE CONTROL REGISTERS
14.10.1. VOLTAGE REGISTERS
14.10.1.1. BATTERY VOLTAGE SENSE (READ ONLY)
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x80 BATV VB[7:0] (RO) 0x02
Battery Voltage VB[7:0] is a READ ONLY register.
BATTERY VOLTAGE SENSE [VB]
Minimum Maximum Increment
Range 0 V - 95.88 V 0.376 V
14.10.1.2. TIP/RING VOLTAGE SENSE (READ ONLY)
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x81 VTIP VTIP[11:4] (RO) 0x00
VTRIP (XP) VTIP[3:0] (RO) RES
0x82 VRING VRING[11:4] (RO) 0x00
VRING (XP) VRING[3:0] (RO) RES
“XP” stands for extra precision register. TIP and RING voltage is a READ ONLY register. The range value depends
on calibration. The values provided for range is without any calibration. Please refer to the SPI Peripheral Interface
section for details.
TIP AND RING VOLTAGE SENSE [VTIP, VRING] Precision
Bits
Minimum Maximum Increment
Range 0 V -95.88 V 374 mV 8
0 V -95.88 V 23.4 mV 12
14.10.1.3. TIP/RING TRANSISTOR 3 EMITTER VOLTAGE SENSE (READ ONLY)
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x83 QT3V QT3V[7:0] (VTVE) (VQT2) (RO) 0x03
0x84 QR3V QR3V[7:0] (VRVE) (VQR2) (RO) 0x02
Transistors QT3 / QR3 Emitter Voltage (QT3V, QR3V) is a READ ONLY register. The range value depends on
calibration. The values provided for range is without any calibration.
TRANSISTORS QT3 / QR3 EMITTER VOLTAGE
Minimum Maximum Increment
Range 0 V - 95.88 V 0.376 V
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 123 of 164 January 2010
14.11. TRANSISTOR CURRENT REGISTERS (TIP/RING TRANSISTOR 1/2/3 CURRENT SENSE)
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x85 QT3I QT3I[11:4]
0x05
QT3I (XP) QT3I[3:0] RES
0x86 QR3I QR3I[11:4]
0x03
QR3I (XP) QR3I[3:0] RES
0x87 QT1I QT1I[11:4]
0x03
QT1I (XP) QT1I[3:0] RES
0x88 QT2I QT2I[11:4]
0x03
QT2I (XP) QT2I[3:0] RES
0x89 QR1I QR1I[11:4]
0x03
QR1I (XP) QR1I[3:0] RES
0x8A QR2I QR2I[11:4]
0x03
QR2I (XP) QR2I[3:0] RES
“XP” stands for extra precision register. TIP/RING Transistor 1/2/3 Current register is a READ ONLY. The range
value depends on calibration. The values provided for Range is without any calibration. Please refer to the SPI
Peripheral Interface section for details.
REAL TIME CURRENT Precision
Bits
Range
Minimum Maximum Increment
QT3I 0 A 78.54 mA 306 A 8
0 A 78.54 mA 19.18 A 12
QR3I 0 A 78.54 mA 306 A 8
0 A 78.54 mA 19.18 A 12
QT1I 0 A 78.54 mA 306 A 8
0 A 78.54 mA 19.18 A 12
QT2I 0 A 9.95 mA 38.8 A 8
0 A 9.95 mA 2.43 A 12
QR1I 0 A 78.54 mA 306 A 8
0 A 78.54 mA 19.18 A 12
QR2I 0 A 9.95 mA 38.8 A 8
0 A 9.95 mA 2.43 A 12
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 124 of 164 January 2010
14.12. LOOP SUPERVISION
14.12.1. LONGITUDINAL CURRENT
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x8C LGI ILG[11:4] 0x00
LGI (XP) ILG[3:0] RES
“XP” stands for extra precision register. The range value depends on calibration. The values provided for Range is
without any calibration. Please refer to the SPI Peripheral Interface section for details.
(
)
2
IQR1IQR3IQT3-IQT1
ILG +
=
LONGITUDINAL CURRENT Precisio n
Bits
Minimum Maximum Increment
Range 0 mA 77.62 mA 303 uA 8
0 mA 77.62 mA 18.95 uA 12
14.12.2. LOOP VOLTAGE SENSE (READ ONLY)
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x8D LPV VLP[11:4] (RO) 00
LPV (XP) VLP[3:0] (RO) RES
“XP” stands for extra precision register. Loop Voltage is a READ ONLY register. The range value depends on
calibration. The values provided for Range is without any calibration. This is a 12-bit register. Please refer to the
SPI Peripheral Interface section for details.
LOOP VOLTAGE
(VTIP – VRING) Precisio n
Bits
Minimum Maximum Increment
Range 0 V - 95.88 V 374 mV 8
0 V - 95.88 V 23.41mV 12
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 125 of 164 January 2010
14.12.3. TIP, RING, AND LOOP CURRENT (READ ONLY)
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x8E TIPI ITLP[11:4] (RO) NA
TIPI (XP) ITLP[3:0] (RO) RES
0x8F RINGI IRLP[11:4] (RO) NA
RINGI (XP) IRLP[3:0] (RO) RES
0x90 LPI ILP[11:4] (RO) NA
LPI (XP) ILP[3:0] (RO) RES
“XP” stands for extra precision register. The above registers are READ ONLY. The range value depends on
calibration. The values provided for Range is without any calibration. Please refer to the SPI Peripheral Interface
section for details.
TIP, RING, and LOOP CURRENT Precision Bits
Minimum Maximum Increment
Range 0 mA 77.62 mA 303 uA 8
0 mA 77.62 mA 18.95 uA 12
14.12.4. POLARITY
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x91 POL RES P2PEN ILGP ILPP IRLP ITLP VLP NA
Loop voltage, TIP Current, RING Current, Loop Current, and Longitudinal Current all have Sign Bit associated with it.
The Polarity register contains all the Sign or Polarity bits. For these registers mentioned the range can also extend in
the negative direction by setting the Sign or Polarity bit.
Bit
Location Bit Description Bit Name Bit Value
0 1
0 Loop Voltage VLP Positive Negative
1 TIP Current ITLP Positive Negative
2 RING Current IRLP Positive Negative
3 Loop Current ILPP Positive Negative
4 Longitudinal Current ILGP Positive Negative
5 Loop current PK-2-PK clear P2PEN Clear value Continuously updates
new peak values
When P2PEN[5] is set from 0 to 1 the peak detector circuit register value is cleared. If P2PEN[5] is set to HIGH and it
remain at HIGH than the peak detector circuit register value is continuously updated with new peak values.
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 126 of 164 January 2010
14.12.5. COMMON MODE VOLTAGE
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x92 SCM SCM[11:4] NA
SCM (XP) SCM[3:0] RES
“XP” stands for extra precision register. The Common Mode Voltage is calculated using the equation below. Please
refer to the SPI Peripheral Interface section for details.
14.12.6. TIP EMITTER VOLTAGE FOR TRANSISTORS QT1 SENSE (READ ONLY)
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x93 VEQT1 VEQT1[7:0] (RO) NA
This is the emitter sense of the transistor QT1 which is used for the power alarm computation. This register is a
READ ONLY register. The range value depends on calibration. The values provided for range is without any
calibration.
TIP - TRANSISTOR QT1 EMITTER
VOLTAGE SENSE
Minimum Maximum Increment
Range 0 V - 95.88 V 0.376 V
14.12.7. TIP VOLTAGE FOR TRANSISTOR QT1 SENSE (READ ONLY)
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x94 VQT1 VQT1[7:0] (RO) NA
The value in this register is derived from TIP voltage and TIP emitter voltage of the transistor. This is the emitter
sense of the transistor QT1 which is used for the power alarm computation. This register is a RE AD ONLY register.
The range value depends on calibration. The values provided for range is without any calibration.
TIP - TRANSISTOR QT1
VOLTAGE SENSE
Minimum Maximum Increment
Range 0 V - 95.88 V 0.376 V
(
)
2
V V RINGTIP +
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 127 of 164 January 2010
14.12.8. RING EMITTER VOLTAGE FOR TRANSISTOR QT1 SENSE (READ ONLY)
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x95 VEQR1 VEQR1[7:0] (RO) NA
This is the emitter sense of the transistor QR1 which is used for the power alarm computation. This register is a
READ ONLY register. The range value depends on calibration. The values provided for range is without any
calibration.
RING - TRANSISTOR QR1 EMITTER
VOLTAGE SENSE
Minimum Maximum Increment
Range 0 V - 95.88 V 0.376 V
14.12.9. RING VOLTAGE FOR TRANSISTOR QT1 SENSE (READ ONLY)
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x96 VQR1 VQR1[7:0] (RO) NA
The value in this register is derived from RING voltage and RING emitter voltage of the transistor. This is the emitter
sense of the transistor QR1 which is used for the power alarm computation. This register is a RE AD ONLY register.
The range value depends on calibration. The values provided for range is without any calibration.
RING - TRANSISTOR QR1
VOLTAGE SENSE
Minimum Maximum Increment
Range 0 V - 95.88 V 0.376 V
14.12.10. TEMPERATURE SENSE (READ ONLY)
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x99 TEMP TS[7:0] (RO) NA
Die Temperature Sense TS[7:0] is a RE AD ONLY register. The actual temperature T is given by:
T = TS[7:0] – 67 @ 1°C Increment
14.12.11. BAND GAP VOLTAGE
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x9A VBGAP VBG[7:0] 0x00
Bandgap Voltage Trim VBG[7:0] is a trim parameters which can be used during the calibration sequence.
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 128 of 164 January 2010
14.12.12. PEAK TO PEAK LOOP VOLTAGE (READ ONLY)
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x9B VLPP2P LPVP2P[11:4] (RO) 0x00
VLPP2P (XP) LPVP2P[3:0] (RO) RES
“XP” stands for extra precision register. This read only register captures the peak-to-peak loop voltage. The peak
detector circuit clears this register value when POL:P2PEN[5] address (0X91)is set from 0 to 1 and continuously
updates new peak values when P2PEN[5] is HIGH. The final peak value is held in VLPP2P:LPVP2P address (0X91)
when P2PEN[5] is cleared to LOW until P2PEN[5] is set again. The peak-to-peak loop voltage is measured as (max
positive peak + max negative peak) / 2.
PEAK TO PEAK LOOP VOLTAGE Precision
Bits
Minimum Maximum Increment
Range 0 V - 95.88 V 374 mV 8
0 V - 95.88 V 23.41mV 12
14.12.13. PEAK TO PEAK LOOP CURRENT (READ ONLY)
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x9C ILPP2P LPIP2P[11:4] (RO) NA
ILPP2P (XP) LPIP2P[3:0] (RO) RES
“XP” stands for extra precision register. This read only register captures the peak-to-peak loop current. The peak
detector circuit clears this register value when POL:P2PEN[5] address (0X91)is set from 0 to 1 and continuously
updates new peak values when P2PEN[5] is HIGH. The final peak value is held in ILPP2P:LPIP2P address (0X91)
when P2PEN[5] is cleared to LOW until P2PEN[5] is set again. The peak-to-peak loop current is measured as (max
positive peak + max negative peak) / 2.
PEAK TO PEAK LOOP CURRENT Precision Bits
Minimum Maximum Increment
Range 0 mA -77.62 mA 303 uA 8
0 mA -77.62 mA 18.95 uA 12
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 129 of 164 January 2010
14.13. POWER ALARM LPF POLE REGISTERS
14.13.1. POWER ALARM COUNTER
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0x9F PALCNT PALCNT[7:0] 0x00
The Power Alarm Counter indicates the number of rising edges of the LOWVDC or HIGHIDC flags. The value of this
register clips at 255. This counter is reset after every read from this address.
a) DCDC output voltage (VBAT) 10% above full scale or
b) DCDC supply voltage (VDDC) too low or
c) DCDC supply current (IVDDC) too high;
14.13.2. POWER ALARM LOW PASS FILTER POLE FOR TRANSISTORS 1/2/3
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0xA0 PALPQ2 Q2C[7:0] 0x00
0xA1 PALPQ1 Q1C[7:0] 0x00
0xA2 PALPQ3 Q3C[7:0] 0x00
0xA3 PALPQHn Q1C[11:8] Q2C[11:8]
0x00
0xA4 PALPQH2 LPFEN Q3C12 Q1C12 Q2C12 Q3C[11:8] 0x00
The Power Alarm register are 13 bit registers. For example Q2 Power Alarm bits are located at address 0xA0, (D0 –
D7, Q2C[7:0]) first 8-bits. The next 4-bits are located at address 0xA3 (D0 – D3 bits, Q2C[11:8]) and the last bit out
of 13-bits is located at address 0xA4 (D4 – Q2C[12]). The other two transistor bits can be located the same way.
LPFEN enables the Low Pass Filter when set to 1.
POWER ALARM LOW PASS FILTER POLE FOR TRANSISTORS 1/2/3
Dependent on the thermal time constant of the external transistors
QT2 and QR2 QT1 and QR1 QT3 and QR3
PALPQ2 PALPQ1 PALPQ3
13
2*
*8001
1]0:12[2
=
TC
T
CQ
13
2*
*8001
1]0:12[1
=
TC
T
CQ 13
2*
*8001
1]0:12[3
=
TC
T
CQ
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 130 of 164 January 2010
14.13.3. POWER ALARM THRESHOLD FOR TRANSISTOR 1-3
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0xA5 PATHQ2 Q2TH[7:0] 0x00
0xA6 PATHQ1 Q1TH[7:0] 0x00
0xA7 PATHQ3 Q3TH[7:0] 0x00
TIP, RING, and LOOP CURRENT
DESCRIPTION CONDITION Range Minimum Maximum Increment
Dependent on the
maximum power
dissipation rating
of the external
transistors
QT1 and QR1 PATHQ2 0 W 7.7 W 30.4 mW
QT2 and QR2 PATHQ1 0 W 0.97 W 3.8 mW
QT3 and QR3 PATHQ3 0 W 7.7 W 30.4 mW
14.14. IMPEDANCE MATCHING 1/2
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0xA8 IM1 RES ZR1[3:0] 0x00
0xA9 IM2 RES ZSW RES 0x00
RES” in the register map means reserved bit(s).
Impedance Matching/ R1 Element
ZR13 ZR12 ZR11 ZR10 R1 (Ohm)
0 0 0 0 600
0 0 0 1 900
0 0 1 0 600
0 0 1 1 900
0 1 0 0 270
0 1 0 1 200
0 1 1 0 200
0 1 1 1 100
1 0 0 0 370
1 0 0 1 220
1 0 1 0 320
1 0 1 1 220
1 1 x x Not Used
Bit
Location Bit Description Bit Name Bit Value
0 1
6 Impedance matching
Feedback loop Disable ZSW Default, enabled
Disables impedance
matching feedback loop for
diagnostics testing
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 131 of 164 January 2010
14.14.1. TEMPERATURE ALARM THRESHOLD
Addr Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0xAA THAT TATH[7:0] 0x00
TTH = TATH[7:0] – 67 @ Increment of 1°C
14.14.2. LOOP CLOSURE MASK COUNT
Addr Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0xAB LCMCNT LCMCNT[7:0] 0x00
LOOP CLOSURE MASK COUNT
Minimum Maximum Increment
Range 0 ms 319 ms 1.25 ms
14.14.3. COARSE CALIBR ATION INTERNAL RESISTOR
Addr Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0xAC CC RES CBGSW CTRIM[2:0] 0x00
“RES” in the register map means reserved bit(s).Coarse Calibration CTRIM[2:0] and Internal Resistor CBGSW are a
trim parameters which can be used during the calibration sequence.
14.14.4. OSCILLATOR 2 RINGING PHASE DELAY
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0xAD OS2RPD O2RPD[7:0] 0x00
When Oscillator 2 is used for Tone Generation it is recommended this register be set to 0x00. If the ringing phase
delay in oscillator 2 (0xAD) is used , zero crossing function must be enabled OSN:O2ZC[5] address 0xC0.
OSCILLATOR 2 RINGING PHASE DELAY
Minimum Maximum Increment
Range 0 ms 31.8 ms 125 us
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 132 of 164 January 2010
14.15. CALIBRATION
Addr Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0xAF CAL1 SDAT[3:0] VBATT[3:0]
0X77
0xB0 CAL2 TVTE1[3:0] SDBT[3:0]
0X97
0xB1 CAL3 SCMT[3:0] RVTE[3:0]
0X79
All values are trim parameters which can be used during the calibration sequence.
Bits Trim
VBATT[3:0] VBAT Trim
SDAT[3:0] SDA Trim
SDBT[3:0] SDB Trim
TVTE1[3:0] TVE1 Trim
RVTE[3:0] RVE1 Trim
SCMT[3:0] SCM Trim
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 133 of 164 January 2010
14.16. DC OFFSET REGISTERS
14.16.1. DC OFFSET (RING, TIP, AND VBAT)
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0xB4 IQTROS HISENSE BTVR ILFDB DACSFC RES 0x00
RES” in the register map means reserved bit(s).
All values are trim parameters which can be used during the calibration sequence.
Bit
Location Bit Description Bit Name Bit Value
0 1
4 Smoothing Filter DACSFC Cutoff at 1xfc Cutoff 2xfc
5 Line driver bias ILFDB Fixed Bias Bias varies with
coarse calibration
6 DC/DC Range BTVR Normal Low VBAT
7 Monitor DC Range HISENSE Normal line Extended line
14.16.2. PWM COUNT (READ ONLY)
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0xB5 PWCT PWCT[7:0] (RO) NA
This register is a READ ONLY. PWM Count Register can calculate DC/DC Converter Pulse Width TON with the
following equation.
TON = PWCT[7:0] * PLL Period
The TON Range is 0 ns to (PWM Period-TOFF) see PWMT and DDCC with a stepsize of PLL period. The PLL
Period (expressed in nsec) which is selected based on the setting of PON:CDCC[7] address (0x22) and whether the
BCLK is binary or decimal.
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 134 of 164 January 2010
14.17. TONE GENERATION REGISTERS
14.17.1. OSCILLATOR CONTROL
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0xC0 OSN RES O2ZC O1ZC RES O2E O1E 0x00
RES” in the register map means reserved bit(s).
Bit
Location Bit Description Bit Name Bit Value
0 1
0 Oscillator 1 O1E Disable Enable
1 Oscillator 2 O2E Disable Enable
4 Oscillator n Zero-Crossing O1ZC Disable Enable
5 Oscillator 2 Zero-Crossing O2ZC Disable Enable
14.17.2. RING CONTROL
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0xC1 RMPC TRAP LBAC R1EN RES TOR RES 0x00
RES” in the register map means reserved bit(s).
Bit
Location Bit Description Bit Name Bit Value
0 1
3 Tone Route TOR Transmit direction
(towards DAC)
Receive direction
(towards ADC)
5 Ringer 1 R1EN Disable Enable
6 Ringing Waveform LBAC Sinusoidal RING
Waveform
Trapezoidal RING
Waveform
7 Ringing Waveform Select TRAP Disable Enable
14.17.3. OSCILLATOR 1 AND 2 INITIAL CONDITION LOW/HIGH
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0xC2 OS1ICL O1IC[7:0] 0x00
0xC3 OS1ICH O1IC[15:8] 0x00
0xC4 OS2ICL O2IC[7:0] 0x00
0xC5 OS2ICH O2IC[15:8] 0x00
Initial Condition for Oscillator m OmIC[15:0] m=1,and 2 can be determined by formula. Refer to Tone Generation see
Section for the formula.
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 135 of 164 January 2010
14.17.4. OSCILLATOR 1 AND 2 COEFFICIENT LOW/HIGH
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0xC6 OS1CL O1C[7:0] 0x00
0xC7 OS1CH O1C[15:8] 0x00
0xC8 OS2CL O2C[9:2] 0x00
0xC9 OS2CH O2C[17:10] 0x00
Coefficient for Oscillator m (OmC[15:0] m=1, and 2, refer to Tone Generation see section for the formula. OS2CL is
18-bits long word. The 16 most significant bits are on address 0xC8[9:2] and 0xC9[17:10]. The 2 least significant
bits are located in register address 0xDC (D7 - D6).
14.18. OSCILLATOR 1 AND 2 ACTIVE/ INACTIVE TIME LOW/HIGH
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0xCA OS1ATL O1ON[7:0] 0x00
0xCB OS1ATH O1ON[15:8] 0x00
0xCC OS2ATL O2ON[7:0] 0x00
0xCD OS2ATH O2ON[15:8] 0x00
0xCE OS1ITL O1OFF[7:0] 0x00
0xCF OS1ITH O1OFF[15:8] 0x00
0xD0 OS2ITL O2OFF[7:0] 0x00
0xD1 OS2ITH O2OFF[15:8] 0x00
OSCILLATOR 1/2 ACTIVE/INACTIVE
TIME
Minimum Maximum Stepsize
Active/Inactive
Timer Oscillator m
Tone
Generation
Timer is disabled by
programming zero
O1ON
O2ON
O1OFF
O2OFF
0 s 8 s 125us
Active/Inactive
Timer Oscillator 2 Ringing only Timer is disabled by
programming zero
O2ON
O2OFF 0 s 8 s 125us
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 136 of 164 January 2010
14.19. GENERAL TONE GENERATION
14.19.1. RING OFFSET
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0xDC ROFFS O2C[1:0] ROS[5:0]
0x00
“RES” in the register map means reserved bit(s).
TIP to RING Offset for Ringing, Sets DC Offset component to the Ringing Waveform
RING OFFSET [ROS]
Minimum Maximum Increment
Range 0 V 47.488 V 1.484 V
14.19.2. ADC/DAC DIGITAL GAIN
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0xDD ADCL ADC[7:0] 0x00
0xDE DACL DAC[7:0] 0x00
0xDF DGH DAC[11:8] ADC[11:8]
0x44
DIGITAL GAIN
Minimum Maximum
Digital Gain ADC = 1024x10 (XdB/20)
DAC = 1024x10 (XdB/20) ADC
DAC dB 6 dB
ADC
DAC Gain dB
0x000 Off -
0x040 1 / 8 -24
0x100 1 / 4 -12
0x200 1 / 2 -6
0x400 1 0
0x7FF 2 6
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 137 of 164 January 2010
14.19.3. PWM DC/DC FINE TUNING
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0xE0 ST0L0 RES ST0L0[3:0] 0x02
0xE1 ST1L0 RES ST1L0[4:0] 0x04
0xE2 ST2L0 RES ST2L0[4:0] 0x06
0xE3 ST0L1 RES ST0L1[3:0] 0x08
0xE4 ST1L1 RES ST1L1[4:0] 0x10
0xE5 ST2L1 RES ST2L1[4:0] 0x19
RES” in the register map means reserved bit(s).
Addr. Name Symbol Description Unit
0xE0 – 0xE5
Stepsize
Region
State
STx x = 0, 1, 2 Proportional to master clock period
Ly L0 - Non-RINGING
L1 - RINGING
Addr. Name Recommendation
0xE0 ST0L0 0x02
0xE1 ST1L0 0x02
0xE2 ST2L0 0x02
0xE3 ST0L1 0x08
0xE4 ST1L1 0x08
0xE5 ST2L1 0x08
14.19.4. PWM DC/DC FINE TUNING SKIP PERIOD
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0xE6 SK0L0 SK0L0[7:0] 0x1F
0xE7 SK1L0 RES SK1L0[5:0] 0x04
0xE8 SK2L0 RES ST2L0[4:0] 0x02
0xE9 SK0L1 SK0L1[7:0] 0x1F
0xEA SK1L1 RES SK1L1[5:0] 0x04
0xEB SK2L1 RES SK2L1[4:0] 0x02
RES” in the register map means reserved bit(s).
Addr. Name Recommendation
0xE6 SK0L0 0x06
0xE7 SK1L0 0x06
0xE8 SK2L0 0x06
0xE9 SK0L1 0x06
0xEA SK1L1 0x06
0xEB SK2L1 0x06
Addr. Name Name Description Unit
0xE6 – 0xEB Skip Region
State
SKx = 0, 1, 2 # of PWM duty cycle
Ly L0 - Non-RINGING
L1 - RINGING
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 138 of 164 January 2010
14.19.5. PWM DC/DC FINE TUNING
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0xEC WM0 RES WM0[4:0] 0x08
0xED WM1 RES WM1[4:0] 0x10
0xEE WM2 RES WM2[4:0] 0x18
0xEF XSTEP PWMTC XS[3:0] 0x53
RES” in the register map means reserved bit(s). “n” is the number written to the register in decimal
Addr. Name Symbol Description Unit
0xEC – 0xEE Watermark WMx 0, 1, 2 n x 1.484V
0xEF Fine Adjust Region XS n x 1.484V
0xEF Time constant of VLoop
sensing filter for PWM PWMTC
Addr. Name Recommendation
0xEC WM0 0x01
0xED WM1 0x02
0xEE WM2 0x02
0xEF XSTEP 0x60
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 139 of 164 January 2010
14.19.6. IMPEDANCE MATCH REGISTER
14.19.6.1. IMPEDENCE MATCHING COEFFICIENT RAM
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0xF3 IMRAM IMDATA 0x00
Read and Write location for the Impedance Matching Coefficient RAM. Used in conjunction with Write Sequence
described in IMCTRL 0xF5.
14.19.6.2. IMPEDANCE MATCHING DELAY COUNT
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0xF4 IMDEL IMHYBDC[3:0] IMB3PDC[3:0] 0x00
Bit Impedance Matching Delay Count
IMB3PDC[3:0] Delay count of B3Parallel path - Default no delay
IMHYBDC[7:4] Delay count of Hybrid2 path - Default no delay
Programmed in conjunction with Impedance Matching Coefficient RAM.
14.19.6.3. IMPEDANCE MATCHING COEFFICIENT RAM CONTROL
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0xF5 IMCTRL RES IMRW RES IMEN RES IMPM 0x10
Bit
Location Bit Description Bit Name Bit Value
0 1
0 Program Impedance Matching Coefficient RAM IMPM Disable Enable
2 Complex Impedance Matching enable IMEN Disable Enable
4 Read/Write Impedance Matching Coefficient RAM IMRW Read Write
Bits 3, 5, 6, and 7 must be set to “0”. For Complex Impedance Matching Cases the appropriate set (144 Bytes)
should be loaded into the following sequence into the Coefficient RAM.
Write Step Sequence:
1. Set IMCTRL:IMRW[4] to 1
2. Set IMCTRL:IMPM[0] to 1
3. WRITE all 144 Bytes of Impedance Matching Coefficient set to Register IMRAM (Address 0xF3) in sequence
4. Set IMCTRL:IMPM[0] to 0
Read Step Sequence:
1. Set IMCTRL:IMRW[4] to 0
2. Set IMCTRL:IMPM[0] to 1
3. READ all 144 Bytes of Impedance Matching Coefficient set from Register IMRAM (Address 0xF3) in sequence
4. Set IMCTRL:IMRW[4] to 1 (to Restore Default Value)
5. Set IMCTRL:IMPM[0] to 0
Once the of Impedance Matching coefficients are loaded into the RAM, the Complex Impedance is enabled by setting
IMCTRL:IMEN[2]
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 140 of 164 January 2010
14.19.6.4. PCM SCALING
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0xF6 PCMSCAL PCMSCAL[7:0] 0x00
0xF7 PCMSCAH PCMSCAL[15:8] 0x20
Bit PCM Scaling
PCMSCA[15:0] Scaling for PCM signal. Format: 3.13
14.19.6.5. RESERVED REGISTERS
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0xF8 RES 0x00
0xF9 RES 0x00
0xFA RES 0x00
These three register must be set to 0x00 during a write operation
14.19.6.6. FILTER BYPASS
Addr. Name D7 D6 D5 D4 D3 D2 D1 D0 Default
0xFB IMEN RES ADCLPFBYP HBLPFBYP 0x00
Bit PCM Scaling
HBLPFBYP[0] Bypass the HB LPF. Default: 0(not bypass)
ADCLPFBYP[1] Bypass the ADC LPF. Default: 0(not bypass)
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 141 of 164 January 2010
15. TIMING DIAGRAM
15.1. PCM TIMING DIAGRAM FOR NON-GCI
Figure 37: PCM Timing for Non-GCI
SYMBOL DESCRIPTION MIN TYP MAX UNIT
1/TFS FS Frequency --- 8 --- kHz
TFSL FS Minimum LOW Width TBCK sec
1/TBCK BCLK, BCLK Frequency 256 --- 8192 kHz
TBCKH BCLK HIGH Pulse Width 50 --- --- ns
TBCKL BCLK LOW Pulse Width 50 --- --- ns
TFRH BCLK Falling Edge to FS Rising Edge Hold Time 20 --- --- ns
TFRS FS Rising Edge to BCLK Falling edge Setup Time 25 --- --- ns
TFFH BCLK Falling Edge to FS Falling Edge Hold Time 20 --- --- ns
TFDTD The later of BCLK Rising Edge or FS Rising Edge to valid
PCMT Delay Time if MSB Starts from the 1st BCLK of a Frame --- --- 20 ns
TBDTD BCLK Rising Edge to Valid PCMT Delay Time --- --- 20 ns
THID
Delay Time from BCLK Falling edge of the LSB or BCLK Rising
edge following the LSB (Depending on Register TRI) to PCMT
Output High Impedance
10 --- 50 ns
TDRS Valid PCMR to BCLK Falling Edge Setup Time 25 --- --- ns
TDRH PCMR Hold Time from BCLK Falling Edge 20 --- --- ns
Table 8.1: PCM Timing Parameters for Non-GCI
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 142 of 164 January 2010
15.2. PCM TIMING DIAGRAM FOR GCI
Figure 38: GCI PCM Timing
SYMBOL DESCRIPTION MIN TYP MAX UNIT
1/TFS FS Frequency --- 8 --- kHz
1/TBCK BCLK Frequency 512 --- 8192 kHz
TBCKH BCLK HIGH Pulse Width 50 --- --- ns
TBCKL BCLK LOW Pulse Width 50 --- --- ns
TFRH BCLK Falling Edge to FS Rising Edge Hold Time 20 --- --- ns
TFRS FS Rising Edge to BCLK Falling edge Setup Time 50 --- --- ns
TFFH BCLK Falling Edge to FS Falling Edge Hold Time 20 --- --- ns
TFDTD The later of BCLK or FS Rising Edge to Valid PCMT Delay
Time if MSB Starts from the 1st BCLK of a Frame 10 --- 50 ns
TBDTD BCLK Rising Edge to Valid PCMT Delay Time 10 --- 50 ns
THID
Delay Time from the Second BCLK Falling Edge of the LSB
or the BCLK Rising Edge following LSB (Depending on
Register TRI setting) to the PCMT Output High Impedance
10 --- 50 ns
TDRS Valid PCMR to BCLK Rising Edge Setup Time 20 --- --- ns
TDRH PCMR Hold Time from BCLK Rising Edge 50 --- --- ns
Table 8.2: GCI Timing Parameters
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 143 of 164 January 2010
SYMBOL DESCRIPTION MIN TYP MAX UNIT
1/TBCK BLCK Clock Frequency ---
0.256
0.512
0.768
1.000
1.024
1.152
1.536
1.544(2)
2.000
2.048
4.000
4.096
8.000
8.192
--- MHz
T
itte
BLCK Period Jitter Tolerance(1) -120 --- 120 ns
TBCKH / TBCK BCLK Duty Cycle for 256 kHz Operation 40% 50% 60%
TBCKH Minimum Pulse Width HIGH for BCLK(512 kHz or
Higher) 50 --- --- ns
TBCKL Minimum Pulse Width LOW for BCLK (512 kHz or
Higher) 50 --- --- ns
TFRH BCLK falling Edge to FS Rising Edge Hold Time 50 --- --- ns
TFRS FS Rising Edge to BCLK Falling edge Setup Time 50 --- --- ns
TRISE Rise Time for All Digital Signals --- --- 25 ns
TFALL Fall Time for All Digital Signals --- --- 25 ns
Table 8.3: General PCM Timing Parameters
1 At 512 kHz BCLK
2. This clock is not a multiple of 256kH z or 1.000MHz. Therefore, it uses a non-integer divider.
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 144 of 164 January 2010
15.3. SPI TIMING DIAGRAM
TRISE
TFALL
\CS
SCLK
SDI
SDO
TSCK
TSCKH
TSCKL
TCSS TCSH
TSDIS
TSDIH
TSDOD
TCSHI
TSDOT
TSDOA
Figure 39: SPI Timing (Non-Daisy Chain Mode)
SYMBOL DESCRIPTION MIN TYP MAX UNIT
TSCK SCLK Cycle Time 90 --- --- ns
TSCKH SCLK High Pulse Width 45 --- --- ns
TSCKL SCLK Low Pulse Width 45 --- --- ns
TRISE Rise Time for All Digital Signals --- --- 25 ns
TFALL Fall Time for All Digital Signals --- --- 25 ns
TCSS CSb Falling Edge to 1st SCLK Falling Edge Setup Time 45 --- --- ns
TCSH Last SCLK Rising Edge to CSb Rising Edge Hold Time 45 --- --- ns
TCSHI CSb High, Delay Time between Chip Selects 200 --- --- ns
TSDIS SDI to SCLK Rising Edge Setup Time 20 --- --- ns
TSDIH SCLK Rising Edge to SDI Hold Time 20 --- --- ns
TSDOD Delay Time from SCLK Falling Edge to SDO Data --- --- 20 ns
TSDOT Delay Time from CSb Rising Edge to SDO Tri-State --- --- 10 ns
TSDOA Delay Time from CSb Falling Edge to SDO Active --- --- 10 ns
Table 8.4: General SPI Timing Parameters
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 145 of 164 January 2010
Figure 40: In-band Transmit Frequency Response
Figure 41: In-band Receive Frequency Response
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 146 of 164 January 2010
Figure 42: Transmit Group Delay Distortion
Figure 43: Receive Group Delay Distortion
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 147 of 164 January 2010
Figure 44: 2-Wire to PCM Signal to Distortio n Mask (A-Law)
Figure 45: 2-Wire to PCM Signal to Distortion Mask (µ-Law)
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 148 of 164 January 2010
Figure 46: Wideband In-band Transmit Frequency Response
Figure 47: Wideband Transmit Group Delay Distortion
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 149 of 164 January 2010
Figure 48: Wideband Receive Group Delay Distortion
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 150 of 164 January 2010
16. DIGITAL I/O
16.1.1. µ-LAW ENCODE DECODE CHARACTERISTICS
Normalized Encode
Decision Levels
Digital Code
Normalized
Decode Levels
D7 D6 D5 D4 D3 D2 D1 D0
Sign Chord Chord Chord Step Step Step Step
8159
7903
:
4319
4063
:
2143
2015
:
1055
991
:
511
479
:
239
223
:
103
95
:
35
31
:
3
1
0
1 0 0 0 0 0 0 0 8031
:
1 0 0 0 1 1 1 1 4191
:
1 0 0 1 1 1 1 1 2079
:
1 0 1 0 1 1 1 1 1023
:
1 0 1 1 1 1 1 1 495
:
1 1 0 0 1 1 1 1 231
:
1 1 0 1 1 1 1 1 99
:
1 1 1 0 1 1 1 1 33
:
1 1 1 1 1 1 1 0 2
1 1 1 1 1 1 1 1 0
Notes:
Sign bit = 0 for negative values, sign bit = 1 for positive values
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 151 of 164 January 2010
16.2. A-LAW ENCODE DECODE CHARACTERISTICS
Normalized
Encode
Decision
Levels
Digital Code Normalized
Decode
Levels
D7 D6 D5 D4 D3 D2 D1 D0
Sign Chord Chord Chord Step Step Step Step
4096
3968
:
2176
2048
:
1088
1024
:
544
512
:
272
256
:
136
128
:
68
64
:
2
0
1 0 1 0 1 0 1 0 4032
:
1 0 1 0 0 1 0 1 2112
:
1 0 1 1 0 1 0 1 1056
:
1 0 0 0 0 1 0 1 528
:
1 0 0 1 0 1 0 1 264
:
1 1 1 0 0 1 0 1 132
:
1 1 1 0 0 1 0 1 66
:
1 1 0 1 0 1 0 1 1
Notes:
1. Sign bit = 0 for negative values, sign bit = 1 for positive values
2. Digital code includes inversion of all even number bits
16.3. µ-LAW / A-LAW CODES FOR ZERO AND FULL SCALE
Level
µ-Law A-Law
Sign bit
(D7)
Chord bits
(D6,D5,D4)
Step bits
(D3,D2,D1,D0)
Sign bit
(D7)
Chord bits
(D6,D5,D4)
Step bits
(D3,D2,D1,D0)
+ Full Scale 1 000 0000 1 010 1010
+ Zero 1 111 1111 1 101 0101
- Zero 0 111 1111 0 101 0101
- Full Scale 0 000 0000 0 010 1010
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 152 of 164 January 2010
16.3.1. µ-LAW / A-LAW CODES FOR 0DBM0 OUTPUT (DIGITAL MILLIWATT)
Sample
µ-Law A-Law
Sign bit
(D7)
Chord bits
(D6,D5,D4)
Step bits
(D3,D2,D1,D0)
Sign bit
(D7)
Chord bits
(D6,D5,D4)
Step bits
(D3,D2,D1,D0)
1 0 001 1110 0 011 0100
2 0 000 1011 0 010 0001
3 0 000 1011 0 010 0001
4 0 001 1110 0 011 0100
5 1 001 1110 1 011 0100
6 1 000 1011 1 010 0001
7 1 000 1011 1 010 0001
8 1 001 1110 1 011 0100
16.4. 16-BIT LINEAR PCM CODES FOR ZERO AND FULL SCALE
Level Sign bit Magnitude Bits
+ Full Scale 0 111.1111 1111 1111
+ One Step 0 000 0000 0000 0001
Zero 0 000 0000 0000 0000
- One Step 1 111 1111 1111 1111
- Full Scale 1 000 0000 0000 0000
16.5. 16-BIT LINEAR PCM CODES FOR 1 KHZ DIGITAL MILLIWAT T
Phase Sign bit Magnitude Bits
/ 8 0 010 0001 1110 0011
3 / 8 0 101 0001 1101 0000
5 / 8 0 101 0001 1101 0000
7 / 8 0 010 0001 1110 0011
9 / 8 1 101 1110 0001 1100
11 / 8 1 010 1110 0010 1111
13 / 8 1 010 1110 0010 1111
15 / 8 1 101 1110 0001 1100
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 153 of 164 January 2010
17. TYPICAL APPLICATION CIRCUITS
17.1. DC/DC APPLICATION
Figure 49: Typical Application Block Diagram
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 154 of 164 January 2010
17.2. DISCRETE LINE DRIVER
Figure 50: Discrete Line-driver
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 155 of 164 January 2010
17.3. DC DC
Figure 51: Inductor based circuit 12V supply
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 156 of 164 January 2010
17.4. TRIPLE BATTERY SWITCH APPLICATION
Figure 52: Triple Battery based Switch 1
DCN
VBAT
DCN
Q7
CMPT5401
1
23
Q4
CZT5551
1
23
4
R27 200K
R25 200K
Q3
CZT5551
1
23
4
R29
1.2K
DCN
VBATR
Q8
CMPT5401
1
23
DCP DCP
D6
1N4003
21
D8
1N4003
21
DCP
100V,1a
R26
1.2K
VBATH
VBATL
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 157 of 164 January 2010
17.5. N681386/87 DCDC APPLICATION USE WITH SLFC N681622
Figure 53: N681386/87 Pro-X Application diagram to be used with N681622
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 158 of 164 January 2010
17.6. N681622 LINEFEED CIRCUIT
Figure 54: N681622 Linefeed circuit
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 159 of 164 January 2010
18. PACKAGE SPECIFICATION
18.1. LQFP-48 (10X10X1.4mm FOOTPRINT 2.0mm)
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 160 of 164 January 2010
18.2. QFN-48
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 161 of 164 January 2010
18.3. QFN 20L 4X4 mm2, PITCH:0.50 mm
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 162 of 164 January 2010
19. ORDERING INFORMATION
Nuvoton Part Number Description
When ordering N681386/87 series devices, please refer to the following part numbers:
Part Number Temp
Range (oC) Package Package
Material
N681386DG
N681387DG -40 to 85 48-LQFP Pb-Free
N681386YG
N681387YG -40 to 85 48-QFN Pb-Free
When ordering N681622 series devices, please refer to the following part numbers:
Part Number Temp
Range (oC) Package Package
Material
N681622YG -40 to 85 20-QFN Pb-Free
Package Type:
D = LQFP-48
Y = QFN-48
Product Family
N681386/87_ _
Package Material:
G = Pb-free Package
Package Type:
Y = QFN-20
Product Family
N681622_ _
Package Material:
G = Pb-free Package
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 163 of 164 January 2010
20. VERSION HISTORY
VERSION DATE PAGE DESCRIPTION
V0.85 January
2010
1
33
37
50
52
62
67
77 & 96
86
88 & 77
96
102 -103
105
134
135
Register 0x0F deleted from the document.
Package info updated
Table 10 updated
Table 14 has been deleted from the document
Figure 17 updated
Equations updated. Table 22 has been deleted from the document
External battery switching detail updated
General Description for N681622 updated
Register table address 0x24 updated
Register 0x10[1] description updated
Register 0x14 updated
Register 0x26 info updated
Registers 0x36, 0x37, and 0x38 units updated
Register 0x41 info updated
Register 0xB6 has been deleted from the document
Register info updated. Register 0xC0 bit description updated
V1.0 January
2010
18 – 24
18
20
21
31
35
36
40
49
56
59
64
67
74
82
85
86
88 - 92
89
Location of the tables were modified
Absolute Maximum Ratings table for N681622 updated
IPD and ISB maximum values updated
Supply parameter for SLFC updated
Tables 8 and 9 updated
Example updated
Table 15 updated
Table 15 updated
Register 0x60 and 0x61 updated
Impedance matching section updated
Diagnostics Support description updated
PCM Interface description updated
PLL and Prescaler in Wideband table updated
SPI 12-bits Read sequence diagram updated
Register 0x03 default updated
Register 0x06 and 0x07 updated
Register 0x10[1] description updated
Register 0x15 to 0x1F description updated
Register 0x15 to 0x1F updated
N681386/87
Single Programmable Extended Codec/SLCC
Preliminary Datasheet Rev1.0 Page 164 of 164 January 2010
VERSION DATE PAGE DESCRIPTION
93
94
107
111
115
122 - 128
129
131
136
139
153
Register 0x20 updated
Register 0x22 info updated
Register 0x43 info updated
Register 0x4C info updated
Register 0x5E to 0x61 info updated
Register 0x81 to 0x9C updated
Register 0x9D and 0x9E deleted from the document
Register 0xAD info updated
Register 0xDA and 0xDB deleted from the document
Register 0xF7 description updated
Application Diagrams updated
Important Notice
Nuvoton products are not designed, intended, authorized or warranted for use as components in systems or
equipment intended for surgical implantation, atomic energy control instruments, airplane or spaceship
instruments, transportation instruments, traffic signal instruments, combustion control instruments, or for
other applications intended to support or sustain life. Furthermore, Nuvoton products are not intended for
applications wherein failure of Nuvoton products could result or lead to a situation wherein personal injury,
death or severe property or environmental damage could occur.
Nuvoton customers using or selling these products for use in such applications do so at their own risk and
agree to fully indemnify Nuvoton for any damage s resulting from such improp er u se o r sales.