DS92LV2421,DS92LV2422
DS92LV2421/DS92LV2422 10 to 75 MHz, 24-bit Channel Link II Serializer and
Deserializer
Literature Number: SNLS321A
DS92LV2421/DS92LV2422
January 14, 2011
10 to 75 MHz, 24-bit Channel Link II Serializer and
Deserializer
General Description
The DS92LV2421 (Serializer) / DS92LV2422 (Deserializer)
chipset translates a parallel 24–bit LVCMOS data interface
into a single high-speed CML serial interface with embedded
clock information. This single serial stream eliminates skew
issues between clock and data, reduces connector size and
interconnect cost for transferring a 24-bit or less, bus over
FR-4 printed circuit board backplanes, and balanced cables.
In addition to the 24-bit data bus interface, the DS92LV2421
and DS92LV2422 also features a 3-bit control bus for slow
speed signals. This allows implementing video and display
applications with up to 24–bits per pixel (RGB).
Programmable transmit de-emphasis, receive equalization,
on-chip scrambling and DC balancing enables longer dis-
tance transmission over lossy cables and backplanes. The
DS92LV2422 automatically locks to incoming data without an
external reference clock or special sync patterns, providing
easy “plug-and-go” operation. EMI is minimized by the use of
low voltage differential signaling, receiver drive strength con-
trol, and spread spectrum clocking capability.
The DS92LV2421, DS92LV2422 chipset is programmable
though an I2C interface as well as through pins. A built-in AT-
SPEED BIST feature validates link integrity and may be used
for system diagnostics.
The DS92LV2421 is offered in a 48-pin LLP and the
DS92LV2422 is offered in a 60-pin LLP package. Both de-
vices operate over the full industrial temperature range of -40°
C to +85°C.
Features
24–bit data, 3–bit control, 10 – 75 MHz clock
AC coupled STP interconnect cable up to 10 meters
Integrated terminations on Ser and Des
AT-SPEED link BIST mode and reporting pin
Optional I2C compatible Serial Control Bus
Power down mode minimizes power dissipation
1.8V or 3.3V compatible LVCMOS I/O interface
-40° to +85°C temperature range
>8 kV HBM
SERIALIZER — DS92LV2421
Data scrambler for reduced EMI
DC-balance encoder for AC coupling
Selectable output VOD and adjustable de-emphasis
DESERIALIZER — DS92LV2422
FAST random data lock; no reference clock required
Adjustable input receiver equalization
LOCK (real time link status) reporting pin
EMI minimization on output parallel bus (SSCG)
Output Slew control (OS)
Applications
Embedded Video and Display
Medical Imaging
Factory Automation
Office Automation — Printer, Scanner
Security and Video Surveillance
General purpose data communication
Applications Diagram
30110127
TRI-STATE® is a registered trademark of National Semiconductor Corporation.
© 2011 National Semiconductor Corporation 301101 www.national.com
DS92LV2421/DS92LV2422 10 to 75 MHz, 24-bit Channel Link II Serializer and Deserializer
Block Diagrams
30110128
30110129
Ordering Information
NSID Package Description Quantity SPEC Package ID
DS92LV2421SQE 48–pin LLP, 7.0 X 7.0 X 0.8 mm, 0.5 mm pitch 250 NOPB SQA48A
DS92LV2421SQ 48–pin LLP, 7.0 X 7.0 X 0.8 mm, 0.5 mm pitch 1000 NOPB SQA48A
DS92LV2421SQX 48–pin LLP, 7.0 X 7.0 X 0.8 mm, 0.5 mm pitch 2500 NOPB SQA48A
DS92LV2422SQE 60–pin LLP, 9.0 X 9.0 X 0.8 mm, 0.5 mm pitch 250 NOPB SQA60B
DS92LV2422SQ 60–pin LLP, 9.0 X 9.0 X 0.8 mm, 0.5 mm pitch 1000 NOPB SQA60B
DS92LV2422SQX 60–pin LLP, 9.0 X 9.0 X 0.8 mm, 0.5 mm pitch 2500 NOPB SQA60B
www.national.com 2
DS92LV2421/DS92LV2422
DS92LV2421 Pin Diagram
30110119
Serializer - DS92LV2421 — Top View
DS92LV2421 Serializer Pin Descriptions
Pin Name Pin # I/O, Type Description
LVCMOS Parallel Interface
DI[7:0] 34, 33, 32, 29,
28, 27, 26, 25
I, LVCMOS
w/ pull-down
Parallel Interface Data Input Pins
For 8–bit RED Display: DI7 = R7 – MSB, DI0 = R0 – LSB.
DI[15:8] 42, 41, 40, 39,
38, 37, 36, 35
I, LVCMOS
w/ pull-down
Parallel Interface Data Input Pins
For 8–bit GREEN Display: DI15 = G7 – MSB, DI8 = G0 – LSB.
DI[23:16] 2, 1, 48, 47,
46, 45, 44, 43
I, LVCMOS
w/ pull-down
Parallel Interface Data Input Pins
For 8–bit BLUE Display: DI23 = B7 – MSB, DI16 = B0 – LSB.
CI1 5 I, LVCMOS
w/ pull-down
Control Signal Input
For Display/Video Application: CI1 = Data Enable Input
Control signal pulse width must be 3 clocks or longer to be transmitted when the Control
Signal Filter is enabled (CONFIG[1:0] = 01). There is no restriction on the minimum
transition pulse when the Control Signal Filter is disabled (CONFIG[1:0] = 00). The signal
is limited to 2 transitions per 130 clocks regardless of the Control Signal Filter setting.
CI2 3 I, LVCMOS
w/ pull-down
Control Signal Input
For Display/Video Application: CI2 = Horizontal Sync Input
Control signal pulse width must be 3 clocks or longer to be transmitted when the Control
Signal Filter is enabled (CONFIG[1:0] = 01). There is no restriction on the minimum
transition pulse when the Control Signal Filter is disabled (CONFIG[1:0] = 00). The signal
is limited to 2 transitions per 130 clocks regardless of the Control Signal Filter setting.
CI3 4 I, LVCMOS
w/ pull-down
Control Signal Input
For Display/Video Application: CI3 = Vertical Sync Input
CI3 is limited to 1 transition per 130 clock cycles. Thus, the minimum pulse width allowed
is 130 clock cycle wide.
3 www.national.com
DS92LV2421/DS92LV2422
Pin Name Pin # I/O, Type Description
CLKIN 10 I, LVCMOS
w/ pull-down
Clock Input
Latch/data strobe edge set by RFB pin.
Control and Configuration
PDB 21 I, LVCMOS
w/ pull-down
Power-down Mode Input
PDB = 1, Ser is enabled (normal operation).
Refer to ”Power Up Requirements and PDB Pin” in the Applications Information Section.
PDB = 0, Ser is powered down. When the Ser is in the power-down state, the driver outputs
(DOUT+/-) are both logic high, the PLL is shutdown, IDD is minimized. Control Registers
are RESET.
VODSEL 24 I, LVCMOS
w/ pull-down
Differential Driver Output Voltage Select (This is can also be control by I2C register.)
VODSEL = 1, LVDS VOD is ±420 mV, 840 mVp-p (typ) — long cable / De-Emph apps
VODSEL = 0, LVDS VOD is ±280 mV, 560 mVp-p (typ) — short cable (no De-emph), low
power mode.
De-Emph 23 I, Analog
w/ pull-up
De-Emphasis Control (This can also be controlled by I2C register access.)
De-Emph = open (float) - disabled
To enable De-emphasis, tie a resistor from this pin to GND or control via register.
See Table 4.
RFB 11 I, LVCMOS
w/ pull-down
Clock Input Latch/Data Strobe Edge Select (This can also be controlled by I2C register
access.)
RFB = 1, parallel interface data and control signals are latched on the rising clock edge.
RFB = 0, parallel interface data and control signals are latched on the falling clock edge.
CONFIG
[1:0]
13, 12 I, LVCMOS
w/ pull-down
00: Control Signal Filter DISABLED
01: Control Signal Filter ENABLED
10: Reverse compatibility mode to interface with the DS90UR124 or DS99R124Q
11: Reverse compatibility mode to interface with the DS90C124
ID[x] 6 I, Analog I2C Serial Control Bus Device ID Address Select — Optional
Resistor to Ground and 10 k pull-up to 1.8V rail. See Table 11.
SCL 8 I, LVCMOS I2C Serial Control Bus Clock Input - Optional
SCL requires an external pull-up resistor to VDDIO.
SDA 9 I/O, LVCMOS
Open Drain
I2C Serial Control Bus Data Input / Output - Optional
SDA requires an external pull-up resistor VDDIO.
BISTEN 31 I, LVCMOS
w/ pull-down
BIST Mode — Optional
BISTEN = 0, BIST is disabled (normal operation)
BISTEN = 1, BIST is enabled
RES[2:0] 18, 16, 15 I, LVCMOS
w/ pull-down
Reserved - tie LOW
Channel-Link II — CML Serial Interface
DOUT+ 20 O, CML Non–Inverting Output.
The output must be AC Coupled with a 0.1 µF capacitor.
DOUT- 19 O, CML Inverting Output.
The output must be AC Coupled with a 0.1 µF capacitor.
Power and Ground (see NOTE below)
VDDL 7 Power Logic Power, 1.8 V ±5%
VDDP 14 Power PLL Power, 1.8 V ±5%
VDDHS 17 Power TX High Speed Logic Power, 1.8 V ±5%
VDDTX 22 Power Output Driver Power, 1.8 V ±5%
VDDIO 30 Power LVCMOS I/O Power, 1.8 V ±5% OR 3.3 V ±10%
GND DAP Ground DAP is the large metal contact at the bottom side, located at the center of the LLP
package. Connect to the ground plane (GND) with at least 9 vias.
NOTE: 1= HIGH, 0 L= LOW
The VDD (VDDn and VDDIO) supply ramp should be faster than 1.5 ms with a monotonic rise. If slower then 1.5 ms then a capacitor
on the PDB pin is needed to ensure PDB arrives after all the VDD have settled to the recommended operating voltage.
www.national.com 4
DS92LV2421/DS92LV2422
DS92LV2422 Pin Diagram
30110120
Deserializer - DS92LV2422 — Top View
DS92LV2422 Deserializer Pin Descriptions
Pin Name Pin # I/O, Type Description
LVCMOS Parallel Interface
DO[7:0] 33, 34, 35,
36, 37, 39,
40, 41
I, STRAP,
O, LVCMOS
Parallel Interface Data Output Pins
For 8–bit RED Display: DO7 = R7 – MSB, DO0 = R0 – LSB.
In power-down (PDB = 0), outputs are controlled by the OSS_SEL (See Table 8). These
pins are inputs during power-up (See STRAP Inputs).
DO[15:8] 20, 21, 22,
23, 25, 26,
27, 28
I, STRAP,
O, LVCMOS
Parallel Interface Data Output Pins
For 8–bit GREEN Display: DO15 = G7 – MSB, DO8 = G0 – LSB.
In power-down (PDB = 0), outputs are controlled by the OSS_SEL (See Table 8). These
pins are inputs during power-up (See STRAP Inputs).
DO[23:16] 9, 10, 11,
12, 14, 17,
18, 19
I, STRAP,
O, LVCMOS
Parallel Interface Data Input Pins
For 8–bit BLUE Display: DO23 = B7 – MSB, DO16 = B0 – LSB.
In power-down (PDB = 0), outputs are controlled by the OSS_SEL (See Table 8). These
pins are inputs during power-up (See STRAP Inputs).
5 www.national.com
DS92LV2421/DS92LV2422
Pin Name Pin # I/O, Type Description
CO1 6 O, LVCMOS Control Signal Output
For Display/Video Application:
CO1 = Data Enable Output
Control signal pulse width must be 3 clocks or longer to be transmitted when the Control
Signal Filter is enabled (CONFIG[1:0] = 01). There is no restriction on the minimum transition
pulse when the Control Signal Filter is disabled (CONFIG[1:0] = 00).
The signal is limited to 2 transitions per 130 clocks regardless of the Control Signal Filter
setting.
In power-down (PDB = 0), output is controlled by the OSS_SEL pin (See Table 8).
CO2 8 O, LVCMOS Control Signal Output
For Display/Video Application:
CO2 = Horizontal Sync Output
Control signal pulse width must be 3 clocks or longer to be transmitted when the Control
Signal Filter is enabled (CONFIG[1:0] = 01). There is no restriction on the minimum transition
pulse when the Control Signal Filter is disabled (CONFIG[1:0] = 00).
The signal is limited to 2 transitions per 130 clocks regardless of the Control Signal Filter
setting.
In power-down (PDB = 0), output is controlled by the OSS_SEL pin (See Table 8).
CO3 7 O, LVCMOS Control Signal Output
For Display/Video Application:
CO3 = Vertical Sync Output
CO3 is different than CO1 and CO2 because it is limited to 1 transition per 130 clock cycles.
Thus, the minimum pulse width allowed is 130 clock cycle wide.
The CONFIG[1:0] pins have no affect on CO3 signal
In power-down (PDB = 0), output is controlled by the OSS_SEL pin (See Table 8).
CLKOUT 5 O, LVCMOS Pixel Clock Output
In power-down (PDB = 0), output is controlled by the OSS_SEL pin (See Table 8). Data
strobe edge set by RFB.
LOCK 32 O, LVCMOS LOCK Status Output
LOCK = 1, PLL is Locked, outputs are active LOCK = 0, PLL is unlocked, DO[23:0], CO1,
CO2, CO3 and CLKOUT output states are controlled by OSS_SEL (See Table 8). May be
used as Link Status or to flag when Video Data is active (ON/OFF).
PASS 42 O, LVCMOS PASS Output (BIST Mode)
PASS = 1, error free transmission
PASS = 0, one or more errors were detected in the received payload
Route to test point for monitoring, or leave open if unused.
Control and Configuration — STRAP PINS
For a High State, use a 10 k pull up to VDDIO; for a Low State, the IO includes an internal pull down. The STRAP pins are read upon
power-up and set device configuration. Pin Number listed along with shared data output name in square brackets.
CONFIG[1:0] 10 [DO22],
9 [DO23]
STRAP
I, LVCMOS
w/ pull-down
00: Control Signal Filter DISABLED
01: Control Signal Filter ENABLED
10: Reverse compatibility mode to interface with the DS90UR241 or DS99R241
11: Reverse compatibility mode to interface with the DS90C241
LF_MODE 12 [DO20] STRAP
I, LVCMOS
w/ pull-down
SSCG Low Frequency Mode
Only required when SSCG is enabled, otherwise LF_MODE condition is a DON’T CARE
(X).
LF_MODE = 1, SSCG in low frequency mode (CLK = 10-20 MHz)
LF_MODE = 0, SSCG in high frequency mode (CLK = 20-65 MHz)
This can also be controlled by I2C register access.
OS_CLKOUT 11 [DO21] STRAP
I, LVCMOS
w/ pull-down
Output CLKOUT Slew Select
OS_CLKOUT = 1, Increased CLKOUT slew rate
OS_CLKOUT = 0, Normal CLKOUT slew rate (default)
This can also be controlled by I2C register access.
www.national.com 6
DS92LV2421/DS92LV2422
Pin Name Pin # I/O, Type Description
OS_DATA 14 [DO19] STRAP
I, LVCMOS
w/ pull-down
Output DO[23:0], CO1, CO2, CO3 Slew Select
OS_DATA = 1, Increased DO slew rate
OS_DATA = 0, Normal DO slew rate (default)
This can also be controlled by I2C register access.
OP_LOW 42 [PASS] STRAP
I, LVCMOS
w/ pull-down
Outputs held LOW when LOCK = 1
NOTE: Do not use any other strap options with this strap function enabled
OP_LOW = 1: all outputs are held LOW during power up until released by programming
OP_LOW release/set register HIGH.
NOTE: Before the device is powered up, the outputs are in TRI-STATE®
See Figure 24 and Figure 25
OP_LOW = 0: all outputs toggle normally as soon as LOCK goes HIGH (default)
This can also be controlled by I2C register access.
OSS_SEL 17 [DO18] STRAP
I, LVCMOS
w/ pull-down
Output Sleep State Select
OSS_SEL is used in conjunction with PDB to determine the state of the outputs in Power
Down (Sleep). (See Table 8).
NOTE: OSS_SEL STRAP CANNOT BE USED IF OP_LOW = 1
This can also be controlled by I2C register access.
RFB 18 [DO17] STRAP
I, LVCMOS
w/ pull-down
Clock Output Strobe Edge Select
RFB = 1, parallel interface data and control signals are strobed on the rising clock edge.
RFB = 0, parallel interface data and control signals are strobed on the falling clock edge.
This can also be controlled by I2C register access.
EQ[3:0] 20 [DO15],
21 [DO14],
22 [DO13],
23 [DO12]
STRAP
I, LVCMOS
w/ pull-down
Receiver Input Equalization
(See Table 5).
This can also be controlled by I2C register access.
OSC_SEL[2:0] 26 [DO10],
27 [DO9],
28 [DO8]
STRAP
I, LVCMOS
w/ pull-down
Oscillator Selectl
(See Table 9 and Table 10).
This can also be controlled by I2C register access.
SSC[3:0] 34 [DO6],
35 [DO5],
36 [DO4],
37 [DO3]
STRAP
I, LVCMOS
w/ pull-down
Spread Spectrum Clock Generation (SSCG) Range Select
(See Table 6 and Table 7).
This can also be controlled by I2C register access.
MAP_SEL[1:0] 40[D],
41 [D]
STRAP
I, LVCMOS
w/ pull-down
Bit mapping reverse compatibility / DS90UR241 Options
Pin or Register Control
Default setting is b'00.
Control and Configuration
PDB 59 I, LVCMOS
w/ pull-down
Power Down Mode Input
PDB = 1, Des is enabled (normal operation).
Refer to “Power Up Requirements and PDB Pin” in the Applications Information Section.
PDB = 0, Des is in power-down.
When the Des is in the power-down state, the LVCMOS output state is determined by Table
8. Control Registers are RESET.
ID[x] 56 I, Analog I2C Serial Control Bus Device ID Address Select — Optional
Resistor to Ground and 10 k pull-up to 1.8V rail. (See Table 11).
SCL 3 I, LVCMOS I2C Serial Control Bus Clock Input - Optional
SCL requires an external pull-up resistor to VDDIO.
SDA 2 I/O,
LVCMOS
Open Drain
I2C Serial Control Bus Data Input / Output - Optional
SDA requires an external pull-up resistor to VDDIO.
BISTEN 44 I, LVCMOS
w/ pull-down
BIST Enable Input — Optional
BISTEN = 0, BIST is disabled (normal operation)
BISTEN = 1, BIST is enabled
RES 47 I, LVCMOS
w/ pull-down
Reserved - tie LOW
7 www.national.com
DS92LV2421/DS92LV2422
Pin Name Pin # I/O, Type Description
NC 1, 15, 16,
30, 31, 45,
46, 60
Not Connected
Leave pin open (float)
Channel-Link II — CML Serial Interface
RIN+ 49 I, CML True Input. The input must be AC Coupled with a 0.1 μF capacitor.
RIN- 50 I, CML Inverting Input. The input must be AC Coupled with a 0.1 μF capacitor.
CMF 51 I, Analog Common-Mode Filter
VCM center-tap is a virtual ground which may be ac-coupled to ground to increase receiver
common mode noise immunity. Recommended value is 4.7 μF or higher.
ROUT+ 52 O, CML True Output — Receive Signal after the Equalizer
NC if not used or connect to test point for monitor. Requires I2C control to enable.
ROUT- 53 O, CML Inverting Output — Receive Signal after the Equalizer
NC if not used or connect to test point for monitor. Requires I2C control to enable.
Power and Ground (see NOTE below)
VDDL 29 Power Logic Power, 1.8 V ±5%
VDDIR 48 Power Input Power, 1.8 V ±5%
VDDR 43, 55 Power RX High Speed Logic Power, 1.8 V ±5%
VDDSC 4, 58 Power SSCG Power, 1.8 V ±5%
VDDPR 57 Power PLL Power, 1.8 V ±5%
VDDCMLO 54 Power RX High Speed Logic Power, 1.8 V ±5%
VDDIO 13, 24, 38 Power LVCMOS I/O Power, 1.8 V ±5% OR 3.3 V ±10% (VDDIO)
GND DAP Ground DAP is the large metal contact at the bottom side, located at the center of the LLP package.
Connected to the ground plane (GND) with at least 9 vias.
NOTE: 1 = HIGH, 0 = LOW
The VDD (VDDn and VDDIO) supply ramp should be faster than 1.5 ms with a monotonic rise. If slower then 1.5 ms then a capacitor
on the PDB pin is needed to ensure PDB arrives after all the VDD have settled to the recommended operating voltage.
www.national.com 8
DS92LV2421/DS92LV2422
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
Supply Voltage – VDDn (1.8V) −0.3V to +2.5V
Supply Voltage – VDDIO −0.3V to +4.0V
LVCMOS I/O Voltage −0.3V to (VDDIO + 0.3V)
Receiver Input Voltage −0.3V to (VDD + 0.3V)
Driver Output Voltage −0.3V to (VDD + 0.3V)
Junction Temperature +150°C
Storage Temperature −65°C to +150°C
48L LLP Package
Maximum Power Dissipation
Capacity at 25°C 225 mW
Derate above 25°C 1/ θJA mW / °C
 θJA (with 9 thermal via) 27.1 °C/W
 θJC (with 9 thermal via) 4.5 °C/W
60L LLP Package
Maximum Power Dissipation
Capacity at 25°C 525 mW
Derate above 25°C 1/ θJA mW / °C
 θJA (with 9 thermal via) 24.6 °C/W
 θJC (with 9 thermal via) 2.8 °C/W
ESD Rating (HBM) ±8 kV
ESD Rating (CDM) ±1 kV
ESD Rating (MM) ±250 V
ESD Rating (IEC 61000–4–2),
RD = 330Ω, CS = 150pF
Air Discharge (DOUT+, DOUT- ) ±25kV
Contact Discharge (DOUT+,
DOUT- ) ±8kV
Air Discharge (RIN+, RIN- ) ±25kV
Contact Discharge (RIN+, RIN- ) ±8kV
For soldering specifications:
see product folder at www.national.com and
www.national.com/ms/MS/MS-SOLDERING.pdf
Recommended Operating
Conditions
Min Nom Max Units
Supply Voltage (VDDn) 1.71 1.8 1.89 V
LVCMOS Supply
Voltage (VDDIO)
1.71 1.8 1.89 V
OR
LVCMOS Supply
Voltage (VDDIO)
3.0 3.3 3.6 V
Operating Free Air
Temperature (TA)−40 +25 +85 °C
Clock Frequency 10 75 MHz
Supply Noise (Note 10) 50 mVP-P
Serializer DC Electrical Characteristics
Over recommended operating supply and temperature ranges unless otherwise specified. (Note 2, Note 3, Note 4)
Symbol Parameter Conditions Pin/Freq. Min Typ Max Units
LVCMOS INPUT DC SPECIFICATIONS
VIH High Level Input Voltage
VDDIO = 3.0 to 3.6V
DI[23:0],
CI1,CI2,CI3,
CLKIN, PDB,
VODSEL,
RFB,
BISTEN,
CONFIG[1:0]
2.2 VDDIO V
VDDIO = 1.71 to 1.89V 0.65*
VDDIO
VDDIO V
VIL Low Level Input Voltage
VDDIO = 3.0 to 3.6V GND 0.8 V
VDDIO = 1.71 to 1.89V GND 0.35*
VDDIO
V
IIN Input Current VIN = 0V or VDDIO
VDDIO = 3.0
to 3.6V −15 ±1 +15 μA
VDDIO = 1.7
to 1.89V −15 ±1 +15 μA
9 www.national.com
DS92LV2421/DS92LV2422
Symbol Parameter Conditions Pin/Freq. Min Typ Max Units
CML DRIVER DC SPECIFICATIONS
VOD Differential Output Voltage RL = 100Ω,
De-emph = disabled,
Figure 2
VODSEL = 0
DOUT+,
DOUT-
±205 ±280 ±355 mV
VODSEL = 1 ±320 ±420 ±520
VODp-p
Differential Output Voltage
(DOUT+) – (DOUT-)
VODSEL = 0 560 mVp-p
VODSEL = 1 840 mVp-p
ΔVOD Output Voltage Unbalance RL = 100Ω, De-emph = disabled,
VODSEL = L 1 50 mV
VOS
Offset Voltage – Single-ended
At TP A & B, Figure 1
RL = 100Ω,
De-emph = disabled
VODSEL = 0 1.65 V
VODSEL = 1 1.575 V
ΔVOS
Offset Voltage Unbalance
Single-ended
At TP A & B, Figure 1
RL = 100Ω, De-emph = disabled 1 mV
IOS Output Short Circuit Current DOUT+/- = 0V,
De-emph = disabled VODSEL = 0 −36 mA
RTO
Internal Output Termination
Reistor DOUT+,
DOUT- 80 100 120
SUPPLY CURRENT
IDDT1
Serializer
Supply Current
(includes load current)
RL = 100 Ω, CLKIN = 75 MHz
Checker Board
Pattern,
De-emph = 3kΩ,
VODSEL = H, Figure 9
VDD= 1.89V All VDD pins 75 90 mA
IDDIOT1
VDDIO= 1.89V
VDDIO
3 5 mA
VDDIO = 3.6V 11 15 mA
IDDT2 Checker Board
Pattern,
De-emph = 6kΩ,
VODSEL = L, Figure 9
VDD= 1.89V All VDD pins 65 80 mA
IDDIOT2
VDDIO= 1.89V
VDDIO
3 5 mA
VDDIO = 3.6V 11 15 mA
IDDZ Serializer
Supply Current Power-down
PDB = 0V , (All other
LVCMOS Inputs = 0V)
VDD= 1.89V All VDD pins 40 1000 µA
IDDIOZ
VDDIO= 1.89V VDDIO
5 10 µA
VDDIO = 3.6V 10 20 µA
Deserializer DC Electrical Characteristics
Over recommended operating supply and temperature ranges unless otherwise specified.
Symbol Parameter Conditions Pin/Freq. Min Typ Max Units
3.3 V I/O LVCMOS DC SPECIFICATIONS – VDDIO = 3.0 to 3.6V
VIH High Level Input Voltage
PDB,
BISTEN
2.2 VDDIO V
VIL Low Level Input Voltage GND 0.8 V
IIN Input Current VIN = 0V or VDDIO −15 ±1 +15 μA
VOH High Level Output Voltage IOH = −0.5 mA, RDS = L DO[23:0],
CO1, CO2,
CO3,
CLKOUT,
LOCK, PASS
2.4 VDDIO V
VOL Low Level Output Voltage IOL = +0.5 mA, RDS = L GND 0.4 V
IOS
Output Short Circuit Current
VDDIO = 3.3V,
VOUT = 0V,
OS_CLKOUT/DATA = L/H
CLKOUT 36 mA
Output Short Circuit Current
VDDIO = 3.3V,
VOUT = 0V,
OS_CLKOUT/DATA = L/H
Outputs 37 mA
IOZ TRI-STATE® Output Current PDB = 0V, OSS_SEL = 0V,
VOUT = 0V or VDDIO
Outputs −15 +15 µA
www.national.com 10
DS92LV2421/DS92LV2422
Symbol Parameter Conditions Pin/Freq. Min Typ Max Units
1.8 V I/O LVCMOS DC SPECIFICATIONS – VDDIO = 1.71 to 1.89V
VIH High Level Input Voltage
PDB,
BISTEN
1.235 VDDIO V
VIL Low Level Input Voltage GND 0.595 V
IIN Input Current VIN = 0V or VDDIO −15 ±1 +15 μA
VOH High Level Output Voltage IOH = −0.5 mA, RDS = L DO[23:0],
CO1, CO2,
CO3,
CLKOUT,
LOCK, PASS
VDDIO
- 0.45 VDDIO V
VOL Low Level Output Voltage IOL = +0.5 mA, RDS = L GND 0.2 V
IOS
Output Short Circuit Current
VDDIO = 1.8V,
VOUT = 0V,
OS_CLKOUT/DATA = L/H
CLKOUT 18 mA
Output Short Circuit Current
VDDIO = 1.8V,
VOUT = 0V,
OS_CLKOUT/DATA = L/H
Outputs 18 mA
IOZ TRI-STATE Output Current PDB = 0V, OSS_SEL = 0V,
VOUT = 0V or VDDIO
Outputs -15 +15 µA
CML RECEIVER DC SPECIFICATIONS
VTH
Differential Input Threshold
High Voltage VCM = +1.2V (Internal VBIAS)
RIN+, RIN-
+50 mV
VTL
Differential Input Threshold
Low Voltage −50 mV
VCM
Common Mode Voltage,
Internal VBIAS
1.2 V
IIN Input Current VIN = 0V or VDDIO -15 +15 µA
RTI
Internal Input Termination
Resistor RIN+,
RIN- 80 100 120
LOOP THROUGH CML DRIVER OUTPUT DC SPECIFICATIONS – EQ TEST PORT
VOD Differential Output Voltage RL = 100Ω
ROUT+/-
542 mV
VOS
Offset Voltage
Single-ended RL = 100Ω 1.4 V
RTInternal Termination Resistor 80 100 120
SUPPLY CURRENT
IDD1
Deserializer
Supply Current
(includes load current)
CLKOUT = 75 MHz
Checker Board
Pattern, RDS = H,
CL = 4pF, Figure 9
VDD= 1.89V All VDD pins 97 115 mA
IDDIO1
VDDIO=1.89V VDDIO
40 50 mA
VDDIO = 3.6V 75 85 mA
IDDZ Deserializer Supply Current
Power Down
PDB = 0V, All other
LVCMOS Inputs = 0V
VDD= 1.89V All VDD pins 100 3000 µA
IDDIOZ
VDDIO=1.89V VDDIO
6 50 µA
VDDIO = 3.6V 12 100 µA
11 www.national.com
DS92LV2421/DS92LV2422
Recommended Serializer Timing for CLKIN Requirements
Over recommended operating supply and temperature ranges unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Units
tTCP Transmit Input CLKIN Period 10 MHz to 75 MHz, Figure 4 13.3 T 100 ns
tTCIH Transmit Input CLKIN High
Time 0.4T 0.5T 0.6T ns
tTCIL Transmit Input CLKIN Low Time 0.4T 0.5T 0.6T ns
tCLKT CLKIN Input Transition Time 0.5 2.4 ns
SSCIN CLKIN Input – Spread
Spectrum at 75 MHz
fmod 35 kHz
fdev ±2 %
Serializer Switching Characteristics
Over recommended operating supply and temperature ranges unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Units
tLHT Ser Output Low-to-High
Transition Time, Figure 3
RL = 100Ω, De-emphasis = disabled,
VODSEL = 0 200 ps
RL = 100Ω, De-emphasis = disabled,
VODSEL = 1 200 ps
tHLT Ser Output High-to-Low
Transition Time, Figure 3
RL = 100Ω, De-emphasis = disabled,
VODSEL = 0 200 ps
RL = 100Ω, De-emphasis = disabled,
VODSEL = 1 200 ps
tDIS Input Data - Setup Time,
Figure 4
DI[23:0], CI1, CI2, CI3 to CLKIN 2 ns
tDIH Input Data - Hold Time,
Figure 4
CLKIN to DI[23:0], CI1, CI2, CI3 2 ns
tXZD Ser Ouput Active to OFF Delay,
Figure 6
8 15 ns
tPLD Serializer PLL Lock Time,
Figure 5
RL = 100Ω 1.4 10 ms
tSD Serializer Delay - Latency,
Figure 7
RL = 100Ω 144*T 145*T ns
tDJIT Ser Output Total Jitter,
Figure 8
RL = 100Ω, De-Emph = disabled,
RANDOM pattern, CLKIN = 75MHz 0.28 UI
RL = 100Ω, De-Emph = disabled,
RANDOM pattern, CLKIN = 43MHz 0.27 UI
RL = 100Ω, De-Emph = disabled,
RANDOM pattern, CLKIN = 10MHz 0.35 UI
λSTXBW Serializer Jitter Transfer
Function -3 dB Bandwidth
RL = 100Ω, De-Emph = disabled,
RANDOM pattern, CLKIN = 75MHz 3.3 MHz
RL = 100Ω, De-Emph = disabled,
RANDOM pattern, CLKIN = 43MHz 2.3 MHz
RL = 100Ω, De-Emph = disabled,
RANDOM pattern, CLKIN = 10MHz 0.8 MHz
δSTX Serializer Jitter Transfer
Function Peaking
RL = 100Ω, De-Emph = disabled,
RANDOM pattern, CLKIN = 75MHz 0.86 dB
RL = 100Ω, De-Emph = disabled,
RANDOM pattern, CLKIN = 43MHz 0.83 dB
RL = 100Ω, De-Emph = disabled,
RANDOM pattern, CLKIN = 10MHz 0.28 dB
www.national.com 12
DS92LV2421/DS92LV2422
Deserializer Switching Characteristics
Over recommended operating supply and temperature ranges unless otherwise specified.
Symbol Parameter Conditions Pin/Freq. Min Typ Max Units
tRCP CLK Output Period tRCP = tTCP CLKOUT 13.3 T 100 ns
tRDC CLK Output Duty Cycle SSCG = OFF,
10 – 75 MHz 40 50 60 %
SSCG = ON,
10 – 20MHz
35 59 65 %
SSCG = ON,
10 – 65MHz
40 53 60 %
tCLH LVCMOS
Low-to-High
Transition Time, Figure 10
VDDIO = 1.8V,
CL = 4pF, OS_CLKOUT/
DATA = L
CLKOUT
2.1 ns
VDDIO = 3.3V
CL = 4pF, OS_CLKOUT/
DATA = H
2.0 ns
tCHL LVCMOS
High-to-Low
Transition Time, Figure 10
VDDIO = 1.8V,
CL = 4pF, OS_CLKOUT/
DATA = L
CLKOUT
1.6 ns
VDDIO = 3.3V
CL = 4pF, OS_CLKOUT/
DATA = H
1.5 ns
tROS Data Valid before CLKOUT –
Set Up Time, Figure 14
VDDIO = 1.71 to 1.89V or 3.0
to 3.6V
CL = 4pF (lumped load)
DO[23:0], CO1, CO2,
CO3 0.23 0.5 UI
tROH Data Valid after CLKOUT –
Hold Time, Figure 14
VDDIO = 1.71 to 1.89V or 3.0
to 3.6V
CL = 4pF (lumped load)
DO[23:0], CO1, CO2,
CO3 0.33 0.5 UI
tDDLT Deserializer Lock Time,
Figure 13
SSC[3:0] = OFF,
(Note 6)
CLKOUT = 10MHz 3 ms
SSC[3:0] = OFF,
(Note 6)
CLKOUT = 75MHz 4 ms
SSC[3:0] = ON,
(Note 6)
CLKOUT = 10MHz 30 ms
SSC[3:0] = ON,
(Note 6)
CLKOUT = 65MHz 6 ms
tDD Des Delay - Latency, Figure 11 CLKOUT = 10 to 75
MHz 139*T 140*T ns
tDPJ Des Period Jitter SSC[3:0] = OFF,
(Note 8)
CLKOUT = 10 MHz 500 1000 ps
CLKOUT = 65 MHz 550 1250 ps
CLKOUT = 75 MHz 435 900 ps
tDCCJ Des Cycle-to-Cycle Jitter SSC[3:0] = OFF,
(Note 9)
CLKOUT = 10 MHz 375 900 ps
CLKOUT = 65 MHz 500 1150 ps
CLKOUT = 75 MHz 460 1000 ps
tIJT Des Input Jitter Tolerance,
Figure 16
EQ = OFF,
SSCG = OFF,
CLKOUT = 75 MHz
jitter freq <2MHz 0.9 UI
jitter freq >6MHz 0.5 UI
BIST Mode
tPASS BIST PASS Valid Time,
BISTEN = 1, Figure 17
1 10 μs
13 www.national.com
DS92LV2421/DS92LV2422
Symbol Parameter Conditions Pin/Freq. Min Typ Max Units
SSCG Mode
fDEV Spread Spectrum
Clocking Deviation
Frequency
CLKOUT = 10 to 65
MHz, SSC[3:0] = ON ±0.5 ±2 %
fMOD Spread Spectrum
Clocking Modulation
Frequency
CLKOUT = 10 to 65
MHz, SSC[3:0] = ON 8 100 kHz
Recommended Timing for the Serial Control Bus
Over recommended operating supply and temperature ranges unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Units
fSCL SCL Clock Frequency Standard Mode 100 kHz
Fast Mode 400 kHz
tLOW SCL Low Period Standard Mode 4.7 μs
Fast Mode 1.3 μs
tHIGH SCL High Period Standard Mode 4.0 μs
Fast Mode 0.6 μs
tHD;STA Hold time for a start or a
repeated start condition,
Figure 18
Standard Mode 4.0 μs
Fast Mode 0.6 μs
tSU:STA Set Up time for a start or a
repeated start condition,
Figure 18
Standard Mode 4.7 μs
Fast Mode 0.6 μs
tHD;DAT Data Hold Time,
Figure 18
Standard Mode 0 3.45 μs
Fast Mode 0 0.9 μs
tSU;DAT Data Set Up Time,
Figure 18
Standard Mode 250 ns
Fast Mode 100 ns
tSU;STO Set Up Time for STOP
Condition, Figure 18
Standard Mode 4.0 μs
Fast Mode 0.6 μs
tBUF Bus Free Time
Between STOP and START,
Figure 18
Standard Mode 4.7 μs
Fast Mode 1.3 μs
trSCL & SDA Rise Time,
Figure 18
Standard Mode 1000 ns
Fast Mode 300 ns
tfSCL & SDA Fall Time,
Figure 18
Standard Mode 300 ns
Fast mode 300 ns
www.national.com 14
DS92LV2421/DS92LV2422
DC and AC Serial Control Bus Characteristics
Over recommended operating supply and temperature ranges unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Units
VIH Input High Level SDA and SCL 2.2 VDD 3.3V V
VIL Input Low Level Voltage SDA and SCL GND 0.8 V
VHY Input Hysteresis >50 mV
VOL SDA, IOL = 3mA 0 0.4 V
Iin SDA or SCL, Vin = VDDIO or GND -15 +15 µA
tRSDA RiseTime – READ SDA, RPU = X, Cb 400pF 40 ns
tFSDA Fall Time – READ 25 ns
tSU;DAT Set Up Time – READ 520 ns
tHD;DAT Hold Up Time – READ 55 ns
tSP Input Filter 50 ns
Cin Input Capacitance SDA or SCL <5 pF
Note 1: “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability
and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in
the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the
device should not be operated beyond such conditions.
Note 2: The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified
or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.
Note 3: Typical values represent most likely parametric norms at VDD = 3.3V, Ta = +25 degC, and at the Recommended Operation Conditions at the time of
product characterization and are not guaranteed.
Note 4: Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground except VOD, ΔVOD,
VTH and VTL which are differential voltages.
Note 5: When the Serializer output is at TRI-STATE the Deserializer will lose PLL lock. Resynchronization / Relock must occur before data transfer require tPLD
Note 6: tPLD and tDDLT is the time required by the serializer and deserializer to obtain lock when exiting power-down state with an active clock.
Note 7: UI – Unit Interval is equivalent to one serialized data bit width (1UI = 1 / 28*CLK). The UI scales with clock frequency.
Note 8: tDPJ is the maximum amount the period is allowed to deviate over many samples.
Note 9: tDCCJ is the maximum amount of jitter between adjacent clock cycles.
Note 10: Supply noise testing was done with minimum capacitors on the PCB. A sinusoidal signal is AC coupled to the VDDn (1.8V) supply with amplitude = 100
mVp-p measured at the device VDDn pins. Bit error rate testing of input to the Ser and output of the Des with 10 meter cable shows no error when the noise
frequency on the Ser is less than 750 kHz. The Des on the other hand shows no error when the noise frequency is less than 400 kHz.
Note 11: Specification is guaranteed by characterization and is not tested in production.
Note 12: Specification is guaranteed by design and is not tested in production.
AC Timing Diagrams and Test Circuits
30110146
FIGURE 1. Serializer Test Circuit
15 www.national.com
DS92LV2421/DS92LV2422
30110130
FIGURE 2. Serializer Output Waveforms
30110147
FIGURE 3. Serializer Output Transition Times
30110131
FIGURE 4. Serializer Input CLKIN Waveform and Set and Hold Times
30110148
FIGURE 5. Serializer Lock Time
www.national.com 16
DS92LV2421/DS92LV2422
30110149
FIGURE 6. Serializer Disable Time
30110110
FIGURE 7. Serializer Latency Delay
30110150
FIGURE 8. Serializer Output Jitter
17 www.national.com
DS92LV2421/DS92LV2422
30110132
FIGURE 9. Checkerboard Data Pattern
30110105
FIGURE 10. Deserializer LVCMOS Transition Times
30110111
FIGURE 11. Deserializer Delay – Latency
30110113
FIGURE 12. Deserializer Disable Time (OSS_SEL = 0)
www.national.com 18
DS92LV2421/DS92LV2422
30110114
FIGURE 13. Deserializer PLL Lock Times and PDB TRI-STATE™ Delay
30110135
FIGURE 14. Deserializer Output Data Valid (Setup and Hold) Times with SSCG = Off
30110134
FIGURE 15. Deserializer Output Data Valid (Setup and Hold) Times with SSCG = On
19 www.national.com
DS92LV2421/DS92LV2422
30110116
FIGURE 16. Receiver Input Jitter Tolerance
30110152
FIGURE 17. BIST PASS Waveform
30110136
FIGURE 18. Serial Control Bus Timing Diagram
www.national.com 20
DS92LV2421/DS92LV2422
Functional Description
The DS92LV2421 / DS92LV2422 chipset transmits and re-
ceives 24-bits of data and 3 control signals over a single serial
CML pair operating at 280 Mbps to 2.1 Gbps. The serial
stream also contains an embedded clock, video control sig-
nals and the DC-balance information which enhances signal
quality and supports AC coupling.
The Des can attain lock to a data stream without the use of a
separate reference clock source, which greatly simplifies sys-
tem complexity and overall cost. The Des also synchronizes
to the Ser regardless of the data pattern, delivering true au-
tomatic “plug and lock” performance. It can lock to the incom-
ing serial stream without the need of special training patterns
or sync characters. The Des recovers the clock and data by
extracting the embedded clock information, validating and
then deserializing the incoming data stream providing a par-
allel LVCMOS video bus to the display or ASIC/FPGA.
The DS92LV2421 / DS92LV2422 chipset can operate in 24-
bit color depth (with DE, HS, VS encoded within the serial data
stream). In 18–bit color applications, the three video control
signals maybe sent encoded within the serial bit stream (re-
strictions apply) along with six additional general purpose
signals.
Block Diagrams for the chipset are shown at the beginning of
this datasheet.
Data Transfer
The DS92LV2421 / DS92LV2422 chipset will transmit and
receive a pixel of data in the following format: C1 and C0 rep-
resent the embedded clock in the serial stream. C1 is always
HIGH and C0 is always LOW. The remaining 26 bit spaces
contain the scrambled, encoded and DC-Balanced serial da-
ta.
SER & DES OPERATING MODES AND REVERSE
COMPATIBILITY (CONFIG[1:0])
The DS92LV2421 / DS92LV2422 chipset is compatible with
other single serial lane Channel Link II or FPD-Link II devices.
Configuraiton modes are provided for reverse compatibility
with the DS90C241 / DS90C124 and also the DS90UR241 /
DS90UR124 by setting the respective mode with the CONFIG
[1:0] pins on the Ser or Des as shown in Table and Table. This
selection also determines whether the Control Signal Filter
feature is enabled or disabled in the Normal mode. These
configuration modes are selectable the the control pins only.
TABLE 1. DS92LV2421 Ser Modes
CONFIG1 CONFIG0 MODE DES DEVICE
L L Normal Mode,
Control Signal
Filter disabled
DS92LV2422,
DS92LV2412,
DS92LV0422,
DS92LV0412
L H Normal Mode,
Control Signal
Filter enabled
DS92LV2422,
DS92LV2412,
DS92LV0422,
DS92LV0412
H L Reverse
Compatibility
Mode
DS90UR124,
DS99R124
H H Reverse
Compatibility
Mode
DS90C124
TABLE 2. DS92LV2422 Des Modes
CONFIG1 CONFIG0 MODE SER DEVICE
L L Normal Mode,
Control Signal
Filter disabled
DS92LV2421,
DS92LV2411,
DS92LV0421,
DS92LV0411
L H Normal Mode,
Control Signal
Filter enabled
DS92LV2421,
DS92LV2411,
DS92LV0421,
DS92LV0411
H L Reverse
Compatibility
Mode
DS90UR241,
DS99R421
H H Reverse
Compatibility
Mode
DS90C241
VIDEO CONTROL SIGNAL FILTER — SER & DES
When operating the devices in Normal Mode, the Control Sig-
nals have the following restrictions:
Normal Mode with Control Signal Filter Enabled: Control
Signal 1 and Control Signal 2 — Only 2 transitions per 130
clock cycles are transmitted, the transition pulse must be
3 parallel clocks or longer.
Normal Mode with Control Signal Filter Disabled: Control
Signal 1 and Control Signal 2 — Only 2 transitions per 130
clock cycles are transmitted, no restriction on minimum
transition pulse.
Control Signal 3 — Only 1 transition per 130 clock cycles
is transmitted , minimum pulse width is 130 clock cycles.
Control Signals are defined as low frequency signals with lim-
ited transition. Glitches of a control signal can cause a visual
error in display applications. This feature allows for the
chipset to validate and filter out any high frequency noise on
the control signals. See Figure.
SERIALIZER Functional Description
The Ser converts a wide parallel input bus to a single serial
output data stream, and also acts as a signal generator for
the chipset Built In Self Test (BIST) mode. The device can be
configured via external pins or through the optional serial
control bus. The Ser features enhance signal quality on the
link by supporting: a selectable VOD level, a selectable de-
emphasis signal conditioning and also the Channel Link II
data coding that provides randomization, scrambling, and DC
Balanacing of the data. The Ser includes multiple features to
reduce EMI associated with display data transmission. This
includes the randomization and scrambling of the data and
also the system spread spectrum clock support. The Ser fea-
tures power saving features with a sleep mode, auto stop
clock feature, and optional LVCMOS (1.8 V) parallel bus com-
patibility.
See also the Functional Description of the chipset's serial
control bus and BIST modes.
EMI Reduction Features
Data Randomization & Scrambling
Channel Link II Ser / Des feature a 3 step encoding process
which enables the use of AC coupled interconnects and also
helps to manage EMI. The serializer first passes the parallel
data through a scrambler which randomizes the data. The
randomized data is then DC balanced. The DC balanced and
randomized data then goes through a bit shuffling circuit and
21 www.national.com
DS92LV2421/DS92LV2422
is transmitted out on the serial line. This encoding process
helps to prevent static data patterns on the serial stream. The
resulting frequency content of the serial stream ranges from
the parallel clock frequency to the nyquist rate. For example,
if the Ser / Des chip set is operating at a parallel clock fre-
quency of 75 MHz, the resulting frequency content of serial
stream ranges from 75 MHz to 1.05 GHz ( 75 MHz *28 bits =
2.1 Gbps / 2 = 1.05 GHz ).
Ser — Spread Spectrum Compatibility
The Ser CLKIN is capable of tracking spread spectrum clock-
ing (SSC) from a host source. The CLKIN will accept spread
spectrum tracking up to 35 kHz modulation and ±0.5, ±1 or
±2% deviations (center spread). The maximum conditions for
the CLKIN input are: a modulation frequency of 35 kHz and
amplitude deviations of ±2% (4% total).
Integrated Signal Conditioning Features — Ser
Ser — VOD Select (VODSEL)
The Ser differential output voltage may be increased by set-
ting the VODSEL pin High. When VODSEL is Low, the VOD
is at the standard (default) level. When VODSEL is High, the
VOD is increased in level. The increased VOD is useful in
extremely high noise environments and also on extra long
cable length applications. When using de-emphasis it is rec-
ommended to set VODSEL = H to avoid excessive signal
attenuation especially with the larger de-emphasis settings.
This feature may be controlled by the external pin or by reg-
ister.
TABLE 3. Differential Output Voltage
Input Effect
VODSEL VOD
mV
VOD
mVp-p
H ±420 840
L ±280 560
Ser — De-Emphasis (De-Emph)
The De-Emph pin controls the amount of de-emphasis be-
ginning one full bit time after a logic transition that the Ser
drives. This is useful to counteract loading effects of long or
lossy cables. This pin should be left open for standard switch-
ing currents (no de-emphasis) or if controlled by register. De-
emphasis is selected by connecting a resistor on this pin to
ground, with R value between 0.5 k to 1 M, or by register
setting. When using De-Emphasis it is recommended to set
VODSEL = H.
TABLE 4. De-Emphasis Resistor Value
Resistor Value (kΩ) De-Emphasis Setting
Open Disabled
0.6 - 12 dB
1.0 - 9 dB
2.0 - 6 dB
5.0 - 3 dB
30110160
FIGURE 19. De-Emph vs. R value
Power Saving Features
Ser — Power Down Feature (PDB)
The Ser has a PDB input pin to ENABLE or POWER DOWN
the device. This pin is controlled by the host and is used to
save power, disabling the link when the it is not needed. In
the POWER DOWN mode, the high-speed driver outputs are
both pulled to VDD and present a 0V VOD state. Note – in
POWER DOWN, the optional Serial Bus Control Registers
are RESET.
Ser — Stop Clock Feature
The Ser will enter a low power SLEEP state when the CLKIN
is stopped. A STOP condition is detected when the input clock
frequency is less than 3 MHz. The clock should be held at a
static Low or high state. When the CLKIN starts again, the Ser
will then lock to the valid input clock and then transmits the
serial data to the Des. Note – in STOP CLOCK SLEEP, the
optional Serial Bus Control Registers values are RE-
TAINED.
1.8V or 3.3V VDDIO Operation
The Ser parallel bus and Serial Bus Interface can operate with
1.8 V or 3.3 V levels (VDDIO) for host compatibility. The 1.8 V
levels will offer lower noise (EMI) and also a system power
savings.
Ser — Pixel Clock Edge Select (RFB)
The RFB pin determines the edge that the data is latched on.
If RFB is High, input data is latched on the Rising edge of the
CLKIN. If RFB is Low, input data is latched on the Falling edge
of the CLKIN. Ser and Des maybe set differently. This feature
may be controlled by the external pin or by register.
Optional Serial Bus Control
Please see the following section on the optional Serial Bus
Control Interface.
Optional BIST Mode
Please see the following section on the chipset BIST mode
for details.
www.national.com 22
DS92LV2421/DS92LV2422
DESERIALIZER Functional Description
The Des converts a single input serial data stream to a wide
parallel output bus, and also provides a signal check for the
chipset Built In Self Test (BIST) mode. The device can be
configured via external pins and strap pins or through the op-
tional serial control bus. The Des features enhance signal
quality on the link with an integrated equalizer on the serial
input and Channel Link II data encoding which provides ran-
domization, scrambling, and DC balanacing of the data. The
Des includes multiple features to reduce EMI associated with
data transmission. This includes the randomization and
scrambling of the data, the output spread spectrum clock
generation (SSCG) support and output clock and data slew
rate select. The Des features power saving features with a
power down mode, and optional LVCMOS (1.8 V) interface
compatibility.
Integrated Signal Conditioning Features — Des
Des — Input Equalizer Gain (EQ)
The Des can enable receiver input equalization of the serial
stream to increase the eye opening to the Des input. Note this
function cannot be seen at the RxIN+/- input but can be ob-
served at the serial test port (ROUT+/-) enabled via the Serial
Bus control registers. The equalization feature may be con-
trolled by the external pin or by register.
TABLE 5. Receiver Equalization Configuration Table
INPUTS Effect
EQ3 EQ2 EQ1 EQ0
L L L H ~1.5 dB
L L H H ~3 dB
L H L H ~4.5 dB
L H H H ~6 dB
H L L H ~7.5 dB
H L H H ~9 dB
H H L H ~10.5 dB
H H H H ~12 dB
X X X L OFF*
* Default Setting is EQ = Off
EMI Reduction Features
Des — Output Slew Rate Select (OS_CLKOUT/OS_DATA)
The parallel data outputs and clock outputs of the deserializer
feature selectable output slew rates. The slew rate of the
CLKOUT pin is controlled by the strap pin or register
OS_CLKOUT, while the data outputs (DO[23:0] and CO[3:1])
are controlled by the strap pin or register OS_DATA. When
OS_CLKOUT/DATA = HIGH, the maxium slew rate is select-
ed. When the OS_CLKOUT/DATA = LOW, the minimum slew
rate is selected. Use the higher slew rate when driving longer
traces or a heavier capacitive load.
Des — Common Mode Filter Pin (CMF) — Optional
The Des provides access to the center tap of the internal ter-
mination. A capacitor may be placed on this pin for additional
common-mode filtering of the differential pair. This can be
useful in high noise environments for additional noise rejec-
tion capability. A 4.7 µF capacitor may be connected to this
pin to Ground.
Des — SSCG Generation — Optional
The Des provides an internally generated spread spectrum
clock (SSCG) to modulate its outputs. Both clock and data
outputs are modulated. This will aid to lower system EMI.
Output SSCG deviations to ±2% (4% total) at up to 100 kHz
modulations is available. Note: The device supports SSCG
function with CLK = 10 MHz to 65 MHz. When the CLK = 65
MHz to 75 MHz, it is required to disable SSCG function (SSC
[3:0] = 0000). See Table 6. This feature may be controlled by
external STRAP pins or by register.
30110133
FIGURE 20. SSCG Waveform
23 www.national.com
DS92LV2421/DS92LV2422
TABLE 6. SSCG Configuration (LF_MODE = L) — Des Output
SSC[3:0] Inputs
LF_MODE = L (20 - 65 MHz)
Result
SSC3 SSC2 SSC1 SSC0 fdev (%) fmod (kHz)
L L L L NA Disable
L L L H ±0.5
CLK/2168
L L H L ±1.0
L L H H ±1.5
L H L L ±2.0
L H L H ±0.5 CLK/1300
L H H L ±1.0
L H H H ±1.5
H L L L ±2.0
H L L H ±0.5 CLK/868
H L H L ±1.0
H L H H ±1.5
H H L L ±2.0
H H L H ±0.5 CLK/650
H H H L ±1.0
H H H H ±1.5
TABLE 7. SSCG Configuration (LF_MODE = H) — Des Output
SSC[3:0] Inputs
LH_MODE = H (10 - 20 MHz)
Result
SSC3 SSC2 SSC1 SSC0 fdev (%) fmod (kHz)
L L L L NA Disable
L L L H ±0.5
CLK/620
L L H L ±1.0
L L H H ±1.5
L H L L ±2.0
L H L H ±0.5 CLK/370
L H H L ±1.0
L H H H ±1.5
H L L L ±2.0
H L L H ±0.5 CLK/258
H L H L ±1.0
H L H H ±1.5
H H L L ±2.0
H H L H ±0.5 CLK/192
H H H L ±1.0
H H H H ±1.5
1.8V or 3.3V VDDIO Operation
The Des parallel bus and Serial Bus Interface can operate
with 1.8 V or 3.3 V levels (VDDIO) for target (Display) compat-
ibility. The 1.8 V levels will offer a lower noise (EMI) and also
a system power savings.
Power Saving Features
Des — PowerDown Feature (PDB)
The Des has a PDB input pin to ENABLE or POWER DOWN
the device. This pin can be controlled by the system to save
power, disabling the Des when the display is not needed. An
auto detect mode is also available. In this mode, the PDB pin
is tied High and the Des will enter POWER DOWN when the
serial stream stops. When the serial stream starts up again,
the Des will lock to the input stream and assert the LOCK pin
and output valid data. In POWER DOWN mode, the Data and
CLKOUT output states are determined by the OSS_SEL sta-
tus. Note – in POWER DOWN, the optional Serial Bus Control
Registers are RESET.
Des — Stop Stream SLEEP Feature
The Des will enter a low power SLEEP state when the input
serial stream is stopped. A STOP condition is detected when
www.national.com 24
DS92LV2421/DS92LV2422
the embedded clock bits are not present. When the serial
stream starts again, the Des will then lock to the incoming
signal and recover the data. Note – in STOP STREAM
SLEEP, the optional Serial Bus Control Registers values are
RETAINED.
Des — CLOCK-DATA RECOVERY STATUS FLAG (LOCK)
and OUTPUT STATE SELECT (OSS_SEL)
When PDB is driven HIGH, the CDR PLL begins locking to
the serial input and LOCK goes from TRI-STATE to LOW
(depending on the value of the OSS_SEL setting). After the
DS92LV2422 completes its lock sequence to the input serial
data, the LOCK output is driven HIGH, indicating valid data
and clock recovered from the serial input is available on the
parallel bus and clock outputs. The CLKOUT output is held at
its current state at the change from OSC_CLK (if this is en-
abled via OSC_SEL) to the recovered clock (or vice versa).
If there is a loss of clock from the input serial stream, LOCK
is driven Low and the state of the outputs are based on the
OSS_SEL setting (STRAP PIN configuration or register).
Des — Oscillator Output — Optional
The Des provides an optional clock output when the input
clock (serial stream) has been lost. This is based on an inter-
nal oscillator. The frequency of the oscillator may be selected.
This feature may be controlled by the external pin or by reg-
ister. See Table 9 and Table 10.
TABLE 8. OSS_SEL and PDB Configuration — Des Outputs
INPUTS OUTPUTS
Serial
Input
PDB OSS_SEL CLKOUT DO[23:0], CO1,
CO2, CO3
LOCK PASS
X L L Z Z Z Z
X L H L L L H
Static H L Z Z L H
Static H H L L L H
Active H X Active Active H H
TABLE 9. OSC (Oscillator) Mode — Des Output
INPUTS OUTPUTS
Embedded CLK CLKOUT DO[23:0]/CO1/CO2/CO3 LOCK PASS
NOTE * OSC
Output
L L H
Present Toggling Active H H
* NOTE — Absent and OSC_SEL 000
30110140
FIGURE 21. Des Outputs with Output State Select Low (OSS_SEL = L)
25 www.national.com
DS92LV2421/DS92LV2422
30110153
FIGURE 22. Des Outputs with Output State Select High (OSS_SEL = H)
TABLE 10. OSC_SEL (Oscillator) Configuration
OSC_SEL[2:0] INPUTS CLKOUT Oscillator Frequency
OSC_SEL2 OSC_SEL1 OSC_SEL0
L L L Off – Feature Disabled – Default
L L H 50 MHz ±40%
L H L 25 MHz ±40%
L H H 16.7 MHz ±40%
H L L 12.5 MHz ±40%
H L H 10 MHz ±40%
H H L 8.3 MHz ±40%
H H H 6.3 MHz ±40%
www.national.com 26
DS92LV2421/DS92LV2422
30110154
FIGURE 23. Des Outputs with Output State High and CLK Output Oscillator Option Enabled
Des — OP_LOW — Optional
The OP_LOW feature is used to hold the LVCMOS outputs,
except for the LOCK output, at a LOW state. When the
OP_LOW feature is enabled, the LVCMOS outputs will be
held at logic LOW while LOCK = LOW. The user must toggle
the OP_LOW Set/Reset register bit to release the outputs to
the normal toggling state. Note that the release of the outputs
can only occur when LOCK is HIGH. The OP_LOW strap op-
tion is assigned to the PASS pin, at pin location 42.
Restrictions on other straps:
1. Other strap options should not be used in order to keep
the data and clock outputs at a true logic LOW state.
Other features should be selected through the I2C
register interface.
2. The OSS_SEL feature is not available when OP_LOW is
enabled.
Outputs DO[23:0], CO[3:1] and CLKOUT are in TRI-STATE™
before PDB toggles HIGH because the OP-LOW strap value
has not been recognized until the DS92LV2422 powers up.
Figure 24 shows the user controlled release of the OP_LOW
and automatic reset of OP_LOW set on the falling edge of
LOCK. Figure 25 shows the user controlled release of
OP_LOW and manual reset of OP_LOW set. Note manual
reset of OP_LOW can only occur when LOCK is HIGH.
27 www.national.com
DS92LV2421/DS92LV2422
30110165
FIGURE 24. OP_LOW Auto Set
30110166
FIGURE 25. OP_LOW Manual Set/Reset
Des — Clock Edge Select (RFB)
The RFB pin determines the edge that the data is strobed on.
If RFB is High, output data is strobed on the Rising edge of
the CLKOUT. If RFB is Low, data is strobed on the Falling
edge of the CLKOUT. This allows for inter-operability with
downstream devices. The Des output does not need to use
the same edge as the Ser input. This feature may be con-
trolled by the external pin or by register.
www.national.com 28
DS92LV2421/DS92LV2422
Des — Control Signal Filter — Optional
The deserializer provides an optional Control Signal (C3, C2,
C1) filter that monitors the three control signals and eliminates
any pulses or glitches that are 1 or 2 parallel clock periods
wide. Control signals must be 3 parallel clock periods wide (in
its HIGH or LOW state, regardless of which state is active).
This is set by the CONFIG[1:0] strap option or by I2C register
control.
Des — SSCG Low Frequency Optimization (LF_Mode)
Text to come. This feature may be controlled by the external
pin or by Register.
Des — Strap Input Pins
Configuration of the device maybe done via configuration in-
put pins and the STRAP input pins, or via the Serial Control
Bus. The STRAP input pins share select parallel bus output
pins. They are used to load in configuration values during the
initial power up sequence of the device. Only a pull-up on the
pin is required when a HIGH is desired. By default the pad
has an internal pull down, and will bias Low by itself. The rec-
ommended value of the pull up is 10 kΩ to VDDIO; open (NC)
for Low, no pull-down is required (internal pull-down). If using
the Serial Control Bus, no pull ups are required.
Optional Serial Bus Control
Please see the following section on the optional Serial Bus
Control Interface.
Optional BIST Mode
Please see the following section on the chipset BIST mode
for details.
Built In Self Test (BIST)
An optional At-Speed Built In Self Test (BIST) feature sup-
ports the testing of the high-speed serial link. This is useful in
the prototype stage, equipment production, in-system test
and also for system diagnostics. In the BIST mode only a input
clock is required along with control to the Ser and Des BIS-
TEN input pins. The Ser outputs a test pattern (PRBS7) and
drives the link at speed. The Des detects the PRBS7 pattern
and monitors it for errors. A PASS output pin toggles to flag
any payloads that are received with 1 to 24 errors. Upon com-
pletion of the test, the result of the test is held on the PASS
output until reset (new BIST test or Power Down). A high on
PASS indicates NO ERRORS were detected. A Low on PASS
indicates one or more errors were detected. The duration of
the test is controlled by the pulse width applied to the Des
BISTEN pin.
Inter-operability is supported between this Channel Link II de-
vice and all Channel Link II generations (Gen 1/2/3) — see
respective datasheets for details on entering BIST mode and
control.
Sample BIST Sequence
See Figure 26 for the BIST mode flow diagram.
Step 1: Place the DS92LV2421 Ser in BIST Mode by setting
Ser BISTEN = H. For the DS92LV2421 Ser or DS99R421
Channel Link II Ser BIST Mode is enabled via the BISTEN
pin. A CLKIN is required for BIST. When the Des detects the
BIST mode pattern and command (DCA and DCB code) the
data and control signal outputs are shut off.
Step 2: Place the DS92LV2422 Des in BIST mode by setting
the BISTEN = H. The Des is now in the BIST mode and checks
the incoming serial payloads for errors. If an error in the pay-
load (1 to 24) is detected, the PASS pin will switch low for one
half of the clock period. During the BIST test, the PASS output
can be monitored and counted to determine the payload error
rate.
Step 3: To Stop the BIST mode, the Des BISTEN pin is set
Low. The Des stops checking the data and the final test result
is held on the PASS pin. If the test ran error free, the PASS
output will be High. If there was one or more errors detected,
the PASS output will be Low. The PASS output state is held
until a new BIST is run, the device is RESET, or Powered
Down. The BIST duration is user controlled by the duration of
the BISTEN signal.
Step 4: To return the link to normal operation, the Ser BISTEN
input is set Low. The Link returns to normal operation.
Figure 27 shows the waveform diagram of a typical BIST test
for two cases. Case 1 is error free, and Case 2 shows one
with multiple errors. In most cases it is difficult to generate
errors due to the robustness of the link (differential data trans-
mission etc.), thus they may be introduced by greatly extend-
ing the cable length, faulting the interconnect, reducing signal
condition enhancements (De-Emphasis, VODSEL, or Rx
Equalization).
30110143
FIGURE 26. BIST Mode Flow Diagram
BER Calculations
It is possible to calculate the approximate Bit Error Rate
(BER). The following is required:
Clock Frequency (MHz)
BIST Duration (seconds)
BIST test Result (PASS)
The BER is less than or equal to one over the product of 24
times the CLK rate times the test duration. If we assume a 65
MHz clock, a 10 minute (600 second) test, and a PASS, the
BERT is 1.07 X 10E-12
The BIST mode runs a check on the data payload bits. The
LOCK pin also provides a link status. It the recovery of the C0
and C1 bits does not reconstruct the expected clock signal,
the LOCK pin will switch Low. The combination of the LOCK
and At-Speed BIST PASS pin provides a powerful tool for
system evaluation and performance monitoring.
29 www.national.com
DS92LV2421/DS92LV2422
30110164
FIGURE 27. BIST Waveforms
Optional Serial Bus Control
The Ser and Des may also be configured by the use of a serial
control bus that is I2C protocol compatible. By default, the I2C
reg_0x00'h is set to 00'h and all configuration is set by control/
strap pins. A write of 01'h to reg_0x00'h will enable/allow con-
figuration by registers; this will override the control/strap pins.
Multiple devices may share the serial control bus since mul-
tiple addresses are supported. See Figure 28.
The serial bus is comprised of three pins. The SCL is a Serial
Bus Clock Input. The SDA is the Serial Bus Data Input / Out-
put signal. Both SCL and SDA signals require an external pull
up resistor to VDDIO. For most applications a 4.7 k pull up re-
sistor to VDDIO may be used. The resistor value may be
adjusted for capacitive loading and data rate requirements.
The signals are either pulled High, or driven Low.
30110141
FIGURE 28. Serial Control Bus Connection
The third pin is the ID[X] pin. This pin sets one of five possible
device addresses. Three different connections are possible.
The pin may be tied to ground. The pin may be pulled to
VDD (1.8V, NOT VDDIO)) with a 10 k resistor. Or a 10 k pull
up resistor (to VDD 1.8V, NOT VDDIO)) and a pull down resistor
of the recommended value to set other three possible ad-
dresses may be used. See Table 11 for the Ser and Table
12 for the Des.
The Serial Bus protocol is controlled by START, START-Re-
peated, and STOP phases. A START occurs when SCL
transitions Low while SDA is High. A STOP occurs when SDA
transition High while SCL is also HIGH. See Figure 29
30110151
FIGURE 29. START and STOP Conditions
To communicate with a remote device, the host controller
(master) sends the slave address and listens for a response
from the slave. This response is referred to as an acknowl-
edge bit (ACK). If a slave on the bus is addressed correctly,
it Acknowledges (ACKs) the master by driving the SDA bus
low. If the address doesn't match a device's slave address, it
Not-acknowledges (NACKs) the master by letting SDA be
pulled High. ACKs also occur on the bus when data is being
transmitted. When the master is writing data, the slave ACKs
after every data byte is successfully received. When the mas-
ter is reading data, the master ACKs after every data byte is
received to let the slave know it wants to receive another data
byte. When the master wants to stop reading, it NACKs after
the last data byte and creates a stop condition on the bus. All
communication on the bus begins with either a Start condition
or a Repeated Start condition. All communication on the bus
ends with a Stop condition. A READ is shown in Figure 30
and a WRITE is shown in Figure 31.
www.national.com 30
DS92LV2421/DS92LV2422
If the Serial Bus is not required, the three pins may be left
open (NC).
TABLE 11. ID[x] Resistor Value – DS92LV2421 Ser
Resistor
RID k
Address
7'b
Address
8'b
0 appended
(WRITE)
0.47 7b' 110 1001 (h'69) 8b' 1101 0010 (h'D2)
2.7 7b' 110 1010 (h'6A) 8b' 1101 0100 (h'D4)
8.2 7b' 110 1011 (h'6B) 8b' 1101 0110 (h'D6)
Open 7b' 110 1110 (h'6E) 8b' 1101 1100 (h'DC)
TABLE 12. ID[x] Resistor Value – DS92LV2422 Des
Resistor
RID k
Address
7'b
Address
8'b
0 appended
(WRITE)
0.47 7b' 111 0001 (h'71) 8b' 1110 0010 (h'E2)
2.7 7b' 111 0010 (h'72) 8b' 1110 0100 (h'E4)
8.2 7b' 111 0011 (h'73) 8b' 1110 0110 (h'E6)
Open 7b' 111 0110 (h'76) 8b' 1110 1100 (h'EC)
30110138
FIGURE 30. Serial Control Bus — READ
30110139
FIGURE 31. Serial Control Bus — WRITE
31 www.national.com
DS92LV2421/DS92LV2422
TABLE 13. SERIALIZER — Serial Bus Control Registers
ADD
(dec)
ADD
(hex)
Register Name Bit(s) R/W Defa
ult
(bin)
Function Description
0 0 Ser Config 1 7 R/W 0 Reserved Reserved
6 R/W 0 Reserved Reserved
5 R/W 0 RFB 0: Data latched on Falling edge of CLKIN
1: Data latched on Rising edge of CLKIN
4 R/W 0 VODSEL 0: Low
1: High
3:2 R/W 00 CONFIG 00: Control Signal Filter Disabled
01: Control Signal Filter Enabled
10: Reserved
11: Reserved
1 R/W 0 SLEEP Note – not the same function as PowerDown (PDB)
0: normal mode
1: Sleep Mode – Register settings retained.
0 R/W 0 REG 0: Configurations set from control pins
1: Configuration set from registers (except I2C_ID)
1 1 Device ID 7 R/W 0 REG ID 0: Address from ID[X] Pin
1: Address from Register
6:0 R/W 1101
000
ID[X] Serial Bus Device ID, Four IDs are:
7b '1101 001 (h'69)
7b '1101 010 (h'6A)
7b '1101 011 (h'6B)
7b '1101 110 (h'6E)
All other addresses are Reserved.
2 2 De-Emphasis
Control
7:5 R/W 000 De-E Setting 000: set by external Resistor
001: -1 dB
010: -2 dB
011: -3.3 dB
100: -5 dB
101: -6.7 dB
110: -9 dB
111: -12 dB
4 R/W 0 De-E EN 0: De-Emphasis Enabled
1: De-Emphasis Disabled
3:0 R/W 000 Reserved Reserved
www.national.com 32
DS92LV2421/DS92LV2422
TABLE 14. DESERIALIZER — Serial Bus Control Registers
ADD
(dec)
ADD
(hex)
Register Name Bit(s) R/W Defa
ult
(bin)
Function Description
0 0 Des Config 1 7 R/W 0 LF_MODE 0: 20 to 65 MHz SSCG Operation
1: 10 to 20 MHz SSCG Operation
6 R/W 0 OS_CLKOUT 0: Normal CLKOUT Slew Rate
1: Increased CLKOUT Slew Rate
5 R/W 0 OS_DATA 0: Normal DATA Slew Rate
1: Increased DATA Slew Rate
4 R/W 0 RFB 0: Data strobed on Falling edge of CLKOUT
1: Data strobed on Rising edge of CLKOUT
3:2 R/W 00 CONFIG 00: Normal Mode, Control Signal Filter Disabled
01: Normal Mode, Control Signal Filter Enabled
10: Reserved
11: Reserved
1 R/W 0 SLEEP Note – not the same function as PowerDown (PDB)
0: Normal Mode
1: Sleep Mode – Register settings retained.
0 R/W 0 REG Control 0: Configurations set from control pins / STRAP pins
1: Configurations set from registers (except I2C_ID)
1 1 Slave ID 7 R/W 0 0: Address from ID[X] Pin
1: Address from Register
6:0 R/W 1110
000
ID[X] Serial Bus Device ID, Four IDs are:
7b '1110 001 (h'71)
7b '1110 010 (h'72)
7b '1110 011 (h'73)
7b '1110 110 (h'76)
All other addresses are Reserved.
2 2 Des Features 1 7 R/W 0 OP_LOW 0: Set outputs state LOW (except LOCK)
1: Release output LOW state, outputs toggling
normally
Note: This register only workds during LOCK = 1
6 R/W 0 OSS_SEL Output Sleep State Select
0: CLKOUT, DO[23:0], CO1, CO2, CO3 = Tri-State,
LOCK = Normal, PASS = H
1: CLKOUT, DO[23:0], CO1, CO2, CO3 = L, LOCK =
Normal, PASS = H
5:4 R/W 00 Reserved Reserved
3 R/W 0 OP_LOW Strap
Bypass
0: Strap will determine whether OP_LOW feature is
ON or OFF
1: Turns OFF OP_LOW feature
2:0 R/W 00 OSC_SEL 000: disable
001: 50 MHz ±40%
010: 25 MHz ±40%
011: 16.7 MHz ±40%
100: 12.5 MHz ±40%
101: 10 MHz ±40%
110: 8.3 MHz ±40%
111: 6.3 MHz ±40%
33 www.national.com
DS92LV2421/DS92LV2422
ADD
(dec)
ADD
(hex)
Register Name Bit(s) R/W Defa
ult
(bin)
Function Description
3 3 Des Features 2 7:5 R/W 000 EQ Gain 000: ~1.625 dB
001: ~3.25 dB
010: ~4.87 dB
011: ~6.5 dB
100: ~8.125 dB
101: ~9.75 dB
110: ~11.375 dB
111: ~13 dB
4 R/W 0 EQ Enable 0: EQ = disable
1: EQ = enable
3:0 R/W 0000 SSC IF LF_MODE = 0, then:
000: SSCG disable
0001: fdev = ±0.5%, fmod = CLK/2168
0010: fdev = ±1.0%, fmod = CLK/2168
0011: fdev = ±1.5%, fmod = CLK/2168
0100: fdev = ±2.0%, fmod = CLK/2168
0101: fdev = ±0.5%, fmod = CLK/1300
0110: fdev = ±1.0%, fmod = CLK/1300
0111: fdev = ±1.5%, fmod = CLK/1300
1000: fdev = ±2.0%, fmod = CLK/1300
1001: fdev = ±0.5%, fmod = CLK/868
1010: fdev = ±1.0%, fmod = CLK/868
1011: fdev = ±1.5%, fmod = CLK/868
1100: fdev = ±2.0%, fmod = CLK/868
1101: fdev = ±0.5%, fmod = CLK/650
1110: fdev = ±1.0%, fmod = CLK/650
1111: fdev = ±1.5%, fmod = CLK/650
IF LF_MODE = 1, then:
000: SSCG disable
0001: fdev = ±0.5%, fmod = CLK/620
0010: fdev = ±1.0%, fmod = CLK/620
0011: fdev = ±1.5%, fmod = CLK/620
0100: fdev = ±2.0%, fmod = CLK/620
0101: fdev = ±0.5%, fmod = CLK/370
0110: fdev = ±1.0%, fmod = CLK/370
0111: fdev = ±1.5%, fmod = CLK/370
1000: fdev = ±2.0%, fmod = CLK/370
1001: fdev = ±0.5%, fmod = CLK/258
1010: fdev = ±1.0%, fmod = CLK/258
1011: fdev = ±1.5%, fmod = CLK/258
1100: fdev = ±2.0%, fmod = CLK/258
1101: fdev = ±0.5%, fmod = CLK/192
1110: fdev = ±1.0%, fmod = CLK/192
1111: fdev = ±1.5%, fmod = CLK/192
4 4 ROUT Config 7 R/W 0 Repeater Enable 0: Output ROUT+/- = disable
1: Output ROUT+/- = enable
6:0 R/W 0000
000
Reserved Reserved
www.national.com 34
DS92LV2421/DS92LV2422
Applications Information
DISPLAY APPLICATION
The DS92LV2421/DS92LV2422 chipset is intended for inter-
face between a host (graphics processor) and a Display. It
supports an 24-bit color depth (RGB888). In a RGB888 ap-
plication, 24 color bits (D[23:0), Pixel Clock (CLKIN) and three
control bits (C1, C2, C3) are supported across the serial link
with CLK rates from 10 to 75 MHz. The chipset may also be
used in 18-bit color applications. In this application three to
six general purpose signals may also be sent from host to
display.
The Des is expected to be located close to its target device.
The interconnect between the Des and the target device is
typically in the 1 to 3 inch separation range. The input capac-
itance of the target device is expected to be in the 5 to 10 pF
range. Care should be taken on the CLK output trace as this
signal is edge sensitive and strobes the data. It is also as-
sumed that the fanout of the Des is one. If additional loads
need to be driven, a logic buffer or mux device is recom-
mended.
TYPICAL APPLICATION CONNECTION
Figure 32 shows a typical application of the DS92LV2421 Ser
in Pin control mode for 24-bit Application. The LVDS outputs
require 100 nF AC coupling capacitors to the line. The line
driver includes internal termination. Bypass capacitors are
placed near the power supply pins. At a minimum, four 0.1 µF
capacitors and a 4.7 µF capacitor should be used for local
device bypassing. System GPO (General Purpose Output)
signals control the PDB and BISTEN pins. In this application
the RFB pin is tied Low to latch data on the falling edge of the
CLKIN. In this example the cable is long, therefore the VOD-
SEL pin is tied High and a De-Emphasis value is selected by
the resistor R1. The interface to the host is with 1.8 V LVC-
MOS levels, thus the VDDIO pin is connected also to the 1.8V
rail. The optional Serial Bus control is not used in this exam-
ple, thus the SCL, SDA and ID[x] pins are left open. A delay
cap is placed on the PDB signal to delay the enabling of the
device until power is stable.
30110144
FIGURE 32. DS92LV2421 Typical Connection Diagram — Pin Control
35 www.national.com
DS92LV2421/DS92LV2422
Figure 33 shows a typical application of the DS92LV2422 Des
in Pin/STRAP control mode 24-bit Application. The LVDS in-
puts utilize 100 nF coupling capacitors to the line and the
receiver provides internal termination. Bypass capacitors are
placed near the power supply pins. At a minimum, seven 0.1
µF capacitors and two 4.7 µF capacitors should be used for
local device bypassing. System GPO (General Purpose Out-
put) signals control the PDB and the BISTEN pins. In this
application the RFB pin is tied Low to strobe the data on the
falling edge of the CLKOUT.
Since the device in the Pin/STRAP mode, four 10 k pull up
resistors are used on the parallel output bus to select the de-
sired device features. CFEN is set to 1 for Normal Mode with
Control Signal Filter enabled, this is accomplished with the
STRAP pull-up on DO23. The receiver input equalizer is also
enabled and set to provide 7.5 dB of gain, this is accomplished
with EQ[3:0] set to 1001'b with STRAP pull ups on DO12 and
DO15. To reduce parallel bus EMI, the SSCG feature is en-
abled and set to fmod = CLK/2168 and ±1% with SSC[3:0] set
to 0010'b and a STRAP pull-up on DO4. The desired features
are set with the use of the four pull up resistors.
The interface to the target display is with 3.3V LVCMOS lev-
els, thus the VDDIO pin is connected to the 3.3 V rail. The
optional Serial Bus Control is not used in this example, thus
the SCL, SDA and ID[x] pins are left open. A delay cap is
placed on the PDB signal to delay the enabling of the device
until power is stable.
30110145
FIGURE 33. DS92LV2422 Typical Connection Diagram — Pin Control
www.national.com 36
DS92LV2421/DS92LV2422
POWER UP REQUIREMENTS AND PDB PIN
The VDD (VDDn and VDDIO) supply ramp should be faster than
1.5 ms with a monotonic rise. If slower then 1.5 ms then a
capacitor on the PDB pin is needed to ensure PDB arrives
after all the VDD have settled to the recommended operating
voltage. When PDB pin is pulled to VDDIO, it is recommended
to use a 10 kΩ pull-up and a 22 uF cap to GND to delay the
PDB input signal.
TRANSMISSION MEDIA
The Ser/Des chipset is intended to be used in a point-to-point
configuration, through a PCB trace, or through twisted pair
cable. The Ser and Des provide internal terminations provid-
ing a clean signaling environment. The interconnect for LVDS
should present a differential impedance of 100 Ohms. Use
cables and connectors that have matched differential
impedance to minimize impedance discontinuities. Shielded
or un-shielded cables may be used depending upon the noise
environment and application requirements.
LIVE LINK INSERTION
The Ser and Des devices support live pluggable applications.
The automatic receiver lock to random data “plug & go” hot
insertion capability allows the DS92LV2422 to attain lock to
the active data stream during a live insertion event.
PCB LAYOUT AND POWER SYSTEM CONSIDERATIONS
Circuit board layout and stack-up for the LVDS Ser/Des de-
vices should be designed to provide low-noise power feed to
the device. Good layout practice will also separate high fre-
quency or high-level inputs and outputs to minimize unwanted
stray noise pickup, feedback and interference. Power system
performance may be greatly improved by using thin di-
electrics (2 to 4 mils) for power / ground sandwiches. This
arrangement provides plane capacitance for the PCB power
system with low-inductance parasitics, which has proven es-
pecially effective at high frequencies, and makes the value
and placement of external bypass capacitors less critical. Ex-
ternal bypass capacitors should include both RF ceramic and
tantalum electrolytic types. RF capacitors may use values in
the range of 0.01 uF to 0.1 uF. Tantalum capacitors may be
in the 2.2 uF to 10 uF range. Voltage rating of the tantalum
capacitors should be at least 5X the power supply voltage
being used.
Surface mount capacitors are recommended due to their
smaller parasitics. When using multiple capacitors per supply
pin, locate the smaller value closer to the pin. A large bulk
capacitor is recommend at the point of power entry. This is
typically in the 50uF to 100uF range and will smooth low fre-
quency switching noise. It is recommended to connect power
and ground pins directly to the power and ground planes with
bypass capacitors connected to the plane with via on both
ends of the capacitor. Connecting power or ground pins to an
external bypass capacitor will increase the inductance of the
path.
A small body size X7R chip capacitor, such as 0603, is rec-
ommended for external bypass. Its small body size reduces
the parasitic inductance of the capacitor. The user must pay
attention to the resonance frequency of these external bypass
capacitors, usually in the range of 20-30 MHz. To provide ef-
fective bypassing, multiple capacitors are often used to
achieve low impedance between the supply rails over the fre-
quency of interest. At high frequency, it is also a common
practice to use two vias from power and ground pins to the
planes, reducing the impedance at high frequency.
Some devices provide separate power and ground pins for
different portions of the circuit. This is done to isolate switch-
ing noise effects between different sections of the circuit.
Separate planes on the PCB are typically not required. Pin
Description tables typically provide guidance on which circuit
blocks are connected to which power pin pairs. In some cas-
es, an external filter many be used to provide clean power to
sensitive circuits such as PLLs.
Use at least a four layer board with a power and ground plane.
Locate LVCMOS signals away from the LVDS lines to prevent
coupling from the LVCMOS lines to the LVDS lines. Closely-
coupled differential lines of 100 Ohms are typically recom-
mended for LVDS interconnect. The closely coupled lines
help to ensure that coupled noise will appear as common-
mode and thus is rejected by the receivers. The tightly cou-
pled lines will also radiate less.
Information on the LLP style package is provided in National
Application Note: AN-1187.
LVDS INTERCONNECT GUIDELINES
See AN-1108 and AN-905 for full details.
Use 100Ω coupled differential pairs
Use the S/2S/3S rule in spacings
– S = space between the pair
– 2S = space between pairs
– 3S = space to LVCMOS signal
Minimize the number of Vias
Use differential connectors when operating above
500Mbps line speed
Maintain balance of the traces
Minimize skew within the pair
Terminate as close to the TX outputs and RX inputs as
possible
Additional general guidance can be found in the LVDS
Owner’s Manual - available in PDF format from the National
web site at: www.national.com/lvds
37 www.national.com
DS92LV2421/DS92LV2422
Physical Dimensions inches (millimeters) unless otherwise noted
48–pin LLP Package (7.0 mm x 7.0 mm x 0.8 mm, 0.5 mm pitch)
NS Package Number SQA48A
60–pin LLP Package (9.0 mm x 9.0 mm x 0.8 mm, 0.5 mm pitch)
NS Package Number SQA60B
www.national.com 38
DS92LV2421/DS92LV2422
Notes
39 www.national.com
DS92LV2421/DS92LV2422
Notes
DS92LV2421/DS92LV2422 10 to 75 MHz, 24-bit Channel Link II Serializer and Deserializer
For more National Semiconductor product information and proven design tools, visit the following Web sites at:
www.national.com
Products Design Support
Amplifiers www.national.com/amplifiers WEBENCH® Tools www.national.com/webench
Audio www.national.com/audio App Notes www.national.com/appnotes
Clock and Timing www.national.com/timing Reference Designs www.national.com/refdesigns
Data Converters www.national.com/adc Samples www.national.com/samples
Interface www.national.com/interface Eval Boards www.national.com/evalboards
LVDS www.national.com/lvds Packaging www.national.com/packaging
Power Management www.national.com/power Green Compliance www.national.com/quality/green
Switching Regulators www.national.com/switchers Distributors www.national.com/contacts
LDOs www.national.com/ldo Quality and Reliability www.national.com/quality
LED Lighting www.national.com/led Feedback/Support www.national.com/feedback
Voltage References www.national.com/vref Design Made Easy www.national.com/easy
PowerWise® Solutions www.national.com/powerwise Applications & Markets www.national.com/solutions
Serial Digital Interface (SDI) www.national.com/sdi Mil/Aero www.national.com/milaero
Temperature Sensors www.national.com/tempsensors SolarMagic™ www.national.com/solarmagic
PLL/VCO www.national.com/wireless PowerWise® Design
University
www.national.com/training
THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION
(“NATIONAL”) PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY
OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO
SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS,
IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT.
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT
NATIONAL’S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL
PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR
APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND
APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE
NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.
EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO
LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE
AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.
LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and
whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected
to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform
can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.
National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other
brand or product names may be trademarks or registered trademarks of their respective holders.
Copyright© 2011 National Semiconductor Corporation
For the most current product information visit us at www.national.com
National Semiconductor
Americas Technical
Support Center
Email: support@nsc.com
Tel: 1-800-272-9959
National Semiconductor Europe
Technical Support Center
Email: europe.support@nsc.com
National Semiconductor Asia
Pacific Technical Support Center
Email: ap.support@nsc.com
National Semiconductor Japan
Technical Support Center
Email: jpn.feedback@nsc.com
www.national.com
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic."Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Audio www.ti.com/audio Communications and Telecom www.ti.com/communications
Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers
Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps
DLP®Products www.dlp.com Energy and Lighting www.ti.com/energy
DSP dsp.ti.com Industrial www.ti.com/industrial
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Security www.ti.com/security
Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Mobile Processors www.ti.com/omap
Wireless Connectivity www.ti.com/wirelessconnectivity
TI E2E Community Home Page e2e.ti.com
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright ©2011, Texas Instruments Incorporated